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ABSTRACT 
 

The paper presents an advanced control strategy that uses the neural network predictive controller and the 

fuzzy controller in the complex control structure with an auxiliary manipulated variable. The controlled 

tubular heat exchanger is used for pre-heating of petroleum by hot water. The heat exchanger is modelled 

as a nonlinear system with the interval parametric uncertainty. The set point tracking and the disturbance 

rejection using intelligent control strategies are investigated. The control objective is to keep the outlet 

temperature of the pre-heated petroleum at a reference value. Simulations of control of the tubular heat 

exchanger are done in the Matlab/Stimulant environment. The complex control structure with two 

controllers is compared with the conventional PID control, fuzzy control and NNPC. Simulation results 

confirm the effectiveness and superiority of the complex control structure combining the NNPC with the 

auxiliary fuzzy controller. 
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1. INTRODUCTION 

 
Model Predictive Control (MPC), a control algorithm which uses an optimizer to solve for the 

optimal control moves over a future time horizon based upon a model of the process, has become 

a standard control technique in the process industries over the past two decades. In most industrial 

applications, a linear dynamic model developed using empirical data is used even though the 

process itself is often nonlinear. Linear models have been used because of the difficulty in 

developing a generic nonlinear model from empirical data and the computational expense often 

involved in using nonlinear models. In this paper, we present a generic neural network based 

technique for developing nonlinear dynamic models from empirical data and show that these 

models  can  be  efficiently  used  in  a  model  predictive control framework. This nonlinear MPC  
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based approach has been successfully implemented in a number of industrial applications in the 

refining, petrochemical, paper and food industries. Performance of the controller on a nonlinear 

industrial process, a polyethylene reactor, is presented. 

 

Model Predictive Control (MPC), a control calculation which utilizes an optimizer to unravel for 

the optimal control moves over a future time horizon based upon a model of the process, has 

turned into a standard control strategy in the process commercial ventures in the course of recent 

decades. 

 

NN have been shown to have good approximation capability for non-linear systems. A large 

number of predictive control schemes have been developed based on Multi Layer Perception 

(MLP) neural network models since 1990.The key to the successful application of non-linear 

predictive controller based on a neural network model is an accurate nonlinear model and an 

efficient optimization algorithm. The back propagation learning algorithm, commonly used in 

MLP, is essentially a non-linear steepest descent algorithm. The aim of controller design is to 

construct a controller that generates control signals that in turn generate the desired plant output 

subject to given constraints. Predictive control tries to predict, what would happen to the plant 

output for a given control signal. In this way, we know in advance, what effect the control will 

have, and by this knowledge the best possible control signal is chosen. 

 

2. SYSTEM IDENTIFICATION 
 

The first stage of model predictive control is to train a neural network to represent the forward 

dynamics of the plant. The prediction error between the plant output and the neural network 

output is used as the neural network training signal. The process is represented by Fig.1. 

 
 

Fig.1 Training of Neural Network 

 

The neural network plant model uses previous inputs and previous plant outputs to predict future 

values of the plant output. The structure of the neural network plant model is given in Fig.2. 

 

This network can be trained offline in batch mode, using data collected from the operation of the 

plant. We can use any of the training algorithms for network training. This process is discussed in 

more detail in following sections. 
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Fig.2 Structure of Neural Network Plant Model 

 

3. PREDICTIVE CONTROL 

 
The model predictive control method is based on the receding horizon technique. The neural 

network model predicts the plant response over a specified time horizon. The predictions are used 

by a numerical optimization program to determine the control signal that minimizes the following 

performance criterion over the specified horizon. 

 

� = ∑ (��(� + 	
 − ��(� + 	


������ + ∑ (�′����� (+	 − 1
 − �′(� + 	 − 2


             (1) 

 

where N1, N2, and Nu define the horizons over which the tracking error and the control increments 

are evaluated. The u′ variable is the tentative control signal, yr is the desired response, and ym is 

the network model response. The ρ value determines the contribution that the sum of the squares 

of the control increments has on the performance index. 

 

Fig.3 illustrates the neural network predictive control process. The controller consists of the 

neural network plant model and the optimization block. 

 

 
Fig.3 Illustration of Neural Network Predictive Control Process 

The optimization block determines the values of u′ that minimize J, and then the optimal u is 

input to the plant. The program generates training data by applying a series of random step inputs 

to the Simulink plant model as shown in Fig.4. 
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Fig. 4 Plant Input Output Data’s for Training 

4. CONTROL OF PLATE HEAT EXCHANGER USING NEURAL NETWORK 

The neural network predictive controller that is implemented in the Neural Network Toolbox 

software uses a neural network model of a nonlinear plant to predict future plant performance. 

The controller then calculates the control input that will optimize plant performance over a 

specified future time horizon. The objective of the controller is to maintain the outlet temperature 

of cold fluid by adjusting the mass flow rate of hot fluid mh. Also keep the mass flow rate of cold 

fluid as mc = 0.0112kg/s.  

 

The first step in neural network plant model predictive control is to determine the neural network 

plant model. For that first we have to find out the mathematical plant model of plate heat 

exchanger, based on the energy balance equation of plate heat exchanger. Unsteady-state energy 

balances have been used as the basis for the derivation of the mathematical model for the plate 

heat exchanger. Assuming U to be constant, the unsteady-state energy balance around the cold 

plate is given by: 

 

mcCp �Tci-Tco(t
�+ mh(t
Cp �Thi-Tho(t
�=McCp

dTco(t)

dt
                                           (2) 

And the unsteady-state energy balance around the hot plate is given by: 

mhCp �Thi-Tho(t
�+ mc(t
Cp �Tci-Tco(t
�=MhCp

dTho(t)

dt
                                           (3) 

Simulink diagram of plate heat exchanger  has drawn in Simulink editor based on the energy 

balance equation of plate heat exchanger is shown in Fig. 5. 

 

The neural model has been trained using data set obtained from dynamic equations of plate heat 

exchanger. The feed forward network with sigmoidal activation function was chosen based on the 

trials with different structures of multilayer perception. The lowest error corresponds to 8 neurons 

in the hidden layer. Hence it was selected as optimal architecture of ANN. The ANN selected 

here consists of 4 neurons in the input layer, 7 neurons in the hidden layer and one neuron in the 

output layer. The training algorithm used in this modelling is multi-layer perception algorithm. 
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Fig. 5 Simulink Diagram of Energy Balance Equation of PHE 

 
 

Fig. 6 Response of Plant Model after Training 

 

The response of plant model after training is complete is shown in Fig.6. The error shown in Fig. 

6 is the Prediction error which is the difference between the plant output and the output of the 

neural network plant model. This prediction error is used for the training of the neural network. 

Neural Network plant model generates the control signal which actually is one step ahead the 

prediction of the controller which is depicted as NN output in Fig.6. Neural network predictive 

controller has designed by varying controller horizons N2 and Nu, control weighting factor ρ, 

search parameter α. The weighting parameter ρ, it multiplies the sum of squared control 

increments in the performance function. The parameter α is used to control the optimization. It 

determines how much reduction in performance is required for a successful optimization step. We 

can select which linear minimization routine is used by the optimization algorithm, and we can 

decide how many iterations of the optimization algorithm are performed at each sample time. The 

values of controller parameters have chosen for neural network predictive control is shown in 

Figure 1.1. 
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Table 1.1 Neural Network Predictive Control Parameters 

 

Controller parameters Values 

Cost horizon 8 

Control horizon 4 

Control weighing factor 0.05 

Search parameter 0.001 

 

The designed controller uses a neural network model to predict future plate heat exchanger 

responses to potential control signals. 

 
Fig. 1.6 Plant Output and Reference Signal  

Fig. 1.6 shows the plant output and reference signal. The result obtained for the random reference 

signal proved the tracking ability of controller. Also almost offset free and very close set point 

tracking was obtained using NN predictive control strategy. So from the graph, it can be seen that 

the neural network predictive controller strategy successfully tracks the random reference signal. 

 

5. CONCLUSION 
 
The result obtained for the random reference signal illustrates and proves the tracking ability of 

controller. Also almost offset free and very close set point tracking is obtained using NNMPC 

strategy. 

 

In this paper the consideration of dynamic neural models in predictive control for a benchmark 

nonlinear process, plate heat exchanger is presented. Neural network controller was used to 

maintain the outlet temperature of cold solution (Xanthum gum solution) by adjusting the mass 

flow rate of hot water. Non linear auto regressive with exogenous input was recognized utilizing 

MLP, and approved on the data produced from the simulation of plate heat exchanger dynamic 

equations. This model represents the dynamics of the nonlinear plate heat exchanger and is 

utilized as nonlinear predictor in the neural network predictive controller.  On analysis of the 

response graph (Figure 7.6), it can be seen that the neural network predictive controller strategy 

successfully tracks the random reference signal. The outcome got for the random reference signal 

outlines and demonstrates the tracking ability of controller. Using the NNMPC strategy almost 

offset free and close set point tracking is obtained. 
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