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ABSTRACT  

 

Load balancing functionalities are crucial for best Grid performance and utilization. Accordingly,this 

paper presents a new meta-scheduling method called TunSys. It is inspired from the natural phenomenon of 

heat propagation and thermal equilibrium. TunSys is based on a Grid polyhedron model with a spherical 

like structure used to ensure load balancing through a local neighborhood propagation strategy. 

Furthermore, experimental results compared to FCFS, DGA and HGA show encouraging results in terms 

of system performance and scalability and in terms of load balancing efficiency. 
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1.INTRODUCTION 
 

Grid computing[1] extends existing distributed computing to a more unified and collaborative 

structure. It enables multiple computing resources, that are geographically distributed and owned 

by different individuals or organizations, to be logically coupled to form the illusion of a powerful 

super computer with infinite capacity[2].Scheduling and load balancingare essential grid software 

infrastructure services. Theseservices assigntasks to nodes(i.e. computing resources) and  transfer 

tasks from overloaded to under-loaded nodesin orderto maximizeresource utilization on one 

hand,and minimizing the total task’s execution time on the other hand. Considering the grid load 

balancing problem, several solutions have been proposed using different methods and strategies, 

e.g.,[3][4]. 

  

Sofar, proposed methods can be classified into various categories depending on the point of 

interest: centralizedvs. decentralized,decision taking [5 – 8], local vs. global optimization approach 

[9][10], static vs. dynamic strategies[11][3], adaptive vs. non-adaptive behavior[12][13], etc. 

Among the most critical issues pertaining to grids is how to manage the resources[4]. In the 

proposed solution, the grid resources are organized according to a logical topology called 

theresource managementmodel[4]. This topology/model defines how the different grid entities 

communicate and work in order to achieve the received jobs/tasks. R. Buyyaet al. proclaimed that 

the choice of the right model for the resource management architecture plays a major role in its 

eventual (commercial) success [4]. 

 

The motivation behind this paperis based on the observation that the load balancing problem can 

be improved by simply improving the classical used models tree, star, and P2Pand further 

proposing a new one; a polyhedron sphere like model that was introduced for the first time in [14]. 

This logical model has the merit of providing optimized load balancing in a stateless context. It 

guarantees a high level of decentralization and scalability of the load balancing process leading 

tobetter resource utilization rates and minimum tasks execution time. Therefore,this work proposes 

adecentralizedtopology-awareload balancing solutionfor independent tasks in a grid environment 
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named TunSys. The grid topology is constructed automaticallyin two steps. In the first step, a 

polyhedron topology, that has a sphere-like structure, is created. In the second step, the available 

resources are assigned to the nodes of the logical topology depending on the resource's physical 

characteristics. This structure is used to ensure a local neighborhood load balancing strategy. The 

presented method is dynamic, adaptive, cooperative, and non-preemptive.In addition,it uses a 

combination of two load thresholds: local and global.The experimental evaluation of the proposed 

model using the GridSim simulator has shown encouraging results in terms ofmakespan, system’s 

scalability which can reach linear and supra-linear levels, and load balancing 

performanceoutperforming FCFS (First-come-first-served Algorithm)[5], DGA(Dynamic Genetic 

load balancing Algorithm) [7],and in most cases HGA (A hybrid load balancing strategy of 

sequential tasks for grid computing environments)[6]. 

 

The remainder of this paper is organized as follows: Section 2 gives a brief overview of the related 

work. Section 3 describes the proposed logical polyhedron topology. Section 4presents the 

proposed adaptive load balancing method. Section 5 discusses the simulation results. Finally, the 

paper’s conclusion highlights   some future research directions. 

 

1.1 RELATED  WORK 
 
The Grid load balancing problem have been widely studied. Indeed, the literature contains several 

solutions using different strategies to solve the problem from different points of view.They can be 

classified according to different criteria: centralizedvs.decentralized, localvs.global, 

staticvs.dynamic, adaptivevs.non-adaptive, threshold-based vs.threshold-independent, etc.Further 

details of the largely adopted taxonomy is well explained by Yagoubietal. In [15], an excellent 

survey on Grid resource allocation mechanisms is presented in [24, 25]. As examined in these 

detailed works, some of the proposed methods use agents [5], [11], [14], [26 – 29] to take profit 

from their decentralized, autonomous, and interacting character and thus avoid the "single point of 

failure". Some methods use genetic algorithms [5 – 7], [30] as a means to approximate solutions in 

polynomial complexity of the problem that can "evolve" during the operation of the parallel 

computing system. 

 

Actually, this work focuses on two major characteristics: (i) the centralization vs. decentralization 

of the scheduling and load balancing processes, and (ii) their awareness of the network topology. 

 

1.1.1 Centralized vs. decentralized load balancing methods 
 
Many authors tried to find out whether it is better to decentralize or to centralize the load balancing 

process to fit the decentralized nature of the grid resources or to have a strong control on the tasks 

allocation decision.  

 

In [6], Yajun Li and al. proposed a centralized load balancing scheme for sequential tasks. In [7] 

many issues are considered such as threshold policies, information exchange criteria, and inter-

processor communication for a centralized solution. Li gang and al. [23] proposed two load 

balancing techniques according to the QoS requirement. The mean arrival rate is utilized by the 

central node to calculate the mean number of jobs in the waiting queues. 

 

Liang Bai and al. [8] proposed to organize the grid nodes into multiple ant colonies. At the 

beginning, ants are distributed on computing nodes randomly. The ants move through computing 

nodes and assign the tasks based on pheromone and heuristic information until all tasks have been 

allocated. The load balancing approach is decentralized and collaborative. Another ant-like self-

organizing mechanism is applied using agents by Junwei Cao [18], to perform complementary load 

balancing for batch jobs with no explicit execution deadlines. However, the main problem of these 
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two solutions is the high number of exchanged messages implying high network resource 

consumption by the load balancing process. 

  

Junwei Cao and al. work [5]used a combination of both intelligent agents and multi-agent 

approaches.Agents are organized into a tree: the broker heads the whole hierarchy and the 

coordinators head a sub-hierarchy. Each agent is a representative of a local grid resource and 

utilizes predictive application performance data and iterative heuristic algorithms to ensure local 

load balancing across multiple hosts. 

 

1.1.2  Topology aware vs. unaware load balancing methods 
 

The grid resources are physically interconnected to each other using network devices and cables 

forming a physical topology. While the system and workload model designate how the different 

parts of the system are logically organized and what kind of tasks it is supposed to achieve [4]. 

These models are key factors of the grid load balancing problem 

. 

In fact, the Grid must scale from few nodes up to a huge number of nodes. In addition, the system 

has to deal with the problems of node failure or unavailability and unexpected peaks of load, and it 

must be able to take all necessary corrective decisions. Furthermore, the part of resources 

consumed by the Grid load management process must be kept to an absolute minimum so as to 

maximize the resource utilization efficiency. Finally, the computing power consumed by a 

scheduler may be considered as a criterion of the scheduler selection [10]. The high amounts of 

computing and storage resources used by the decision making process would be considered as 

serious drawback like in [6]. 

 

 

 

(a)  (b)  (c)  

 
 

 Figure .1 Tree (a), Star (b),and P2Psystem and workload model 

 

The word Grid topology can describe the physical and/or logical arrangement of the nodes. It is 

often used to mean the logical topology, especially for open Grids where the Grid developers 

cannot predict the physical topology [2 – 4]. 

 

Many topology-aware scheduling and load balancing algorithms have been proposed which use 

different Grid topologies. They implement simple models like Tree [14 – 17], Peer-to-Peer [18 – 

20], mesh [30], star [22, 23], etc.  Even though these models are the most popular in the literature, 

real grid model scan integrate different sub-topologies at different levels.  

 

Three cases are possible while constructing the Grid logical topology: It can be totally 

independent, partially dependent, or identical to the physical one. Camille Coti et al. [33]discussed 

how to organize communication patterns within applications with respect to the underlying 

physical topology. Because the various communication patterns induce different performances, the 

authors assume that an application ends up communicating back and forth between clusters if the 

inappropriate physical topology is used; such communication significantly impacts the 

performances. And in [34], the authors suggested a service for the delivery of dynamic 
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performance information in Grid environments. They suggested that reflecting the real network 

topology in the application might improve the interface data structure. 

 

This workproposes a new decentralized solution based on an innovative system model (referred to 

using the word "topology") in order to put in evidence the importance of the network. In fact, "the 

network is the computer" [35].The proposedtopology is decentralized, scalable, and well adapted 

to the grid load balancing process like in tree topology but doesn’t “need the assistance of its direct 

parent” [24]. The nodes are interconnected to each other to form a sphere-like polyhedron 

constructed in two steps. Unlike the star topology, it does not need a central point to coordinate the 

load balancing process. It is “resilient to network traffic to deliver optimal performance” keeping 

the amount of network and computing resources needed for grid management in an absolute 

minimum since “the computing power consumed by a scheduler may be considered as a criterion 

of the scheduler selection”[36]. The next section presents the proposed topology: the structure 

construction, the resources assignment heuristic, and the local search algorithm used for topology 

optimization. 

 

1.2  THE  POLYHODRON GRID TOPOLOGY 
 
The Grid topology refers to the layout of connected nodes. It is the highest level defining how the 

nodes are physically and logically interconnected. The physical topology means the physical 

design of the Grid including the devices, location and network cable installation. The logical 

topology, on the other hand, refers to the way the different nodes and clusters constituting the Grid 

cooperate to execute the tasks.  

 

The proposed polyhedron topology was inspired from the natural phenomenon of heat propagation 

in nature. In fact, heat spreads from a hot body to a cold body. This is called heat exchange process 

(or thermal equilibrium). The objects with sphere shape are a well-adapted form to heat spreading 

[37][38]. Heat spreads from the point of contact in a balanced manner until the total coverage of 

the spherical surface or total absorption. Similarly, during the proposed load balancing process, 

tasks are balanced from the overloaded nodes to the under loaded ones until equilibrium or task 

execution. 

 

The proposed polyhedron topology is constructed in two steps: the polyhedron structure is created, 

then the grid nodes are assigned to the logical positions. 

 

1.2 Creation of the Grid polyhedron topology structure 
 
The proposed topology of the Grid has a polyhedron structure with a sphere-like form (0a)[39]. 

This structure facilitates the adoption of a local load balancing strategy. 

 

 
 

 

Figure .2 Grid Topology (a) Grid nodes organized as a polyhedron (b) Example of  load  situation 
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The construction of this structure is performed in two steps: First, connectingthe nodes to form a 

flat 2D Grid like structure, then adding connections to obtain the final spherical like form. The flat 

2D grid structure must be the nearest possible to a squared one.  

 

To clarify this Gridtopology, let us start by describing the first “flat view” of the Grid. A 2D Grid 

composed of p lines and m columns where m= n

n

 
 
   

and p= n    with n=|X| is constructed. The 

values of m and p are fixed so that the m×p grid is the nearest possible to a squared one. If m=p 

then n is a square and a squared grid is obtained. If n=m×p and m≠p then a grid of size p×mis 

obtained. Otherwise, a partial (p+1)
th
 line that contains only k=n-(m×p) nodes is added to the grid 

of p lines and m columns. 0 shows an example of the resulting 2D Grid for n=10 (0a), n=25 (0b). 

After node’s connection, the polyhedron form of the Grid will have a spherical-like structure. 

 

 

(a) 

 a corner node  an internal node   an 

external node 
(b) 

 

 

Figure .3 Example of the 2D view of the Grid: (a) n=10 (b)n=25 

 

 

Afterward, each internal node is connectedto its four neighbors (instructions [4-7]). As a result, 

external nodes are connected to only three neighbors, whereas the Grid corners are connected only 

to two neighbors. Then external nodes at the top (respectively, at the right) areconnectedto nodes at 

the bottom (respectively, at the left) of the Grid (instructions [8 - 10]). The corner nodes at the 

extreme right of the two last lines are connected. Connections between the Grid nodes (graphically 

represented in 0[39]) are resumed as follows: 

 

• Instructions [4 , 7]: Each node at position (i,j) in the flat view where 1<i<p and 1<j<m is 

connected to the nodes at positions (i-1,j), (i+1,j), (i,j-1) and (i,j+1).  

 

• If n=m×p then: 

• each node at position (1,j) is connected to the node (p,j) 

• each node at position (i,1) is connected to the node (i,m) 

 

• If n>m×p then (instructions[5, 6, 9, 10]): 

 

• each node (1,j) where 1≤j≤k is connected to the node (p+1,j). 

• each node (1,j) where k<j≤m is connected to the node (p,j). 

• the node (p+1,k) is connected to the node (p,m)  

4 5 1 
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• the node (p+1,k) is connected to the node (p+1,1)  

• each node (i,1) where 1≤i≤p is connected to the node (i,m). 

 

The construction of the Grid structure is handled in a time O(n) for a Grid with n nodes. In the 

worst case, the Grid has a total number of connections equal to: 

 
(2     

1    

I f  n = p × m )

o t h e rw i s e

p m
R

n m p

× ×
= 

+ × +  
 

The algorithm complexity is equal to: Θ��� = 2 × � + 4 

 

1.2.1 Resource assignment to the polyhedron topology 
 

It is beneficial to construct a logical topology that takes into account the characteristics of the 

physical one [34]. For example, when the network data transmission speed is high between two 

nodes, tasks are going to take less time to move from node to another. Thus the load balancing 

process will be improved if these nodes are neighbors (interconnected) in the logical topology. 

The assignment of the resources to the nodes of the polyhedron logical topology depends on the 

physical network characteristics. In this context, the proposed topology reflects partially the 

physical one since its construction is based on an abstraction view of the physical network. To 

maximize the efficiency of the logical topology, resources having a high connection quality must 

be neighbors in the polyhedron topology.  

 

To do so, a weight Ѡlk that measures the connection quality between the resource rl and the 

resource rkis assigned to each pair of resources (rl,rk). The weight Ѡrk reflects different network 

parameters: baud rate, maximum transmission unit (MTU), and propagation delay. In [3] and [11], 

since the proposed solution is centralized, the authors quantified the connection quality of each 

node by dividing its transmission rate by the network bandwidth of the dispatcher. In [40] the 

network performance between two sites is calculated using two parameters:  transmission delay 

representing the start-up cost and contention delays at intermediate links and a data transmission 

rate representing the available bandwidth.  

 

The assignment of the nodes to the constructed logical topology depends on the weight between 

resources: if two resources have a high weight, then they are more susceptible to be assigned to 

connected nodes according to the logical topology and vice versa.   

 

In the logical topology, each node xi is logically interconnected to V(xi) nodes then the weight 

between the  resources assigned to the node xi and each node in V(xi) has to be maximized. For a 

given node xi∈X the quantity zi,which is the profit the node xi brings to the global grid topology,is 

computed as follows:  

 	
 = � �
�
���∈�����  

 

Where Ѡπi,πj is the weight between the resource Πi assigned to the node xi and the resource Πj 

assigned to its neighbor xj. A higher zi means a better network exchanging quality in the 

neighborhood of the node xi. In 0b, the node x18neighbor’s set is: V(x18)={x15, x17, x6, x19}. The 

profit the node x18 brings to the whole topology is Z18= Ѡπ18,π15× Ѡπ18,π17× Ѡπ18,π6× Ѡπ18,π19. If 

the nodes (x18,x15, x17, x6, x19) are assigned to the resources (r1,r5,r14,r20,r3) then Z18= 

Z1,5×Z1,17×Z1,16×Z1,15. In the computation of the network exchanging quality at node xi, the product 

of the weight rather than the sum, is used to reduce the compensation between high values and low 

values of Ѡi. 
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Furthermore, the assignment of the resources to the nodes of the logical topology must maximize 

the profit of the whole Grid which is equal to the sum of the profits of all the nodes. The 

assignment of the resources to the nodes of the logical topology aims at maximizing the objective 

function: 

 	 = ∑ 	����� . 

 

Asolution to this problem is a permutation Π=(Π1, Π2, …, Πn) where Πi is the resource assigned to 

the logical node xi. So the number of possible solutions is equal to n!.  

 

Note that the resource assignment to the logical nodes of the polyhedron is a combinatorial 

optimization problem which can be resolved either by an exact method like simplex algorithm, 

dynamic programming, or by approximate methods. In this case, the goal is a solution that 

maximizes as best as possible the objective function Z in a polynomial time. The studied problem 

needs to be solved (only have a good quality solution) in real (short) time and using the absolute 

minimum of resources. Consequently, it was considered useful to solve it heuristically by the use 

of a constructive algorithm followed by a local search to improve the obtained solution. In this 

case, the optimality of the solution cannot be guaranteed. However, the time required to obtain this 

solution will be much lower and can even be dead-lined (obviously in this case the quality of the 

solution strongly depends on the time allowed for the algorithm to get it). 

 

1.2.1 The construction heuristic 
 

The construction heuristic starts from an empty solution � = ∅. It selects randomly a resource r 

and a node x and assigns r to x. Then, iteratively, it selects one occupied node x of the logical 

topology still having idle neighbors according to the logical topology and assigns to them the most 

profitable resources according to network quality criterion Zx. The algorithm ends when all the 

resources are assigned thus all the logical nodes are occupied. 

 

Let R={r1, …., rn} and X={x1, …., xn} denote respectively the set of resources and nodes. Initially, 

the set of idle nodes �� = � and the set of free resources �� = �. A node x of the logical topology 

is idle if neither resource is assigned to it. A resource r is free if it is affected to any logical node. A 

resource r is assigned to exactly one logical node and a logical node receives a sole resource. 

The algorithm starts by selecting a random resource ri from FR (i∈<1,n>) and a random node xj 

(j∈<1,n>). A partiel solution � = {�
�} is obtained and the set of idle nodes and free resources are 

updated ��� = ��\{"
}� and #�� = �\{$�}%. Given a partial solution π, a given node x have three 

possible states: 

 

• The node x is idle i.e. no resource is affected to the node x. 

• The node x is occupied by a resource but at least one of its local neighbors is idle. The node 

x is, then, still unlocked. 

• The node x is locked i.e. the node x and all its neighbors are occupied  

 

The set of unlocked nodes is stored in the list Q. The algorithm affects iteratively resources to 

unlocked nodes until all nodes are locked. The most profitable unlocked node is selected and the 

free resources are assigned to its idle neighbors. 
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Algorithm 1:   The construction heuristic 

 

1) FR :={xj ; j∈<1,n>} 

2) IX := {xj ; j∈<1,n>} 

3) r := random (FR) 

4) x := random (IX) 

5) Πi := φ 

6) Πi := Π∪{Πrx} 

7) Qi := {x} 

8) FR := FR\{x} 

9) IX := IX\{r} 

10) While (Q!=φ) Do 

  xj:= max Zk, k∈Q 

  update FR 

  update IX 

  update Q 

  update Π 

 EndWhile. 

The complexity of the construction heuristic is Θ��(�. 

 

1.2.2 Local search 
 

After obtaining an initial solution Π0 with the profit Z0, it is improved through local search. During 

each local search iteration, the algorithm local search tries to find all possible permutations 

between the resources assigned to two distinct nodes xi and xj that can lead to a new solution Πnew 

such that Znew>Zold. The best generated solution is kept as initial solution at the next iteration. The 

grid system keeps trying to find good permutations till impossibility of improving the  achieved 

solution. It is possible that the finally obtained solution is not the optimal one. Indeed, the 

algorithm looks for local minima. It converges rapidly. This keeps the used algorithm in harmony 

with one of the proposed topology’s goal which is to minimize the grid’s system load and give 

resources privilege to the user’s jobs. The complexity of each iteration of the local search is )��(� 
since the size of the neighborhood is *�( and the cost of the fitness variation is: 

 )�2 ∗ |-�$�|� 
 

A solution of the problem is coded as an assignment vector of size n (n is the number of resources). 

Π[i]=j means that the resource rj is assigned to node xi. The neighborhood of the solution N(Π) is 

composed of all assignment vectors obtained after the permutation of two members Π[i] and Π[j] 

(i≠j). (|.�Π�| = *�(). 

 

For each generated solution Π, the variation of the cost is computed. 

 /0 = 		�Π� − 	�Π3� =#	
Π + 	�Π% − 4	
Π5 + 	�Π56 + ∑ �	�Π5�∈��
� − 	�Π5 ∗ 78�78��+∑ �	�Π5�∈���� − 	�Π5 ∗ 78�78�� 
 	
Π is the local network quality of node i in solution Π if /0 > 0. The local search algorithm is 

given in the following algorithm. As a result,  the cost of the generation and the evaluation of the 

neighborhood is )��(�. 
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Algorithm 2:  Local search 
Local:=false  

While (local=false) do 

∆Zbest:=0 

For each i,j in <1..n>, i<j do  

∆Z (Πi�Πj) 

If�∆Z > ∆Zbest�Then 

BestExchange:=Πi�Πj 

∆Zbest :=∆Z 

EndIF 

End For each 

If�∆Zbest > 0� 
 Π0:=Permute(Π0,BestExchange) 

 Z:=Z(Π0)+∆Zbest 
Else 

Local:=true 

End if  

End while. 

Return Π0 

 

2. ADAPTIVE LOAD BALANCING 
 
TunSys uses an adaptive andfully decentralized load balancing strategy. The workload is evaluated 

periodically both globally at the grid level and locally at the node’s level and the load thresholds 

are adapted. Due to polyhedron logical topology, every node has a set of neighboring nodes. So, 

the overload propagates from the overloaded nodes to their neighbors and from neighbors to 

neighbors until a balance of the workload is reached. When the overall grid workload is high, the 

local and global thresholds are updated so as the nodes can absorb more jobs and the workload 

balance can be realized overall the grid.  

 

Each node makes local decisions according to its state and the state of its neighbors. In case of 

unexpected peak of load, the node initiates a sender side load balancing process and the jobs are 

routed to relatively idle nodes in its local neighborhood. The scheduling process is also based on 

local decision and is fully decentralized. Each node creates schedules that consider local objectives 

and constraints within the boundaries of the overall system objectives. 

 

2.1 Global and local load thresholds 
 

Let Ԛi, i∈<1,n> be the waiting queue of node Ii and |Ԛi | be the length of the tasks waiting to be 

executed on the node Ii. Let V(i) be the set of neighbors of the node Ii according to the logical 

topology. 

  

The node's load is evaluated using a load upper bound αi. If the node’s queue |Ԛi| length exceeds αi 

it is considered as an overloaded node (|Ԛi|>αi). Initially, for a given node xi, the upper bound is 

evaluated according to the global Grid load thresholds α  and β and the number of its processing 

elements |PEsi|: 

 

αi=α×|PEsi| 

 

The thresholds αrepresents the upper bound of the global Grid load. It represents the load indicator 

of the waiting queues at the Grid level. Initially, α=2; later the system periodically collects 
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information about the current load and waiting queue length of all the Grid nodes, and it adapts α 

dynamically according to the resource load variation as follows:  

 

αnew =αold*(1+ γ)     while   (1+ γ)∈]0, 2[  and α>1 

 

Where γ is an indicator of the current workload state and is computed according to the following 

formula: 

@ = AB$
/ |D�|EFG� > H + IJA|�| − AB$
/ |D�|EFG� ≤ H − IJA|�|  

Where: 

 

• M is the mean of grid node’s load M=AVG(|Ԛi|,xi∈X)  

• E is the standard deviation of the grid node’s load E=STD(|Ԛi|,xi∈X)  

 

A given node is considered as overloaded if the length of its queue per processing element is more 

than a standard deviation over the load’s mean. A given node is considered as under-loaded if the 

length of its queue per processing element is less than the loads mean minis the standard deviation 

of the node’s load.  

 

The value of γ is in the intervall ]-1, 1[. A positive value shows that the majority of the nodes are 

overloaded (γ>0) where a negative value shows that there are more under-loaded nodes than 

overloaded ones (γ<0). The combination of the two measures (average and standard deviation) 

makes the threshold α sensible not only to the grid’s peak of load (when the grid load average 

increases) but also to the spread out of this load. 

 

When the value of γ is positive, local peak of loads are detected and the value of the global 

threshold is increased and thus the local ones. So, the under-loaded nodes can accept the reception 

of more jobs and the most overloaded nodes will be discharged in priority.  

 

When the value of γ is negative, the value of the global threshold is decreased and intuitively the 

local one’s. The state of some node’s may change from the underload to the overload state and the 

load propagation process may be inhibited. In fact, if the proportion of under-loaded nodes is high, 

the load have to be balanced overall the nodes so as to speed up the response time overall the grid. 

 

2.1.1 Load balancing process  
 
The loadbalancing process is triggered or stopped in any node xof the Grid depending on the 

following scenarios:  

 

• A new task arrives to xi:   When xi receives a task, its local workload queue is reevaluated. 

If xi is already overloaded or if the acceptance of this task will make it overloaded (|Ԛi|>αi), 

then xi triggers the load balancing process; otherwise the task is inserted into the waiting 

queue of xi. 

 

• xi receives a new value of the global threshold α: xi updates its local threshold αi andchecks 

its new load state: 

• If α decreased and if xi becomes over-loaded (|Ԛi|>αi), then xi triggers the load 

balancing process in the sender initiated mode. 

 

• If α increased, then the waiting queue |Ԛi| can accept more tasks. Therefore, if 

the load sender had initiated the balancing process, then it is stopped. 
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Generally, each load balancing and load sharing algorithm can be defined by three rules: the 

location rule, the distribution rule and the selection rule [41] :  

 

• The location rule defines which grid resources will be included in the balancing process.  

• The distribution rule decides how to redistribute the workload among available nodes. 

• The selection rule selects tasks in an overloaded node for reassignment to an under-loaded 

node. 

 

In the proposedsolution, the logical neighborhood relation defined by the polyhedron topology is 

used to perform the load balancing. This topology has a spherical like structure and a given node x 

of the grid has V(x) neighbors. The overload is transferred from neighbors to neighbors until 

complete absorption. The load balancing process is decentralized.  

 

Each node xi (i∈<1,n>) checks its load state based on its current waiting queue and local threshold 

αi. Periodically, each node sends information about its load level to its neighbors. In fact, a given 

node maintains neighborhood's Load table (NL). Such table represents a snapshot of a small part of 

the grid. Each node perceives its load state and those of its neighbors and decides on the lunching 

of the balancing process based on this local vision of the load spread. This local decision process 

applies the following rules: 

 

 
 
 

Figure.4 NL table for node x11. 

 
Location rule: In case a node xi becomes overloaded, it tries to find an under-loaded node xj from 

its neighbors V(xi) ready to receive some jobs. In the example of 0b, node 18 for instance, can send 

jobs only to nodes 19, 17, 6 and 15. 

 

Distribution rule: The chosen neighbor is the least loaded one. If all elements of V(xi) are 

overloaded (xi and all its neighbors), then xi does not wait until one of its neighbors becomes 

under-loaded. It directly sends it to the least loaded one which in turn has to balance it to one of its 

neighbors. 

 

Selection rule: In this work, an Early and Late [11] technique is applied for the queue 

management in order to adapt task execution to non-deterministic nature of the Grid computations. 

At the node level, tasks in its waiting queue |Ԛi| are sorted according to their submission time; the 

oldest tasks are favored for more fairness. In case a task had been delayed for being balanced from 

node to node, it is fostered while waiting in the queue. In case a task has to be transferred to an 

under-loaded node, the last one in the queue is selected since it is the last to be submitted to the 

Grid.  

 

Accordingly, the node’s local neighborhood and the equilibration of overload are  relayed from 

neighbors to neighbors—imitating the heat propagation principle. The situation of starvation can 

x9 α9 β9 |Ԛ9| 

x20 α20 β20 |Ԛ20| 

x7 α7 β7 |Ԛ7| 

. . . . 
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be avoided  whenever there is the overload spread from overloaded part of the grid to the under-

loaded one. 

 

3. EXPERIMENTATION 
 
The GridSim simulator [42]was used and extended with several classes and interfaces to fulfill 

specific requirements of TunSys and to take into account the semantics of node description and 

different resource types. The proposed solution have been simulated in the context of a private 

Grid context as defined in [17]. The evaluation focus on the workload balance, the completion time 

and the scalability. Each experiment had been repeated 10 times. The results are discussed in terms 

of the mean values. 

 

3.1 The evaluation metrics 
 

The mean square deviation criteria is used to evaluate the resource load balancing performance. It 

is computed as follows: 

σ = M∑ �P
 − PO�(PQ�� m  

 

where Pi, P̅ denotes the individual node utilization and the average node utilization and m is the 

number of resources. This metric indicates how well the loads are balanced across all the nodes 

involved in a grid system. The lower the measurement of this performance metric is, the better the 

performance of load balancing is. When the value of the mean square deviation is high, a large 

gap between the node’s workloads is deduced and thus picks of overloads and valleys of under-

loads may exist.   

 

To verify if the load balancing process is optimizing the completion time, the makespanmetric 

have been used which represents the latest completion time among all the tasks, i.e. the derived 

maximum load among all the computing nodes: 

 

ST$
∈U�,�W XY
 + Z I[
�
∈U�,\W ] 

 

where ETij is the execution time of task Ti on node Cj when Ti is assigned to node Cj, otherwise 

ETij is 0, and n is the number of tasks. 

 

3.1.1 The simulation scenario 
 
First many papers have been analyzed in order to choose an experimentation scenario detailed 

enough to be reconstituted and to suit the limited hardware and software resources. The goal is also 

to compare this work to other proposed solutions from the literature. The proposed solution was 

compared to: 

 

• First-come-first-served algorithm (FCFS) [5] 

• Dynamic Genetic load balancing Algorithm (DGA) [7] 

• A hybrid load balancing strategy of sequential tasks for grid computing environments 

(HGA) [6] 
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The private Grid is composed of 5 nodes. The Grid resources are physically organized into a tree 

structure like in [26]. The simulation parameters (0) mentioned in [6]have been followed.  

 
Table 1.Experimental parameters. 

 

Parameters Values  

Number of computing nodes 5 

Capacity of nodes 1 

Number of tasks 250 

Mean Inter-arrival Time 1s 

Mean Computation length 5s 

 

Several assumptions are made for the simulation: 

 

• Tasks arrive and enter into the RMU, according to a Poisson process with rate λ. 

• The expected computation lengths of tasks are assumed to follow an exponential 

distribution with a mean χ. 
• The average capability Ci of node i, which is the relative ratio of its capability. 

• Let ρ be the average system utilization factor for this simulation, which is the average task 

arrival rate divided by the average task processing rate [43]. According to this definition, 

the task computation length χ is adjustedin order to get the desired ρ. 
• All the nodes used in the experiments, have the same processing capacity. 

• The grid physical topology used in this experiment has a tree structure [26]. 

 

3.1.2 Evaluation of the system robustness 
 

In this section, the  system’s performance is studied using the makespan metric and then the results 

are compared to the ones published in [6]. The makespan metric is widely used in the literature in 

order to measure the system robustness. In this experiment, the number of tasks is varied from 100 

to 500 with an interval of 50. The mean computation length of the tasks χ is also varied to keep the 

average system utilization factor ρ at a value of 1.4.  

 
Table .2  Measurement lists of makespan metric 

 

Tasks Makespan 

DGA FCFS HGA TunSys 

100 100,90 94,10 90,60 85,09 

150 137,60 132,80 129,20 124,04 

200 196,60 184,90 181,00 183,01 

250 230,10 230,40 222,50 235,00 

300 275,70 269,10 265,90 261,03 

350 326,70 315,40 312,00 312,13 

400 361,90 356,40 352,40 352,00 

450 422,10 413,10 407,30 414,09 

500 466,00 459,20 456,40 462,07 

 

As shown in 0, the makespan of tasks increases when the number of tasks grows since more tasks 

are seeking to be executed. The proposed method TunSys outperforms DGA and FCFS in all 

cases. In addition, it gives good results compared to HGA even though TunSys uses a simple 

Random scheduling policy and focuses on system load balancing while HGA integrates scheduling 

and load balancing optimization. According to these results, TunSys is able to accommodate and 

thus performs more robustly than DGA and FCFS and HGA in most cases. 
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3.1.3 Load-Balancing performance
 
In order to test the load balancing 

homogeneous nodes and heterogene

tasks=100 and the utilization factor

 

3.2 Performance under homogeneous nodes
 
All the nodes have the same processing capacity. 

between 4 seconds and 7.5 seconds, and the average system utilization factor from 0.8 to 1.5. 

tests are  repeated ten times in order to get mean values of the load balancing. 

 

The results (0 and Error! Reference source not found.

scenario, the proposed method shows bette

system utilization factor changes the load

varying in a limited interval.  While for HGA, for example, the square deviation of node utilization 

varies between 0.01 and 0.126. 

 

Furthermore, when the utilization factor is less than 1.1, 

solutions. However, when it becomes

be explained by the fact that TunSys

overloaded or not. So, the load balancing process is trigger

waiting queue length higher than the workload thresholds.

 
Table .3  The square deviation of nod

Average Utilization Factor

                                                                

 

Figure 5 The square deviation of nodes' utilization 

under homogeneous nodes scenario
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Balancing performance 

to test the load balancing performance of these algorithms, two scenarios 

homogeneous nodes and heterogeneous nodes withλ=1.0, average Poisson distribution=0.96  , total 

tasks=100 and the utilization factoris varied between 0.8 to 1.5 by varying the tasks’ length.

Performance under homogeneous nodes 

All the nodes have the same processing capacity. The mean computation length χ
4 seconds and 7.5 seconds, and the average system utilization factor from 0.8 to 1.5. 

ten times in order to get mean values of the load balancing.  

Error! Reference source not found.and 0) show that, under homogeneous nodes 

proposed method shows better stability than FCFS and HGA. In fact, even though the 

system utilization factor changes the load, distribution keeps stable (between 0.04 and 0.05) and 

varying in a limited interval.  While for HGA, for example, the square deviation of node utilization 

Furthermore, when the utilization factor is less than 1.1, TunSys outperforms clearly the other two 

omes greater than 1.1, it is  exceeded by FCFS and HGA. This can 

TunSys uses local thresholds to classify the state of a node as 

overloaded or not. So, the load balancing process is triggered only for nod nodes

waiting queue length higher than the workload thresholds. 

The square deviation of node utilization under homogeneous nodes scenario

 

Average Utilization Factor TunSys FCFS HGA 

0.8 0.047 0.126 0.126 

0.9 0.0502 0.072 0.072 

1.0 0.044 0.054 0.052 

1.1 0.049 0.046 0.042 

1.2 0.0458 0.038 0.036 

1.3 0.0498 0.03 0.028 

1.4 0.046 0.034 0.018 

1.5 0.047 0.034 0.01 

                                                                  

 

Figure 5 The square deviation of nodes' utilization 

scenario 

 

 

Figure 6. Minimum, Maximum, Average and 

Standard deviation of the square deviation of 

nodes' utilization under homogeneous nodes

scenario 
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, two scenarios are used: 

=1.0, average Poisson distribution=0.96  , total 

length. 

he mean computation length χ is  varied 

4 seconds and 7.5 seconds, and the average system utilization factor from 0.8 to 1.5. The 

) show that, under homogeneous nodes 

r stability than FCFS and HGA. In fact, even though the 

distribution keeps stable (between 0.04 and 0.05) and 

varying in a limited interval.  While for HGA, for example, the square deviation of node utilization 

outperforms clearly the other two 

exceeded by FCFS and HGA. This can 

uses local thresholds to classify the state of a node as 

nodes having their 

e utilization under homogeneous nodes scenario 

 

Minimum, Maximum, Average and 

deviation of 

nodes' utilization under homogeneous nodes  
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3.2.1 Performance under heterogeneous nodes
 
In this case, the system performance 

randomly selected and fixed their relative capabilities 

The mean computation length χ 
utilization factor from 0.8 to 1.5. 

values of the load balancing. 

 

Once again, under heterogeneous nodes scenario (

stability than FCFS and HGA. In fact, the load distribution varies in a limited interval between 

0.074 and 0.091 even though the system utilization factor changes. It is only when it becomes 

greater than 1.3 that HGA outperformsTunSys. Again, this is du

solution focuses on the network in order to take the load balancing decisions not the utilization 

factor which makes it more efficient and stable to load variations.
 

Table .4 The square deviation of node utilization under 

Average Utilization Factor

 

 

 

 

 
 

Figure .7 The square deviation of nodes' 

utilization under heterogeneous nodes scenario
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Performance under heterogeneous nodes 

In this case, the system performance  is  tested under a heterogeneous Grid system. Two nodes 

and fixed their relative capabilities which is doubled by the value of the others. 

he mean computation length χ is varied between 5.6and 10.5 seconds and the average system 

utilization factor from 0.8 to 1.5. The simulations  are repeated ten times in order to get mean 

Once again, under heterogeneous nodes scenario (0), TunSys shows better performance a

stability than FCFS and HGA. In fact, the load distribution varies in a limited interval between 

0.074 and 0.091 even though the system utilization factor changes. It is only when it becomes 

greater than 1.3 that HGA outperformsTunSys. Again, this is due to the fact that the proposed 

solution focuses on the network in order to take the load balancing decisions not the utilization 

factor which makes it more efficient and stable to load variations. 

The square deviation of node utilization under homogeneous nodes scenario

 

Average Utilization Factor TunSys FCFS HGA 

0.8 0.091 0.3208 0.2541 

0.9 0.081 0.3 0.1958 

1.0 0.086 0.2791 0.1416 

1.1 0.083 0.2708 0.1083 

1.2 0.088 0.2666 0.1041 

1.3 0.0747 0.2625 0.0666 

1.4 0.087 0.2541 0.0541 

1.5 0.0857 0.2539 0.0375 

 

The square deviation of nodes' 

utilization under heterogeneous nodes scenario 

 

 

 

 

 

 
Figure8 Minimum, Maximum, Average and 

Standard deviation of the square deviation of 

nodes' utilization under heterogeneous nodes 

scenario 
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wo nodes  are 

the value of the others. 

between 5.6and 10.5 seconds and the average system 

ten times in order to get mean 

), TunSys shows better performance and 

stability than FCFS and HGA. In fact, the load distribution varies in a limited interval between 

0.074 and 0.091 even though the system utilization factor changes. It is only when it becomes 

e to the fact that the proposed 

solution focuses on the network in order to take the load balancing decisions not the utilization 

homogeneous nodes scenario 

Minimum, Maximum, Average and 

Standard deviation of the square deviation of 

nodes' utilization under heterogeneous nodes 
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Figure 9. Average percentage of executed tasks per resource considering resources with PE=2 vs. resources 

with PE=4. 

 

0, presents the average percentage of executed tasks per resource. The goal is to study the load 

distribution in case some of the resources are more powerful than the rest. The results show that 

the load is well redistributed among the grid. The resources with PE=4 are executing more tasks 

(almost two times) than the resources equipped with PE=2 even though  TunSysuses  a blind 

scheduling policy.  
 

3.2.2 Evaluation of the scalability 
 
The experimentation scenario focuses on the system’s scalability. The system’s utilization factoris 

fixed at 0.8 while the number of resources is varied as follows: 10 - 20 - 30 - 40 - and 50 and the 

number of simulated tasks 100 - 1000 – 10000 with a mean computation length χ varying between 

5.6 and 10.5 seconds. The remaining parameters are kept the same as in the first experimentation 

scenario.The resources are physically interconnected using the same topology as in [26]. However, 

they are arbitrary interconnected to the routers in order to reduce the effect of the physical 

topology.TunSysis simulated under two cases: homogeneous resources and heterogeneous 

resources. In the case of heterogeneous resources, 50% of the nodes are  randomly selected and 

fixed their relative capabilities (number of processing elements) to twice the value of the 

others.Finally, each experiment is  repeated 10 times and the discussed results are the mean values 

so that the effects of the random parameters on the resultscan be reduced. 

 

0presents the average system makespan while varying the number of tasks and resources.  As 

expected, the  makespan value decreases by 38% up to 84% in the case of homogeneous resources 

and by 43% up to 84% in the case of heterogeneous resources (0). As shown in 0 the makespan 

value  decreases almost linearly by 34% in average every time the number of resources  increases 

by 10. Except in case of 100 tasks, the system does  not scale well and the average speedup is  

about 11% which is absolutely normal for two reasons. Firstofall, the number of executed tasks is 

very limited, and second,the used blind scheduling policy which is affecting some of these tasks to 

distant resources  neither consider the network transmission time nor forecast  the load of the most 

close resources to the user submitting the tasks. As a conclusion, there is a linear and supra-linear 

scalability in case of 1000 and 10000 tasks. 
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Figure 10. Average makespan using 100, 1000, and 10000 tasks, 10

) vs. heterogeneous (

 
Figure 11.System speedup in case of 100, 

1000, and 10000 tasks running under 10 and 

50 resources. 

 

3.2.3 Load balancing performance
 
In order to study the load balancing performance of 

focuses on the percentage of executed tasks per resource. As expected, the system load is better 

distributed in case of homogeneous reso

resource as shown in 0and 0 In addition, every time the number of resources is increased by 10, the 

load balancing is improved especially when the system  

can lead to conclude that TunSys

heterogeneous resourcesneeds to 
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Average makespan using 100, 1000, and 10000 tasks, 10-50 resources, and homogenous (

) vs. heterogeneous ( ) resources. 

 
 

 

System speedup in case of 100, 

1000, and 10000 tasks running under 10 and 

 
Figure 12.Average system speedup variation using 10, 

20, 30, 40, and 50 resources. 

balancing performance 

In order to study the load balancing performance of TunSys, which is the main goal, 

on the percentage of executed tasks per resource. As expected, the system load is better 

distributed in case of homogeneous resources when considering the number of executed tasks per 

In addition, every time the number of resources is increased by 10, the 

load balancing is improved especially when the system   executes bigger number of tasks (

TunSys scales well.However  how the system reacts 

to be verified. 

0

200

400

600

800

1000

1200

10 20 30 40 50

0

2000

4000

6000

8000

10000

12000

10 20 30 40

84%84%

10000

heterogeneous

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

20 30 40

100 heterogeneous 100 homogeneous

1000 heterogeneous 1000 homogeneous

10000 heterogeneous 10000 homogeneous

Applications (IJGCA) Vol.8, No.1/2/3, September 2017 

17 

 

and homogenous (

 

Average system speedup variation using 10, 

 

main goal, this section 

on the percentage of executed tasks per resource. As expected, the system load is better 

urces when considering the number of executed tasks per 

In addition, every time the number of resources is increased by 10, the 

bigger number of tasks (0).  This 

reacts  in case of 
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Figure 13. Mean square deviation of the 

percentage of executed tasks per resource in case 

of homogeneous resources.

 
Figure 15. Mean square deviation of the percentage of 

) vs. heterogeneous (

Figure .15.Average percentage of executed tasks per resourceconsidering resources with PE=2 (

The 0, presents the average percentage of executed tasks per resource. It compares the load 

distribution between most powerful resources (PE=4) and

results show that the load distribution is considering the resource performance represented by
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Mean square deviation of the 

percentage of executed tasks per resource in case 

of homogeneous resources. 

 
Figure 14 Mean square deviation of the percentage 

of executed tasks per resource in case of 

heterogeneous resources. 

 

Mean square deviation of the percentage of executed tasks per resource in case of homogenous (

) vs. heterogeneous ( ) resources with 100, 1000, and 10000 tasks.
 

 

  
Average percentage of executed tasks per resourceconsidering resources with PE=2 (

resources with PE=4 ( ) . 
 

, presents the average percentage of executed tasks per resource. It compares the load 

distribution between most powerful resources (PE=4) and less powerful resources (PE=2). The 

results show that the load distribution is considering the resource performance represented by
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Mean square deviation of the percentage 

of executed tasks per resource in case of 

 

executed tasks per resource in case of homogenous (

) resources with 100, 1000, and 10000 tasks. 

 

Average percentage of executed tasks per resourceconsidering resources with PE=2 ( ) vs. 

, presents the average percentage of executed tasks per resource. It compares the load 

less powerful resources (PE=2). The 

results show that the load distribution is considering the resource performance represented by the 
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number of processing elements (PE). The most powerful resources are executing more tasks (more 

than the double especially in case of 10 nodes) except in case of 100 tasks which is due to the 

limited number of tasks and the blind scheduling policy TunSysuses. 

 

4. CONCLUSION 
 
In this work, a topology-aware load balancing method for grid computing systems is proposed. 

Based on a polyhedron logical model with a sphere-like structure, the proposed method ensures a 

local neighborhood load balancing strategy using a combination of a local and a global thresholds. 

The proposed load balancing method is implemented and evaluated within a simple blind 

scheduling strategy, since the load balancing problem is the aim of this work. GridSim simulator 

isused for experimentalcomparison between TunSysand FCFS, DGA, and HGA through the 

makespan and mean square deviation metrics. 

 

The comparative evaluation of TunSys with FCFS, DGA and HGA shows encouraging results.In 

fact, the system performance (measured through makespan) shows that TunSys outperforms FCFS, 

DGA, and in most cases HGA. In addition, it shows an excellent system scalability that can reach 

linear and supra-linear levels in case of 1000 and 10000 tasks. Furthermore, TunSys shows good 

load balancing performance in terms of system stability by taking advantage of resource 

heterogeneity, and the scalability of its load balancing approach. 

 

Currently, the goal is to optimize the load balancing solution by integrating a better scheduling 

policy. In addition, TunSyswill be compared to other more recent works involving different logical 

models like star, tree, and peer-to-peer. 
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