
International Journal of Grid Computing & Applications (IJGCA) Vol.11, No.1/2/3/4, December 2020 

DOI:10.5121/ijgca.2020.11401                                                                                                                        1 

 
FACE EXPRESSION RECOGNITION USING 

CONVOLUTION NEURAL 
 NETWORK (CNN) MODELS   

 

Nahla Nour 1, Mohammed Elhebir 2 and Serestina Viriri 3 

 
1Computer Science, Sudan University of Science and Technology, Khartoum, Sudan 

 
2Department of Computer Science, University of Gezira, Gezira, Sudan 
3 Computer Science, University of KwaZulu-Natal, Durban, South Africa 

 

ABSTRACT 
 
This paper proposes the design of a Facial Expression Recognition (FER) system based on deep 

convolutional neural network by using three model. In this work, a simple solution for facial expression 

recognition that uses a combination of algorithms for face detection, feature extraction and classification 

is discussed. The proposed method uses CNN models with SVM classifier and evaluates them, these models 

are Alex-net model, VGG-16 model and Res-Net model. Experiments are carried out on the Extended 

Cohn-Kanada (CK+) datasets to determine the recognition accuracy for the proposed FER system. In this 

study the accuracy of AlexNet model compared with Vgg16 model and ResNet model. The result show that 

AlexNet model achieved the best accuracy (88.2%) compared to other models. 
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1. INTRODUCTION 
 
Face is known as the organ which shows emotion, it is the strongest “channel” of non-verbal 

communication. The face possesses an ability of showing non obvious emotion as signals of 

facial expressions like a smile face shows happiness, a frown face shows disapproval or sadness, 
a face with a wide-open eyes shows surprise and a face with a curled lip shows disgust. 

Recognizing these signals through machines can make human-machine interaction stronger and 

comported. Facial expression recognition (FER) is an important non-verbal channels through 

which human’ internal intent and emotions can be recognized by Human Machine Interaction 
(HMI) systems. 

 

There are several areas where FER is been applied such as human machine interaction as used in 
security surveillance, computer games and social robot. FER is also applied in behavioural 

science to get social facts (origin, gender, and age) and also applied in medical science to monitor 

pain, depression, anxiety and for mental retardation treatment. Despite that humans easily 
perceive most facial expressions, but there is still difficulty in getting reliable expression 

recognition by machine. The main difficulties in FER are obtaining optimum pre-processing, 

feature extraction and classification, most especially under variable conditions of input data, the 

head pose, environmental disorder and illumination, various causes of variation in face. Problems 
remain even when deep learning is applied to FER despite its feature learning ability. Firstly, 

many training data are required by deep neural networks to be free from over fitting. 

Nevertheless, the subsisting facial expression databases are insufficient for training the common 
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recognized neural network with deep framework which derived the highest hopeful accurate rate 
in tasks for recognition of objects. Moreover, various personal details such as background, 

gender, age, ethnic and level of expression allow high inter-subject variation to exist [2]. In 

addition to subject identity bias, variations in pose variability, occlusions and lighting effect 

which are known in unrestricted scenarios of face expression. They are all not connected with 
facial expressions longitudinally and consequently provide strength to the deep network necessity 

to overcome variation in the large intra-class and to train active expression precise representing 

symbols. In this study, we institute and present developments in study on an introduced method 
and technique for feature extraction, face detection and classification which utilizes VGG-19, 

Alex-Net and Reset-Net architecture to improve FER performance and solve the mentioned 

difficulties. Deep learning methods gave a considerable results when used for feature extraction 
and classification, specifically Convolutional Neural Networks (CNN) frameworks that are 

biologically motivated multistage one which automatically trained hierarchies of constant 

features [3]. The ConvNets include a multistage input image processing for hierarchical 

extraction and high-rank representing feature. This inspired us to come up in this study with an 
efficient approach method that depends on ConvNets for recognition of facial expression. We 

propose a latest framework in which the input of the system is seen as the image; after that, 

Convolutional Neural Network models are used for predicting the facial expression label that has 
to be among the following [4]: neural, happiness, anger, surprise, sadness, and disgust. And these 

models are evaluated. We organized the other sections of this study as follows: Section 2 presents 

a general background on researchers preceding tasks applying Alex-Net and Reset-Net for 
recognition of face expression, Section 3 gives detailed description of the proposed method and 

architecture, Section 4 provides the results of the experiment, evaluates and discusses the results 

in detail. In conclusion, Section 5 gives the concluding part of the paper. 

 

2. FACE EXPRESSION BACKGROUND 
 

Deep learning is a kind of machine learning in which a model learns for carrying out 

classification function direct from text, images, or sound. Deep learning is applied using a neural 
network architecture. The word deep indicates the number of layers in the network, more layers 

increase the depth of the network. Deep learning algorithm performs a repeated task, each time 

tweaking it a little to increase the result, so that train’s computer system to perform what comes 

to humans naturally: learning from examples [5]. Deep learning is the main technology for 
several applications like driverless cars, it enables them to distinguish pedestrians and to 

recognize a stop sign [6]. Recently, for a good reason deep learning has been getting lots of 

attention and giving results that were impossible before [4]. Deep learning models could get an 
accurate state-of-the-art that occasionally surpasses human ability. They have been trained by 

using a large number of identified data as well as neural network frameworks with number of 

layers [4]. Deep learning models have been trained by using large of identified data and neural 

network frameworks which automatically learn features from the data then manual extraction of 
features is not needed [7]. 

 

2.1. Convolution Neural Network 
 

Convolutional neural networks are presently among the best flamboyant algorithms for deep 

learning with image data. They have been successfully applied in computer vision tasks, and the 
robustness in object recognition localization in variant images is proven by the results. Thorough 

research on automatic analysis of expression was publicized recently [8], [9], [10]. These 

publications have established a set of standard algorithmic pipelines for FER. Though, their 
concentration is on classic methods, and deep learning has seldom been reviewed. In the recent 

time, FER has been examined according to deep learning in [11], but this is a very short review 
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without introductions on FER datasets and technical details on deep FER. Hence, we carry out in 
this study, a systematized study on deep learning for FER duty that depend on videos (image 

sequences) and non-moving image. Aiming to provide new researchers on this field a general 

description of the systematized architecture and high skills of deep FER. It consists of input and 

output layer. Convolutional layers, fully-connected layers and max-pooling layers are examples 
of in-between layers. CNN architectures vary in the number and type of layers applied for its 

particular application. The most common CNN architectures are GoogLeNet [12], VGGNet [13], 

AlexNet [14], ResNet [15]. 
 

2.1.1. Convolutional Layer 
 
Convolutional layer has always been the first layer of CNN, it extracts features, and it consists of 

several feature maps. Each neuron in a feature map is connected to a small region, called the local 

receptive field, through a set of shared weights and a single shared bias. The main two 
advantages and reasons why Convolutional layer is preferable over fully connected layer are; 

firstly, parameter sharing; where all neurons share equal weights and bias in a feature map, which 

causes fast training as a result of a high reduction in the number of parameters, and will 
eventually help in building deep networks [16]. 

 

2.1.2. Pooling Layer 
 

After convolutional layer, the pooling layer is usually implemented with the aim of reducing the 

spatial resolution of the feature maps, speeding the computation and extracting prominent 
features. Max-pooling is the most used technique for pooling layer, where each pooling unit is 

equal to the largest element in a receptive field.  

 

2.1.3. Fully Connected (FC) Layer 
 

The fully connected layer input must be a vector, so we have to first flatten the output features 
from the two layers (convolutional and pooling). Then, we may pass them to the output layer, 

where a Soft-Max classifier or sigmoid are used for predicting the input class label. Besides these 

networks, there are also many common derived architectures. In [17], [18], region-based CNN 

(RCNN) [19] was utilized for learning features for FER. In [20], Faster R-CNN [105] was 
employed to signify facial expressions through generation of proposals of a high class region. In 

addition, 3D CNN was introduced by Ji et al. [21] to acquire motion information encoded in 

various close structures for recognizing actions through 3D convolutions. The well-designed C3D 
was proposed by Tran et al, [22] which utilizes 3D convolutions on large-scale supervised 

training datasets to learn patio-temporal features. Several related researches ([23] [24]) have used 

this network for FER.  

 

2.2. Related Work  
 
Recently, a significant improvement has been made by researchers in developing expression 

classifiers [25], [26], [27]. Many deep learning techniques which function on data representing 

symbols, such as Convolutional Neural Networks (CNNs) have been developed in order to 

acquire better facial expression representation. There is similarity between the CNN used in [28] 
and the used one for building the FACS model in terms of concept. The input is broken down into 

features and the deeper the layer the harder the representation becomes, which builds on the 

former layer. Then the last feature representations are utilized for classification. CNNs are not 
similar to the FACS model [29] as a matter of fact that, if enough samples are shown, the 

network may possibly learn an overall smile symbolizing rather than using a specific and pre-
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defined structure symbolizing. In the year 2015, Zhang and Yu employed CNN for FER in 
EmotiW. They used a complete unit of CNNs [30] and discomposed the input images randomly 

to get a 2-3% increase in accuracies. Kahou et al. [31], used CNNs to evaluate two experiments, 

where they pre-trained a standard CNN in the first experiment employing the Acted Facial 

Expression in the Wild (AFEW) dataset [32] while the second one was held on Toronto Facial 
Dataset. Both experiments were used to recognize a neural expression and six universal facial 

expressions. This paper has proven an achievement that increased network accuracy. Dennis H. 

et. al [33], applied a facial image to CNN in his task, he combined the information from the 
network to achieve 94.4% accurate recognition. The method achieved a higher recognition rate 

compared to others. We propose in this study a common CNN framework models to predict 

common facial image expressions. This approach combines standard methods such as Viola 
Jones method for face and facial region detection and extraction [34], [35] and convolutional 

neural network (Alex-Net and Reser-Net) for feature extraction and image sequences are 

involved. For classification, we used Support Vector Machine to compare each of the two models 

with the state- of the- art. 
 

3. METHODOLOGY  
 

This section presents the suggested method used in this study. Which is organized in three main 
phases: Data-pre-processing, feature extraction, classification steps for recognizing face 

expression. Figure 1 illustrate our methodology  

 

 
 

Figure 1: Research Methodology 

 

3.1. Face Expression Dataset 
 

The CK+ dataset contains 593 image sequences from 123 subjects within the age of 18 to 50, 

including male and females from different ethnic groups comprising of 69% female and 19% 
from African, American and Asians [36].  Ck+ Dataset image sample is illustrated in Figure 1 
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Figure 2 A sample of images from the CK+ dataset 

 

The proposed method begins with pre-processing and uses Viola-Jones face detection framework 

for face detection. The face was first detected, cropped and face components were extracted and 

normalized 224 x 224 x 3 pixel size for Res-Net50 and Res-Net101 CNN Models, also 128 x128 
pixels for Alex-Net CNN model. When image scale is reduced it helps in reducing a must learned 

information by the network and also ensures faster training and reduces memory cost [1]. The 

detected face components were applied as the input into the first layer of CNN to make them 
compatible with the input size of CNN Pre-Trained Models and convert any grayscale images to 

RGB images using an augmented Image Data store to resize image and convert image to RG  
 

3.2. Prepare Training and Test Image Sets 
 

Separate the sets into two, the separation should be randomized to avoid being bias. Pick 80 % of 

the selected images from each set for the training data and the remaining 20 %, for the test data.  
 

3.3. CNN Pre-Trained Models 
 
In this paper, we applied four models CNN pre-trained convolution neural networks as the 

proposed facial expression recognition methods, which are Alex-Net, VGG, ResNet-101 and 

ResNet-50 and compared the four methods with state of the art methods. A pre-trained model is a 

kind of model which has been trained on a large standard dataset to address a problem similar to 
the one we aim to address. The process diagram of the proposed facial expression recognition 

system is shown in Fig.1 it is arranged in three stages; Image Pre-Processing where we used 

Viola Jones algorithm for detecting Face and facial parts, facial Feature extraction and feature 

classification using CNN. 
 

3.3.1. Alex-Net: 
 

It was the winning architecture for ImageNet competition. It uses large filter and stride size at the 

first layer. It uses 8-layer network, with an image input size of 48 by 48. 
 

3.3.2. VGG-19 
 

Our VGG-19 has an input of 48x48 RGB image. The image is sent via a bunch of convolution 

layers, where 3x3 filters are utilized. It contains 19 weight layers which involves 16 layers of 
convolution with 3x3 filter size and 3 layers of fully connected, followed by stack of 

convolutional layers. Each first two of 3 fully connected layers have 4096 channels, the third 

performs 7-way ILSVRC classification and therefore consists of 7 channels (every class has a 
channel). SVM layer is the last layer. Fig. shows Vgg-19 networks. 
 

3.3.3. ResNet-101 
 

Research VGG ResNet-101 is a convolutional neural network which has undergone training on 

over one million images within ImageNet database. It contains 347 layers and has an ability to 

categorize images into 1000 object classes. It possesses 224 by 224 as size of an image input.  



International Journal of Grid Computing & Applications (IJGCA) Vol.11, No.1/2/3/4, December 2020 

6 

 

3.3.4. ResNet-50 
 

ResNet-101 is a convolutional neural network which has undergone training on over one million 

images within ImageNet database. It contains 177 layers and can categorize images into 1000 
object classes.  It also has 224 by 224 as size of an image input. 

 

3.4. Train a Multiclass SVM Classifier using Pre-trained CNN 
 

There was an extraction of the learned image features from a pre-trained CNN for feature 

extraction, the precedent layer to the classification layer called fc1000 was used for feature 
extraction through activation method. These features were latterly utilized in training and testing 

SVM classifier. 
 

3.5. Evaluation Protocol 
 
A method performance in facial expression image analysis is typically measured by specificity, 

sensitivity, and F1 score. Sensitivity measures the proportion of real positive samples which are 

correctly recognized, in which the percentage of Pneumonia image that is correctly classified as 

Pneumonia. Therefore, it is computed according to the following definition:  
 

 
 

Figure 3 depicted confusion matrix. 

 

True Positives (TP):  The number of cases where the model predicted yes and the person have the 
predicted expression, True Negatives (TN): the number of cases where the model predicted no 

and the person does not have that expression.  False positives (FP):  Model predicted yes, but 

actually they do not have the predicted expression.  False   Negatives (FN): Model predicted no, 
but actually they have the predicted expression Figure 3 depicted confusion matrix. 

 

Sensitivity measures the proportion of actual positives samples that are correctly identified, in 

which the percentage of expression that is correctly classified as correct one.  Therefore, it is 
computed according to the following definition: 

 

Sensitivity =   TP∖ (TP+TN)                                                                Eq. 1 
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Where TP (true positive) is the number of images which have been successfully detected, and FN 
(false negative) is the number of images which have been detected by   the   method.  In contrast, 

specificity measures the proportion of identified negatives samples, in which the percentage 

normal images correctly classified as normal.  In this manner, specificity is computed as: 

 

             Specificity =TP∖(TP+FN)                 Eq. 2 

 

Where TN (true negative) is the number of   normal patients which have been successfully 

classified, and FP (false positive) is the number of normal patients which have been wrongly 
classified as Pneumonia. And, F1-score measures the average F1 score through different class 

labels which is computed as: 

 
F1= (PPV×TPR)\ (PPV+TPR)                                        Eq. 3 

 

Where PPV 

PPV = TP∖ (TP+TN) 
 

And TPR 

TPR =   TP∖ (TP+TN) 

 
The accuracy was the fraction of the predicted labels that were correctly computed as: 

 

Accuracy    = TP-TN∖ (TP+TN+FP+FN)                Eq. 4 

 
Table 1. Comparison of results with approaches in metric measurements 

 
 Sensitivity  Specificity F1-score Accuracy 

Alex-Net 88.2 % 88.1% 89.3% 88.2% 

VGG-16 83.7% 82.9% 85.1% 88.2% 

ResNet-101 81.4% 81.2% 82.6% 81.6% 

ResNet-50 81.1% 80.9% 80.4% 81.9% 

 

4. EXPEREMENT RESULT AND DISCUSSION  
 

The proposed system operates on Intel Core i5- CPU @ 2.7 GHz with 8GB. MATLAB 2019 a 

device was used for the method evaluation and performed the task of classification and feature 
selection. The training subset of 70% was used to train the network for classification and 30% for 

testing subset was used to test how probable a facial image is correspond to a specific class of 

facial expression. 
 

CNN training is accomplished in a supervised method applying the standard across-validation 

algorithm. The average recognition accuracy is used for evaluation of network performance. An 

average of 0.1s was taken by image pre-processing while an average of 0.2s was given to image 
classification. Figure 2, 3, 4 & 5 show the confusion matrix of the recognition accuracies for 

seven facial expressions with the uses of the training weights achieved with maximum accurate 

rate. The recognition rate obtained when using Alex-net, VGG-Net, Res-Net101, Res-Net50 
methods is 99.3%, 98.4%, 99.1%, 97.9% respectively. 
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Figure 4. Confusion matrix (%) of cross-validation testing method for 7-classes emotional in  

CK dataset using Alex-Net 

 

 
 

Figure 5. Confusion matrix (%) of cross-validation testing method for 7-classes emotional in  

CK dataset using VGG-16 

 

 
 

Figure 6. Confusion matrix (%) of cross-validation testing method for 7-classes emotional in  

CK dataset using ResNet-101 
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Figure 7, Confusion matrix (%) of cross-validation testing method for 7-classes emotional in  

CK dataset using ResNet-50 

 

We compared the average recognition accuracy of our proposed methods with other facial 

expression recognition methods. The comparison of the performance accuracy achieved with the 

proposed method and the other methods on the CK+ database are shown in Table 2. It was 
proven that the proposed methods achieved a higher recognition accuracy comparing to other 

existing methods in literature. 
 

Table 2: Comparison with methods in literature 

 
Methods  

AlexNet[37] 61.7% 

VGG-19 [38] 76.73% 

ResNET [37] 63.1% 

Ours AlexNet 88.2% 

Ours VGG-19 84.2% 

Ours ResNet 81.6% 

 

Generally, our method explicitly inherits the advantage of information gathered from frontal 
image using different models of CNN and working with hidden layers, and hence it naturally 

improves the final predication accuracy. The disadvantage of our approach is that facial 

expression recognition based on face images can achieve promising results, facial expression is 
only one modality in realistic human behaviours. 

 

5. CONCLUSION 
 

We used deep learning to examine the VGG-19, AlexNet and ResNet architectures for facial 
emotion recognition. We succeeded by achieving satisfactory results in CK+ dataset as the results 

demonstrated. We further improved these models, for AlexNet model and SVM classifier have 

highest accuracy (88.2%), followed by VGG16 model with (84.1%) accuracy and followed by 
AlexNet model with (81.6%) accuracy. Finally the result of this study can help in facial 

expression recognition. 
 

Work can be improve through the uses of other datasets or if we use another deep 

learning architecture so with a different approach, the result can be improved. In addition 

to the use Data augmentation techniques to increase the efficiency of training and use 
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larger datasets to increase accuracy and finally design an online application to recognize 

the expression from real image. 
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