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ABSTRACT 

 

An enhanced data driven model-free adaptive yaw control tracking control scheme is proposed for the yaw 

channel of an unmanned-aerial-vehicle (UAV) helicopter which is non-affine in the control input in this 

paper. Through dynamic linearization and observer techniques, the proposed control algorithm is only 

based on the pseudo-partial derivative (PPD) parameter estimation derived online from the I/O data of the 

yaw channel of an UAV helicopter, and Lyapunov-based stability analysis is utilized to prove all signals of 

close-loop control system are bounded. Compared with the traditional model free adaptive control 

(MFAC), the proposed enhanced MFAC algorithm can make the close-loop control system with stronger 

robustness and better anti-jamming ability. Finally, simulation results of the UAV yaw channel are offered 

to demonstrate the effectiveness of the proposed novel control technique. 
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1. INTRODUCTION 

 
The potential use of unmanned-aerial-vehicle (UAV) helicopter can be applied in military and 

civilian, although military applications dominate the non-military ones. Military and civilian 

applications include power lines inspection, surveillance, national defense, agriculture, disaster 

rescue applications and so on [1]. Dynamics of UAV helicopter are strongly nonlinear, seriously 

multi-variable coupled, inherently unstable and a non-minimum phase system with time-varying 

parameters. So controlling the UAV helicopter is not an easy task. In the control area, to improve 

the performance of UAV helicopter has been an important focus [1-2]. 

 

As a highly nonlinear and uncertain system, helicopter flight control system design has been 

dominated by linear control techniques. In the past few decades, linear control algorithms have 

been extensively researched [1, 3-5]. Many linear control technologies were used to design the 

UAV helicopter control system [1, 6-10]. However, for the tracking control, the controller based 

on fixed linear models may result in an unacceptable response and even the instability of the 

closed-loop system. Because linearized models cannot guarantee the global model approximation, 

nonlinear control methods have been used in the control system design, such as [2, 11-12]. 

Furthermore, in a lot of control systems, the nonlinear model of plant dynamics is generally non-

affine in input and is commonly simplified around a trim point, that is, an operating point is 

dependent on the current system states [13]. Coupled with the uncertainties under the varying 

environment and the changing flight conditions, developing a controller to opportune compensate 

for the time varying uncertainties have been a more difficult task [14]. 
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As one of the data-driven control methods, MFAC has been proposed and applied in several areas. 

MFAC algorithm based on compact form dynamic linearization (CFDL), partial form dynamic 

linearization (PFDL), and full form dynamic linearization (FFDL) have been proposed by Hou for 

single-input single-output (SISO), multi-input single-output (MISO), and multi-input multi-output 

(MIMO) systems [15-17]. However, the MFAC is still developing. How to prove the stability and 

convergence of the tracking problems is one of the open problems in MFAC [20]. We all know 

that the Lyapunov function is widely used to analyse the stability of close-loop systems [15]. 

 

In this paper, we focus on how to design a data-driven controller based on the Lyapunov method. 

Inspired by the work of dynamic linearization technique of Hou [15], we present an enhanced 

adaptive observer based on control strategies for nonlinear process systems in which the pseudo-

partial derivative (PPD) theory is used to dynamically linearize the nonlinear system. First, a 

novel adaptive strategy for computing the PPD term is designed by using the Lyapunov method. 

Then, the internal model approach is used to design the data-driven controller via CFDL. The 

stability analysis for tracking error of the proposed algorithm is provided. Last, an application of 

the proposed controller design for a small-scale UAV helicopter mounted on an experiment 

platform is also given to show the effectiveness of the control algorithm. 

 

The rest of this paper is organized as follows. In Section 2, the yaw dynamic of the helicopter and 

the simplified model are given. In Section 3, the main results of internal model approach based on 

data-driven control via CFDL are proposed. Simulation results are presented to show the 

effectiveness of the proposed technique in Section 4. Finally, some conclusions are given at the 

end of this paper. 

 

2. PROBLEM DESCRIPTION 

 
It is clearly known that yaw channel control of controlling small scale UAV helicopters is one of 

the most challenging jobs [4, 10]. Due to the small size of small-scale UAV helicopter, the torque 

combined with the yaw dynamic is highly sensitive. In order to improve the performance of the 

yaw control, a more precise channel model characterizing of UAV is necessary. A framework of 

the simulation model for the UAV helicopter (see Fig.1) is set up using rigid body equations of 

motion of the helicopter fuselage.  

 

 

 
Figure 1: The frame of helicopter  
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In this way the influence of the aerodynamic forces and moments working on the helicopter are 

expressed. The total aerodynamic forces and moments acting on a helicopter can be computed by 

summing up the contributions of all parts on the helicopter (including main rotor, fuselage, tail 

rotor, vertical fin and horizontal stabilizer). So, the yaw channel dynamic equations are given by: 

 

                                             
zz mr tr fus hs vf

r

I r N N N N N

ϕ =

= + + + +

&

&
                                               (1) 

 

where ϕ  and r  are the yaw angle and angular rate of the helicopter; zzI  is the inertia around z-

axis; mrN , trN , hsN , fusN  and vfN  present the torque of main rotor, tail rotor, horizontal, 

fuselage and vertical fin worked on the helicopter respectively. 

 

In hovering and low-velocity flight, the dominant torque is caused by main rotor and tail rotor 

[18]. By simplifying the fuselage and vertical fin damping, the yaw channel dynamics can be 

rewritten as: 

 

                                            
1 2  zz mr tr tr

r

I r Q T l b r b

ϕ

ϕ

=

= − + + +

&

&
                                                      (2) 

 

where mrQ  is the main rotor’s torque, rT  is the tail rotor’s thrust, trl  is the distance between the 

tail rotor and z-axis, 1b  and 2b  are damping constants. 
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             (3)  

 

The brief description of the forces and torques computing can be given by using the blade 

element method [18]. The torque which is generated by main rotor can be described by: 

 

           
0

2 2 2 2

2 2

R
l d

mr
R

r C c r C c
Q rdr

ρ φ ρ Ω Ω
= + 

 
∫                                                 (4) 

 

with 1 / ( )rφ υ= Ω , lC aα= , 
2

0 1 2d d d dC C C Cα α≈ + + , where ρ , a , r , α , c , 1υ , φ  and Ω  

are density of air, slope of the lift curve, speed radial distance, the angle of attack of the blade 

element, chord of the blade, induced speed, inflow angle and rotor speed of the main rotor 

respectively. After complete employment with the help of Maple, we obtain (4) 

with
2 3 3

1 0

1
( )

6
C abc R Rρ= Ω − , 

2 2 2

2 0

1
2 / ( )

8
C abc R R Rρ ρπ= Ω − , where mrθ , R  and b  are 
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pitch angle of main rotor, radial and number of the rotor. Similarly, the force which is created by 

the tail rotor can be represented by the following form 

 

                           
0

2 2 11

2

tr

tr

R
tr

tr tr tr tr tr tr tr tr
R

tr

T a b c r r dr
υ

ρ θ
 

= Ω − 
Ω 

∫                                                 (5) 

 

                                                      
1

2

tr
tr

tr

T

A
υ

ρ
=                                                                         (6) 

 

Combing (5) with (6), we have 
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with 
2 3 3

3 0

1
( )

6
tr tr tr tr tr trC a b c R Rρ= Ω − , 

2 2 2

4 0

1
2 / ( )

8
tr tr tr tr tr tr trC a b c R R Rρ ρπ= Ω − . where 

tra , 

trc , 
trb , 

trΩ , 
trθ , 

trr , 
trυ  and 

trA  are slope of the lift curve, chord of the blade, number of the 

rotor, speed of the tail rotor, pitch angle, radial distance, induced tail rotor’s  speed, and the tail 

rotor disc’s area, respectively. 

 

 Similarly, the force of the main rotor is 

 

( )2

1 2 2 2 1

1
4

2
mr mr mr

T C C C C Cθ θ= + + +                                               (8) 

 

The yaw angle ϕ  is controlled through the trθ . The trθ  is chosen as the control input u . The ϕ  

is chosen as the control objective y . By above UAV yaw-channel modeling, we can see that it is 

difficult to design a model-based feedback controller to stabilization system (2). Moreover, the 

input output relation of UAV yaw-channel modeling can be written in the following Nonlinear 

Auto Regressive with eXogenous input (NARX) model: 

 

( 1) ( ( ), , ( ), ( ), , ( )) ( )d ny k f y k y k n u k u k n d t+ = − − +L L                          (9) 

 

where ( )d t  denotes the external disturbance and assumes its slowly time-varying. Currently, in 

order to control the yaw-channel of UAV, various control methods are proposed by [6-9], for 

example, nonlinear adaptive control, backstepping control, and neural network control and so on. 

For the nonlinear system (9), there must exist a parameter ( )kϑ , called PPD, system (9) can be 

transformed into the following CFDL description when | ( ) | 0u k∆ ≠ : 

 

( 1) ( ) ( ) ( ) ( ) ( )T
y k u k k d k k kϑ θ∆ + = ∆ + ∆ = Φ                               (10) 

 

where ( ) ( ) ( 1)d k d k d k∆ = − − , ( ) [ ( ), ( )]T
k k d kθ ϑ= ∆ , ( ) [ ( ),1]T

k u kΦ = ∆ . 
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3. METHODOLOGY  

 
3.1. Model Parameter Estimation Algorithm 

 
The proposed parameter identification observer has the following structure 

 

ˆˆ ˆ( 1) ( ) ( ) ( ) ( )T

oy k y k k k Ke kθ+ = + Φ +                                            (11) 

 

where ˆ( ) ( ) ( )oe k y k y k= −  is the output estimation error, ˆˆ ˆ( ) [ ( ), ( )]T
k k d kθ ϑ= ∆ , and the gain 

K  is chosen such that 1F K= −  in the unit circle. 

 

Hence, in view of (10) and (11), the output estimation error dynamics is given by 

 

( 1) ( ) ( ) ( )T

o oe k k k Fe kθ+ = Φ +%                                                 (12) 
 

where ˆ( ) ( ) ( )k k kθ θ θ= −%  represents the parameter estimation error. The adaptive update law 

for the estimated parameters ( )kθ  can be chosen as 
 

ˆ ˆ( 1) ( ) ( ) ( )( ( 1) ( ))o ok k k k e k Fe kθ θ+ = + Φ Γ + −                                    (13) 

 

The gain ( )kΓ  is chosen as follows 
 

( )
1

2( ) 2 ( )k k µ
−

Γ = Φ +‖ ‖                                                        (14) 

 

where µ  is a positive constant, hence, ( )kΓ  is positive definite for all k . Notice that, by virtue 

of assumption ( )kΦ ≤ Ω‖ ‖ , ( )kΓ  can be lower bounded as 

2

2
( ) 0k γ

µ
Γ ≥ = >

Ω +
‖ ‖  

 

By taking into account (12) and (13), the estimation error dynamics can be written as 
 

( 1) ( ) ( ) ( )

( 1) ( )

T

o oe k k k Fe k

k H k

θ

θ θ

+ = Φ +

+ =

%

% %
                                                 (15) 

 

where cH  is given by 2 ( ) ( ) ( )T
H I k k k= − Φ Γ Φ  and 2I  denotes the (2×2) identity matrix. 

 

Theorem 1: The equilibrium 2 1[ , ] [0, ]T T T T

oe θ ×= 0%  of the system (15) is globally uniformly 

stable. Furthermore, the estimation error ( )oe k  converges asymptotically to 0. 

 Proof: Consider the Lyapunov function  
 

2

1( ) ( ) ( ) ( )T

oV k Pe k k kλθ θ= + % %  

 

where λ , P  are positive constants and P  is the solution by 
2

P F P Q+ =  with Q  is positive 

constant. 
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       By taking into (15), we have 

 

( )
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Where ( ) ( ) ( )T
k k kθΘ = Φ % , 

1

1
c Q

ς
= − , 

2 2 2

2c P P Fµλγ ς= − − . Hence, 1( ) 0V k∆ ≤  

provided that ς , Q  and λ  satisfy the following inequalities  

 

2 2 21
, 0Q P P Fµλγ ς

ς
> − − >  

 

Notice that 1( )V k∆  is negative definite in the variables ( )oe k , ( )kΘ . Since ( )V k  in a 

decreasing and non-negative function, it converges to a constant value 
1 0V
∞ ≥ , as k → ∞ , 

hence, 
1( ) 0V k∆ → . This implies that both ( )oe k  and ( )kθ%  remain bounded for all k , and 

lim ( ) 0o
k

e k
→∞

= . 

 

3.2. Controller Design 

 
Based on the observer (11), the data-driven inverse control law can be described as 

 

( )*

2

ˆˆ ˆ( ) ( 1) ( ) ( ) ( )
( ) ( 1) ,

ˆ ( )

o
k y k y k Ke k d k

u k u k
k

ϑ

ϑ α

+ − − − ∆
= − +

+
| ( ) |  for u k δ∆ ≤         (16) 

 

( ) ( 1) sign( ( )), for | ( ) |u k u k u k u kδ δ= − + ∆ ∆ >              

                                

where 
*( )y k  is reference trajectory. α  and δ  as given finite positive numbers. Notice that, in 

many practical systems, because their actuators cannot change too fast, the number δ  can be 

obtained. 

 

Define observer tracking error 
* ˆ( ) ( ) ( )e k y k y k= − , thus  

 
* * ˆˆ ˆ( 1) ( 1) ( 1) ( 1) ( ) ( ) ( ) ( )T

oe k y k y k y k y k k k Ke kθ+ = + − + = + − − Φ −                  (17) 

 

The robustness of the stability and the performance for data-driven control law (16) are given in 

Theorem 2. 
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Theorem 2: For given 
* * *| ( ) ( 1) |y k y k y− − ≤ ∆ , using the data-driven control law (16), the 

solution of close-loop observer error system (17) is uniformly ultimately bounded (UUB) [19] 

for all k  with ultimate bound 2

1

lim | ( ) |
1

o
k

a
e k

a→∞
≤

−
, where 

*
y∆  is a given positive constant, 

00 ( ) 1s k< ≤ ,  

0
1 0 2

( )
1 ( ) ,

ˆ ( )

s k
a s k

k

α

ϑ α
= − +

+
 

*0
2 0 2

( ) ˆ1 ( ) ( ) ( )
ˆ ( )

o

s k
a s k y Ke k d k

k

α

ϑ α

 
= − + ∆ − − ∆ 

+ 
. 

 

Proof: Define a variable 0 ( )s k  where 00 ( ) 1s k< ≤  for all k . The control law (16) is 

equivalently expressed as 

 

( )*

02

ˆˆ ˆ( ) ( 1) ( ) ( ) ( )
( ) ( )

ˆ ( )

o
k y k y k Ke k d k

u k s k
k

ϑ

ϑ α

+ − − − ∆
∆ =

+
                         (18) 

 

where 

0 ( ) 1, for | ( ) |s k u k δ= ∆ ≤  

00 ( ) 1, for | ( ) |s k u k δ< < ∆ >  

 

Using (18), (17) becomes 
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1 2
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∆
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    (19) 

 

Choosing a Lyapunov function as ( ) | ( ) |oV k e k= , from (19), one has 

1 2( 1) | ( 1) | | ( ) | (1 ) ( )o oV k e k e k a V k a∆ + = + − = − + . Since 10 1a≤ <  and 2a  is bounded, 

according to the lemma in [19], using the control law (16), the results of close-loop observer 

system (17) are UUB for all k with ultimate bound 2

1

lim | ( ) |
1

o
k

a
e k

a→∞
≤

−
. 

 

Corollary 1: Under the controller (16), together with the observer (11), adaptive laws (13), we 

can guarantee that the system (9) tracking error 
*( ) ( ) ( )ce k y k y k= −  is UUB with ultimate 

bound 2

1

lim | ( ) |
1k

a
e k

a→∞
≤

−
. 
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Proof: Since 

( ) ( ) ( )c oe k e k e k= −                                                            (20) 

 

Taking the absolute value and limiting on both sides of (20), we obtain 

 

2

1

lim | ( ) | lim | ( ) | lim | ( ) | 
1

o c
k k k

a
e k e k e k

a→∞ →∞ →∞
≤ + ≤

−
                                    (21) 

 

So the tracking error ( )e k  is UUB for all k  with ultimate bound 2

1

lim | ( ) |
1k

a
e k

a→∞
≤

−
. 

 

3.3. Enhanced Controller Design 

 
In this paper, the internal model structure is adopted to improve the robustness of close-loop 

system. Where observer (11) is seem as internal model. Although adaptive internal model can 

ensure the close-loop is stable. The modeling errors still exists, and it will reduce the robustness 

and stability. The traditional method is to introduce a feedback low-pass filter. In order to further 

improve the robustness, the low-pass filter can be designed in the proposed controller. The block 

diagram of the enhanced MFACl method is shown in Fig. 2, where the low-pass filter is 

described as 

1

1
( )

1
F z

z

ς

ς −

−
=

−
                                                                        (22) 

 

 

 
Figure 2: Block diagram of enhanced model free adaptive 

 

Under the control architecture as shown in Fig. 2, the equivalent control law can be represented 

as follows: 

( )*

2

ˆˆ ˆ( ) ( 1) ( ) ( ) ( ) ( ) ( )
( ) ( 1) ,

ˆ ( )

o o
k y k y k Ke k d k F z e k

u k u k
k

ϑ

ϑ α

+ − − − ∆ −
= − +

+
 

                                                             | ( ) |  for u k δ∆ ≤                                              (23) 

              ( ) ( 1) sign( ( )), for | ( ) |u k u k u k u kδ δ= − + ∆ ∆ >                                                                            

 

Corollary 2: For given
* * *| ( ) ( 1) |y k y k y− − ≤ ∆ , using the enhanced model free control law 

(23), the solution of tracking error ( )ce k  is UUB where 
*

y∆  is a given positive constant. 

 Proof:  The proof is similar as Theorem 2 with Corollary 1.  
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4. EXPERIMENTAL SETUP 

 
In this section, the control algorithm is validated by the simulation model which is obtained 

from the helicopter-on-arm platform [10]. First, the parameters of the non-affine nonlinear yaw 

dynamic model are identified as follows 

 

2

1 2 3 4 5 ( )tr tr tr

r

r k r k k k k d t

ϕ

ϕ θ θ θ

=

= + + + + Ω +

&

&
                                         (24) 

 

with 
1 1.38k = − , 

2 3.33k = − , 
3 63.09k = , 

4 11.65k = , 
5 0.14k = −  and 1200Ω = . It is 

obviously that 
2

3 4 5tr tr trk k kθ θ θ+ + Ω  is a non-affine nonlinear function with respect to the control 

input trθ . 

 

For the proposed control law, we choose the sampling time 1sT = . The parameters of proposed 

control law in Section III are 0.9ck = , 0.1µ = , 0.01α = , 0.2δ = , 
1010−=ò  and ˆ(1) 10φ = . 

The parameter of filter (22)  is 0.75ς = . 

 

In the following simulations, the initial conditions are (0) 5ϕ = , (0) 0r = . The tracking command 

of 
cϕ  is  

25,        

10, 20

1

      

5, 20

    

40

t>40

c

t

tϕ

≤


= < ≤



 

     

   Pass 
cϕ  through a filter, such as 

0.8

0.8

d
c

c

F
s

ϕ

ϕ
= =

+
. So desired trajectory 

0.8

0.8
d d cy

s
ϕ ϕ= =

+
. In order to verify the robustness of our proposed method for the unknown 

uncertainties/disturbances, in the simulation, the disturbance is designed to change according to the 

time-varying changing, i.e. 

 
2

2

0 deg/
( )

5sin( ) 4cos(2 ) 3co

10 t

1s(3 )sin(2 ) deg t/ 0<

s
d t

t t t t sπ π π π


= 

+

≥

+
                   (25) 

 

We compare two control methods, they are proposed in [17] and in this paper. System responses 

are shown by the control method of [17] in Fig. 3, which are included output signals and input 

signals. From Fig. 3, because of the fast time-varying disturbance (25), the close-loop control 

system cannot achieve asymptotic tracking under the [17]. However, it can be seen from Fig. 4, the 

tracking error significantly decreases using the proposed control method in this paper. The 

proposed model free controller can achieve a better performance in the presence of same fast time-

varying disturbance (25). 
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Figure 3: System responses using the control approach of [17] 
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Figure 4: System responses using the proposed control approach in this paper. 
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5. CONCLUSIONS 

 
We have studied a systematic study on the yaw channel of a UAV helicopter in this paper. The 

yaw channel of an unmanned-aerial-vehicle helicopter is non-affine in the control input. In order 

to improve operational performance, we have developed a new MFAC algorithm via CFDL. The 

proposed MFAC scheme can guarantee the asymptotic output tracking of the closed-loop control 

systems in spite of unknown uncertainties and disturbances. Finally, simulation results are 

provided on yaw dynamics of a small-scale UAV helicopter to show the effective and advantages 

of the new proposed control strategy. 
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