
International Journal of Information Sciences and Techniques (IJIST) Vol.6, No.1/2, March 2016

DOI : 10.5121/ijist.2016.6208 69

 GOOGLE CLOUD MESSAGING (GCM): A LIGHT WEIGHT COMMUNICATION MECHANISM
BETWEEN CLIENT AND SERVER ON ANDROID

PLATFORM
 Nilay Ganatra and Rachana Patel

Department of Computer Applications, CHARUSAT, Changa,

ABSTRACT

In This Paper, We Examine the push Messaging Service Google Cloud Messaging (Gcm) for Android
Platform. Android Platform Traditionally Keep Data Synchronization Between Android Device And
Server-Side Using Method of Pulling. Each Android Device has to Poll Server for Updated Data, Which
Leads to Unnecessary Network Traffic and Wastage of Mobile Phone Battery. In Order to Overcome This
Weakness, Data Pushing Service, Gcm Was Introduced. Push, Describes a Style of Internet-Based
Communication Where the Request for a Given Transaction Is Initiated By The Publisher or Central
Server. Push Messaging is a Multi-Channel Mobile Cloud Communications Platform that Unifies Push
Notifications, Sms and Instant Messaging. Gcm Service Allows Sending Data From The App Engine or
Other Backhands to Android Powered Device. GCM is Lightweight Push Notification Based Service
Notifying Android Application About New Data to be Fetched from the Server or Messaging Containing
4kb of Payload Data. Gcm Manages All Aspects Messages Queuing and Delivery of Message to Target
Android Application Running on Target Device.
KEYWORDS
GCM, Push Notification, Multi-Channel, Mobile Cloud.
1. INTRODUCTION

Advancement in mobile phone technology is the high-speed network available to the public.
With EDGE, 3G and 4G, users are almost always connected. Smart phone device combined
with high speed network provide many new and electrifying innovation possibilities [1]. One of
them is cloud computing. Combination of cloud computing, mobile computing and wireless
networks bring rich computational resources to mobile users [3].The term cloud computing
refers to the applications delivered over the Internet specifically and the hardware and systems
software that is providing these services [4].
With the current development of mobile and inescapable computing era, smartphones became
pervasive. A major portion of these applications depends on the cloud and Google Cloud
Messaging is a very useful and popular service for client/server communication [5]. Google
cloud messaging is an open service than enables developers to send messages between servers
and client applications[2]. It provides facility of downstream messaging i.e. from server to
client application, as well upstream messaging from client application to server. Today almost
more than half of the smartphone users using Android OS based devices. With release of
Android Wear, Android stretched its province to wearable devices like google glass, smart
watch etc. Both, smart and wearable smart devices use GCM for notifications. Wearable
devices includes computer and advanced electronic technologies. For example, Google glass

International Journal of Information Sciences and Techniques (IJIST) Vol.6, No.1/2, March 2016

70

forward most of its task to cloud-central elucidation called Mirror API, and Mirror API [6] uses
GCM for client server communication.

Google cloud messaging is service for sending and receiving push notifications to and from and
android applications. Before the push messaging support was added to the Android platform it
was common to use a polling mechanism. This worked by making application itself would
periodically poll your servers to check for new messages. You would need to implement
everything from queuing messages to writing the polling code. Alerts are no good if they‟re
delayed due to a low polling period but the more frequently you poll, the more the battery is
going to die.

GCM is default push messaging service for the Android platform. GCM handles queuing of
messaging and delivering those messages to the target application. GCM service is particularly
useful whenever new data is available on server instead of making request to server on regular
time interval. For example, email android application, it is not an effectual to have the
application ping to server to check for new mails. Server should notify mobile device
application about new mail.
 2. RELATED WORKS

A significant amount of work is found in this type of research. Here we have reviewed and used
following references for this article.

Chetan D Wadate, Prashant T Suvare, Aniket S More and Rina Bora have published WI-FI
based push notification in college campus noticeboard, using which they can update information
regarding various campus activities like: meeting times, exam dates, class cancellations and
other[7].

Jarle Hansen, Tor-Morten Grønli and Gheorghita Ghinea have compared various push
notification technologies in the aspect of Stability, Response time and Energy consumption for
Android platform, namely C2DM, XMPP, Xtify and Urban Arship [8].

Yavuz Selim Yilmaz, Bahadir Ismail Aydin and Murat Demirbas have evaluated GCM, and
concluded GCM is not suitable for “must-deliver-to-all” app scenarios. They have identified

GCM is good for the applications where random multicasting is sufficient [9].

Harminder Singh, Dr Sudesh Kumar, Harpreet Kaur have combined GCM service with location
service and develop new service. They have mentioned advantages and limitations of this newly
created service [10].

Naresh Kumar N and Prof. Mohan K have given overview of GCM architecture,
implementation and advantages of GCM over C2DM [11].
 3. ARCHITECTURAL OVERVIEW OF GCM:

Google Cloud Messaging for Android (GCM) is a service that allows you to send data from
your server to the users' Android-powered device. GCM is lightweight message notifying your
application about new data to be fetched from the server like new version of apps or something
like that [12]. The GCM service serves all aspects of storing, queuing and delivery of messages
to the target Android application running on particular device. It is a completely free service
whatever you‟re messaging needs [13].

International Journal of Information Sciences and Techniques (IJIST) Vol.6, No.1/2, March 2016

71

3.1. GCM Architecture
 GCM architecture includes a Google connection server, an app server in your application that
communicate with the connection server via HTTP or XMPP protocol and client application.

 Figure 1. Architectural overview of GCM service
3.2. Working of GCM 1. Android device sends Sender id, application id to the GCM server for registration. 2. On successful registration, the GCM server gives a registration ID to android device. 3. Android device sends this registration ID to the local server. 4. The local server stores the registration ID in the database for later use. a) Whenever a notification is provided through the website, the server sends the message to the GCM server along with the registered ID. b) GCM server sends that message to particular device using that registration ID. The Google‟s Cloud messaging platform as shown in the Figure 2 will act as the primary
platform. The user will first be registering onto the GCM platform and will receive a token ID which will be stored on the server which identifies the user‟s phone based on that ID. The
server is where the organization will be having a PHP based web client which is going to send
the notifications to individuals with respect to their registration ID or in bulk however intended
[13].
 Figure 2. Shows the overall process of registration and sending a notification occurs. The user
registers on the GCM in step 1 the GCM provides the registration ID in step 2. In step 3 & 4 the mobile stores the ID on the server and the step a. & b. are the phases where the server is sending
the notification to the phone via the GCM architecture. GCM is used as it is a client server architecture which is the most commonly and widely used
architecture. GCM provides feature of folding messages into small parts; collapsible messages
are a better choice for a mobile device performance point of view, because they put less burden
on the device battery. Scalability implies the ability for the architecture to grow and accommodate increasing numbers
of users, applications, and systems. Scalability and Extensibility refer to an application's ability
to inherently support changes to the hardware and software on which it depends. Using GCM
we can send messages to a single or a group of android devices simultaneously in a single
transmission.

International Journal of Information Sciences and Techniques (IJIST) Vol.6, No.1/2, March 2016

72

 Figure 2. Working of Google Cloud Messaging
 3.3. Android Device:

The Android application is the main interface via which the user is going to use to receive the
push notifications. The important requirements for developing the application are listed below:

Client Application [14]: This application is developed using android development studio in
conjunction with SDK tools.
 SDK tools [14]: The Android SDK tools compile the code along with any data and resource
files. The Android SDK provides the tools and APIs necessary to begin developing
applications on the Android platform using the Java programming language.

 .apk [14]: All the code in a single .apk file is considered to be one application and is the file
that Android-powered devices use to install the application.

 Android OS [14]: Android is a Linux-based operating system designed primarily for touch
screen mobile devices such as smart phones and tablet computers. It enables replace and
reuse of components.

3.4. Server Application and Database:

The server application and database are an essential part of the push notifications and the main
activity of the server and database is to provide the admin the facility to send the message to the
client and receive an acknowledgement from the client that the message has been received. The
components which are required to setup a server are listed below:

PHP [13]-[15]: PHP Hypertext Pre-processor", is an open-source, reflective programming
language used mainly for developing server-side applications and dynamic web content.
XAMPP is a free open source cross platform web server package consisting of Apache Http
server, MySQL database and interpreters for scripts written in PHP and Perl programming
language.

International Journal of Information Sciences and Techniques (IJIST) Vol.6, No.1/2, March 2016

73

MySQL [16]: MySQL is the most popular database system used with PHP. MySQL is open
source RDBMS which manages the data contained within the databases. We have used the
version MySQL 5.0.

 3.5. Components and Credentials of GCM: Components:
 Component Description
 GCM Connection Google server sending messages Server between the app server and the
 client app
 Client App Client app with GCM-enabled
 communicate with your app server
 App Server An app server that you write as
 part of implementing GCM. This
 server sends data to a client app
 using GCM connection server.
Credentials:

Credential Description
Sender ID A unique numeric value generated when you configure your API

 project. This id is used in the
 registration process to authenticate
 the app server to send messages to
 the client app.
API Key An API key saved on the app

 server that provides authorized
 access to Google service. You
 obtain the API key while
 configuring your API project.
Application ID A client app that is registering to receive messages. For different

 platform you can obtain it in
 following way: Android: uses the package
 name iOS: use the app‟s bundle
 identifier Chrome: use the Chrome
 extension name

Registration Token An ID given by GCM connection

 server to the client app that permits
 it to receive messages.

3.6. Working Lifecycle of GCM [17]:

 Register to use GCM: An object of client app register to receive messages.

International Journal of Information Sciences and Techniques (IJIST) Vol.6, No.1/2, March 2016

74

Downstream message communication:
 o Send a messages: The app server sends messages to the client app: 1. The app server sends a message to GCM connection server. 2. If the device is offline, the GCM connection server queuing up and

store the messages if device is not connected.
3. When device is connected, the GCM connection server sends the

messages to the device. 4. On the device, the client app receives the message according to the
platform-specific implementation. o Receive a message: Client app receive a message from a GCM connection

server according to platform-specific implementation of client app. Upstream Message communication: o Send a message: A client app sends messages to app server. 1. On the device, platform specific implemented app sends messages to
the XMPP connection server. 2. The connection server queuing up and stores the messages if the server
is disconnected. 3. When app server is connected, the XMPP connection server will send
the messages to the app server. o Receive a message: An app server receives a message from the connection

server and does following: 1. Parse the header information to verify client app sender information. 2. Send “ack” to the connection server to acknowledge receiving the
messages. 3. Parse the messages payload, as defined by the client app.

 4. IMPLEMENTATION & METHODS
 GCM basically provides three messaging techniques: Device Group Messaging, Downstream Messaging and Upstream Messaging.

4.1 Device Group Messaging [17]:
 With this technique, application server is able to send a single message to multiple instances of an app running on different devices belonging to a group.

Managing device groups:
 1. Get registration tokens for each device in the group.
2. Create the notification_key, which finds the device group by mapping a particular group. The application server will send message to the notification_key, and GCM send the message to all the registered tokens of group.

International Journal of Information Sciences and Techniques (IJIST) Vol.6, No.1/2, March 2016

75

Creating device group:

The notofication_key_name is a uniue identifier given to a group.

Figure 3. Device Group

Sending downstream messages to device group:

Figure 4. HTTP POST Request Format
 Suppose notification_key has 2 registration token associated it, and message was successfully sent to both of them:

Figure 5. HTTP RESPONSE Format

Sending upstream messages to device groups:
 Client application can send messages upstream to device group by targeting messages to the appropriate notification key in the „to’ field.

International Journal of Information Sciences and Techniques (IJIST) Vol.6, No.1/2, March 2016

76

 The following call to GCM sends upstream messages to a notification key.

Figure 6. GCM Upstream Message 4.2 Downstream Messaging [17]:

In this, messages sent from the application server to directly client application on a device.
 Downstream messages from the server:
 The application server sets „to‟ with the receiving client applications‟ registration token.

Figure 7. HTTP POST Request

Messages on an Android client application:
 To receive simple downstream messages, use a service that extendsGcmListenerService to
handle messages received by GcmReceiver. GcmReceiver extends WakefulBroadcastReceiver,
guaranteeing that the CPU is awake so that your listener service can complete its task.
 By overriding the method GcmListenerService.onMessageReceived, you can perform actions based on the received message:

International Journal of Information Sciences and Techniques (IJIST) Vol.6, No.1/2, March 2016

77

Figure 8. Android App Message
 4.3 Upstream Messaging [17]:

 To initiate upstream messages, the client application sends a request containing the following:
 The address of the application server, i.e. SENDER_ID@gcm.googleapis.com.

A message ID that should be unique per sender ID. The message data comprising the key/value pairs of the message's payload.
 Send an upstream message from an Android client application:

Figure 9. Android Upstream Message

Receive XMPP message on the application server:

Figure 10. XMPP Message on Server

International Journal of Information Sciences and Techniques (IJIST) Vol.6, No.1/2, March 2016

78

3. CONCLUSIONS

Google cloud messaging provides great convenience and flexible way for upstream and
downstream messaging between client and server. In this paper, we have discussed architecture,
different ways of GCM implementation and how third party application server sends messages
to registered Android device via GCM. GCM solved many obstacles between client and server
synchronization by push messaging technique. There are some limitations of GCM system like
message delivery is unpredictable. The output of the system can‟t be expected with certainty.
GCM works efficiently only when device has stable internet connection. REFERENCES [1] Wikipedia, “Push technology”.Available: http://en.wikipedia.org/wiki/Push_technology [2] Google Cloud Platform, “Cloud Messaging Support”.Available: https://cloud.google.com/tools/android-studio/messaging/ [3] Jarle Hansen, Tor-Morten Grønli, Gheorghita Ghinea, “Towards Cloud to Device Push Messaging on Android: Technologies, Possibilities and Challenges”, Int. J. Communications, Network and System Sciences, 2012, 5, 839-849 [4] Wikipedia, “Mobile cloud computing”. Available: http://en.wikipedia.org/wiki/Mobile_cloud_computing [5] Android Developers , “Google Cloud Messaging for Android ” Available: http://developer.android.com/google/gcm/index.html [6] Android Developers, “Google Glass-Mirror API.” Available: https://developers.google.com/glass/develop/mirror/index [7] Chetan D Wadate, Prashant T Suvare, Aniket S More and Rina Bora- “A Survey of Automatic Wi-Fi based Push Notification in College Campus using Cloud”, International Journal of Computer Applications (0975 – 8887), International Conference on Advances in Science and Technology (ICAST-2014). [8] Jarle Hansen, Tor-Morten Grønli and Gheorghita Ghinea- “Towards Cloud to Device Push Messaging on Android: Technologies, Possibilities and Challenges”, Int. J. Communications, Network and System Sciences (839-849), December-2012. [9] Yavuz Selim Yilmaz, Bahadir Ismail Aydin and Murat Demirbas- “Google Cloud Messaging (GCM): An Evaluation”, Globecom 2014 -Symposium on Selected Areas in Communications: GC14 SAC Internet of Things. [10] Harminder Singh, Dr Sudesh Kumar, Harpreet Kaur- “Location Based System Using Google Cloud Messaging”, National Conference on Innovative Trends in Computer Science Engineering (ITCSE-2015), April-2015. [11] Naresh Kumar N and Prof. Mohan K-“GCM Service Driven Communication With An Android Application In Cloud Computing”, International Journal of Engineering Research & Technology (IJERT), Vol. 2 Issue 5, May – 2013. [12] Google Play, “View & diagnose Google Cloud Messaging (GCM) statistics” Available: https://support.google.com/googleplay/android-developer /answer/2663268? hl=en [13] AndroidHive, “Android Push Notifications using Google Cloud Messaging” Available: http://www.androidhive.info/ [14] Tutorialspoint: “Android-Architecture” Available: http://tutorialspoint.com/android/android_architecture [15] PHP, “PHP Manual” Available: http://www.php.net/manual/ [16] MySQL, “ MySQL Documentation” Available: http://www.mysql.com [17] Google Developers, “Cloud Messaging”, Available: https://developers.google.com/cloud-messaging.

International Journal of Information Sciences and Techniques (IJIST) Vol.6, No.1/2, March 2016

79

 AUTHORS Nilay Ganatra received Bachelor‟s degree in Computer Science B.Sc. (Computer Science) from Sardar Patel University, Gujarat,India and Master‟s Degree in Computer Applications (M.C.A) from Gujarat University, Gujarat, India. He is with MCA Department at Smt Chandaben Mohanbhai Patel Institute of Computer Applications, Charotar University of Science and Technology (CHARUSAT), Changa, Gujarat,India. His research interests include Wireless Networks and Mobile Computing.
 Rachana Patel received Bachelor‟s degree in Computer Application B.C.A (Computer Science) from Dharmsinh Desai University, Gujarat, India and Master‟s Degree in Computer Applications (M.C.A) from Gujarat University, Gujarat, India. She is with MCA Department at Smt Chandaben Mohanbhai Patel Institute of Computer Applications, Charotar University of Science and Technology (CHARUSAT), Changa, Gujarat,India. His research interests include Machine Learning and Wireless Networks.

