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ABSTRACT  
Implementation of microprocessor core on a programmable device has been mostly sought by researchers 
due to its scalability and hardware reconfigurability. The proposed minimum version of 32-bit processor 
core is developed especially for arithmetic operations of fixed point numbers, branch and logical functions. 
This paper presents the complete design of a microprocessor core in synthesizable Verilog. It defines an 
instruction set architecture suitable to be used for Internet of Things (IoT) application. This works as co-
processor for IoT engine. The System on Chip (SoC) core has been synthesised and simulated using 
Synopsys Design Compiler and VCS. The SoC core is designed for 14 classic arithmetic and logical 
instructions suitable for IoT applications. However, the design can be expandable to 64 and 128 bits. This 
optimized processor core can be pipelined up to 5 stages and can be used for high speed applications. 
Architectural approach for low power and high performance are described and the area occupied by the 
entire core is 66562.3µm². The total power consumed by the design is 1.72 mW at 126MHz.  
KEYWORDS  
instruction set architecture, Internet of Things(IOT), microprocessors, RISC, System on Chip(SOC)  
1. INTRODUCTION  
Gartner's 2015 predictions focus on the impacts of the evolution of digital business and pays 
closest attention to the Internet of Things (IoT), since it has introduced new concepts for identity 
management (every device interacting with users has an identity) and users and devices can have 
complex, yet defined, relationships. Further, as the smart wearables market continues to grow and 
evolve, Gartner predicts that by 2017, 30% of smart wearables will be completely unobtrusive to 
the eye[1]. The devices and objects that once were autonomous are becoming more connected to 
each other, to the Internet, or, more commonly, to both. From building and home automation to 
wearables, the IoT touches every facet of our lives. Every chip and OEM device manufacturer 
now building components and solutions for the IoT, especially wearable and battery-powered 
devices, faces a performance and power paradox challenge that is driving the need for a new type 
of low-power processor. With advent of IoT era, processor configurability is very important to 
achieving the right balance of performance, power, and area. The ability to easily configure the 
processor by selecting, minimizing, adjusting, or reducing features to tailor its performance for 
specific application requirements is essential. For example, selecting and optimizing the number 
of registers, the type of multiplier, and the number of interrupts and levels enables the core gate 
count and area to be modified to suit the application performance levels without wasting area and 
power[2]. Extensibility is also a key for designing a processor that supports next-generation IoT 
applications. It enables designers to add user-defined hardware like arithmetic logic unit (ALU) 
instructions, condition codes, core and auxiliary registers, and external interface signals to the 
processor core. By adding user-defined extensions to the processor, a new level of CPU 
performance efficiency can be achieved. 
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1.1. ARC EM4 Processor 
 
The Synopsys DesignWare ARC EM4 Processor[3], with a configurable and extensible 32-bit 
RISC microarchitecture, was developed to address the power/performance paradox in IoT and 
other applications. It can be optimized with configurable hardware extensions for a sensor 
application, for instance, specifically aimed at reducing power or energy consumption. 
Eventhough there are several features, the added processor extensions in the configuration result 
in a small increase in area (4.5%) and a small increase in instantaneous dynamic power of the 
core (7.2%). 
 
1.2. ARM Cortex-M0 Processor 
 
ARM remains focused on driving a unified and simplified connected world involving truly 
ubiquitous and intelligent IoT systems. The ARM Cortex-M0+ processor[4] is the most sought 
processor in cortex family as far IoT is concerned. The processor will be used in microcontrollers 
for communication, management and maintenance across a multitude of wirelessly connected 
devices. The processor has been redesigned from the ground up to add a number of features 
including single-cycle IO to speed access to GPIO and peripherals, improved debug and trace 
capability and a 2-stage pipeline to reduce the number of cycles per instruction (CPI) and 
improve flash accesses, further reducing power consumption. Though, ARM processors are 
highly efficient and accepted by all the researchers, its instruction sets and the architecture was 
not fully available for research community. In this work we attempt to implement SoC core 
suitable for IoT applications with the inputs from [5] [6] [4]. 
 
In this paper, we present the high performance RISC processor[5] which is modified for 32-bits 
with special quality of instruction format. It is a fully synthesizable core and it is designed for 14 
arithmetic and logical instructions. It gets instructions on a regular basis using dedicated buses to 
its program memory, executes all its native instructions and exchanges data with several devices 
using other buses. 
 
The organization of the paper is as follows. Section 2 explains the architecture of the design of 
32-bit RISC processor (SoC) core which includes the instruction set, instruction format and 
conditional codes. Section 3 presents the description of Logic blocks and the design of each 
module of the processor. Section 4 includes the implementation, Simulation results and 
Schematic view of RISC processor. The paper is concluded in Section 5 with References. 
 2. CORE ARCHITECTURE 
 
The processor contains 32 general purpose registers with the capability of 32 bits which is used 
for all operations. To make decisions it uses three flags, „Zero‟, „Carry‟ and „Negative‟. With 
them it can evaluate up to four conditions. 
 
2.1 Instruction Set 
 
Operations are considered to be 32-bit operations with 32-bit results, except for the multiply, 
which produces a 64-bit result. For each operation, the zero flag is set if the result contains all 
zeros. The negative flag mirrors the most significant bit in the result. In the two's complement 
number system, this is equivalent to telling whether the value is positive or negative. 
Mathematical operations are performed exactly the same as for unsigned values, and the 
programmer can even choose to ignore the negative flag and work with the unsigned values. In 
the event that a subtraction causes a borrow, the carry bit will be set, and this can be used to
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determine if a larger value was subtracted from a smaller value. Instructions are shown in the 
Table I. 
 
2.1.1. NOP  
No operation. After reading this instruction, the processor continues immediately to the next 
instruction without any extra clock cycles. 
 
2.1.2. ADD  
It adds a value to a register. The source value can be another register, a memory location, or a 32-
bit immediate. The carry flag is set if a one was carried out of the highest bit. The negative flag is 
set if the highest bit is a 1, and the zero flag is set if the result is zero. 
 

Table 1. Instruction Set with Opcode and Operands 
 

Instruction Opcode Operands 
   NOP 0x00 - 
   ADD 0x01 reg, reg/imm 
   SUBTRACT 0x02 reg, reg/imm 
   MULTIPLY 0x03 reg, reg/imm 
   Logical AND 0x04 reg, reg/imm 
   Logical OR 0x05 reg, reg/imm 
   Logical Shift Right 0x06 Reg 
   Logical Shift Left 0x07 Reg 
   Complement bits 0x08 Reg 
   LOAD 0x10 reg, imm/address 
   STORE 0x11 address, reg 
   MOVE 0x12 address, address 
   JUMP 0x0F address,condition 
   

HALT 0x1F - 
    

2.1.3. SUB  
It subtracts a value from a register. The source value can be another register, a memory location, 
or a 32-bit immediate. The carry flag is set if a one was borrowed. The negative flag is set if the 
highest bit is a 1, and the zero flag is set if the result is zero. 
 
2.1.4. MUL 
 
It multiplies a 32-bit register by a 32-bit value, producing a 64-bit result. The source value can be 
another register, a memory location, or an immediate. The result will be written to the destination 
register and it‟s a 64-bit pair, i.e., multiplying register a by register c will replace both a and b 
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with the result. Best practice is to load both operands into a single register pair, so that no 
registers with other data are accidentally overwritten. 
 
2.1.5. AND 
 
It performs a bitwise AND between a register and a value. The source value can be another 
register, a memory location, or a 32-bit immediate. The negative flag is set if the highest bit is a 
1, and the zero flag is set if the result is zero. 
 
2.1.6. OR  
It performs a bitwise OR between a register and a value. The source value can be another 
register, a memory location, or a 32-bit immediate. The negative flag is set if the highest bit is a 
1, and the zero flag is set if the result is zero. 
 
2.1.7. LSR 
 
It performs a logical right-shift on a register and stores the result in the same register. All 32-bits 
are shifted, and a zero is shifted into the top bit position. The carry flag is set if a 1 was shifted 
out. The negative flag is set if the highest bit is a 1, and the zero flag is set if the result is zero. 
 
2.1.8. LSL  
It performs a logical left-shift on a register and stores the result in the same register. All 32-bits 
are shifted, and a zero is shifted into the lowest bit position. The carry flag is set if a 1 was shifted 
out. The negative flag is set if the highest bit is a 1, and the zero flag is set if the result is zero. 
 
2.1.9. ASR 
 
It performs an arithmetic right-shift on a register. Only the lower 31 bits are shifted; a copy of the 
sign bit is shifted into the bit position below the sign bit. The carry flag is set if a 1 was shifted 
out. The negative flag is set if the highest bit is a 1, and the zero flag is set if the result is zero. 
 
2.1.10. ASL  
It performs an arithmetic left-shift on a register. Only the lower 31 bits are shifted; a zero is 
shifted into the lowest bit position. The carry flag is set if a 1 was shifted out. The negative flag is 
set if the highest bit is a 1, and the zero flag is set if the result is zero. 
 
2.1.11. COMP 
 
It complements all of the bits in a register and stores the result in the same register. The negative 
flag is set if the highest bit is a 1, and the zero flag is set if the result is zero. 
 
2.1.12. NEG  
It performs a 2's complement (binary negation) on a register and stores the result in the same 
register. The negative flag is set if the highest bit is a 1, and the zero flag is set if the result is 
zero. 
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2.1.13. LOAD 
 
It loads a value into a register. The source value can be a memory location or an immediate. The 
source can also be another register, which is also handled internally with the LOAD opcode. 
The assembler uses the mnemonic “COPY” to refer to loading one register into another. 
 
2.1.14. STORE  
It stores a register to RAM. A memory address is required. 
 
2.1.15. MOVE  
It copies the contents of one memory address to another. Two addresses are required; the register 
contents are not affected. 
 
2.1.16. JUMP 
 
It is classified as conditional and unconditional jumps. When a conditional jump occurs, a 
condition is checked and if the condition is true, then the jump occurs. It relocates the current 
program counter to the memory location specified. After the jump instruction, the processor 
immediately continues executing instructions at the new memory location. An unconditional 
jump always occurs. There is no condition to check. The processor can jump always, regardless 
of ALU flags. This uses the assembler mnemonic “JMP”. If the ALU carry bit was set in the last 
ALU operation, it uses the assembler mnemonic “JCAR”. If the ALU zero bit was set in the last 
ALU operation, it uses the assembler mnemonic “JZERO”. If the ALU negative bit was set in the 
last ALU operation, it uses the assembler mnemonic “JNEG” 
 
2.1.17. HALT 
 
It halts the processor‟s operation by putting the bus into High Impedance State. No more 
instructions are read and the processor stays in the HALT state until it is reset. 
 
2.2. Requirements  
The requirements for the design are 32-bit data bus, 32-bit address bus, 32 numbers of 32-bit 
general purpose registers which can be used in pairs as 16 numbers of 64-bit registers, 64-bit 
Instructions format, Instruction set, Jump condition codes. Jump Condition codes [6] are shown 
in the table below. 
 

Table 2. Jump Condition Codes 
 

Condition Bit designation 
  

Always 00 
  

Carry 01 
  

Zero 10 
  

Negative 11 
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3. DESIGN OF MODULES 
 
3.1. Generic 64-bit Register 
 
A 64-bit register is used three times in the design: the jump register, the memory address register, 
and the instruction register. The same module is instantiated in all three of these cases. The 
module has a 32-bit input, which in all three instantiations comes from the data bus. Two signals, 
setHigh and setLow determine whether this input is stored in the top half or bottom half of the 
register. 
 
3.2. Program Counter 
 
The 64-bit program counter holds the address of the next instruction byte and is used to index 
ROM when fetching instructions. It increases the output count by one on the rising edge of the 
clock when the increment signal is high. When the set signal is asserted, it loads the value from 
the jump register through the input newCount. 
 
3.3. General Purpose Register 
 
There are 32 general purpose registers with the capability of 32 bits which is used for all 
operations. They are grouped into pairs, creating 16 registers of 64-bit wide which can receive 
the result of a multiply operation. Values are only stored on the rising edge of the clock, but the 
outputs are set via combinational logic. This means that the outputs are available immediately, so 
register-to-register copies and ALU operations from the registers take place immediately without 
having to wait an additional clock cycle for the data to become available. 
 3.4. Arithmetic Logic Unit (ALU) 
 
The arithmetic logic unit implements all of the arithmetic operations specified: addition, 
subtraction, multiplication, logical AND and OR, left and right logical shifts, left and right 
arithmetic shifts, bitwise complement, and negation. It also contains a pass through instruction so 
that the ALU latch can be used as a temporary register for the MOVE operation. Output flags are 
set based on the results of the operation. The ALU consists entirely of combinational logic and 
operations are performed whenever the inputs change. The output is only 32 bits, except for the 
multiply, which is 64 bits. The zero flag is defined for every operation. If the result is all zeros, 
the flag is set. Likewise, the negative flag is set whenever the highest bit of the result is a 1, 
which indicates a negative number in the two's complement system. The behavior and meaning 
of the carry flag is dependent on the operation. For add and subtract, it indicates a carry out or 
borrow in; for shifts, it indicates the bit that was shifted out. 
 3.5. ALU Latch 
 
The ALU latch grabs the result of the ALU operation, holds it, and then puts it on the data bus 
when the store signals are asserted. It also latches the flags, so that a jump operates based on the 
last time the result was grabbed. The ALU latch uses a simple sequential design. The alu_result 
and flags are stored on the rising edge of the clock if grab is high. Combinational logic is used to 
determine which half of the stored value is put out to the data bus. If neither store signal is high, 
the output is high-z. The flags_out output is always enabled. 
 3.6. Data Path 
 
The datapath module combines the program counter, jump register, general-purpose registers, 
ALU, ALU latch, memory address register, and instruction register into a single unit connected 
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by a data bus. The data bus is a bidirectional module port, so data can be brought in and out of the 
chip. A block diagram of datapath[5] is shown in Fig 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1. Block Diagram of Data Path 
 
3.7. Control Modules 
 
The control module consists of two separate modules: a state machine which reads the output of 
the instruction register and determines what to do on the next clock cycle, and a signal translation 
module which maps the control state into controls signals for all of the other modules. 
 
3.7.1. State Machine  
The states are defined as constants. 
 
3.7.2. Control signal translation  
Pure combinational logic with assign statements was used to produce the proper outputs. The 
general-purpose register addresses are taken directly from the opcode, except where the 
destination address is modified to produce a 64-bit store for the multiply operation. The ALU 
operation is taken directly from opcode bits [62:59]. The module also handles jump evaluation 
and execution. If the operation is a jump and the condition code is “always”, then the program 
counter set signal is asserted. If the operation is a jump, the condition code is carry, and the carry 
flag is set, then the signal is asserted. The same logic is used for the carry and zero jumps. No 
additional clock cycles are necessary for evaluating the jump. 
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3.8. Address Multiplexer 
 
The address multiplexer switches the output address between the program counter and memory 
address register based on the state. If the processor is performing a load or store using a memory 
location, the MAR address is used; otherwise, the program counter is used. 
 
3.9. Memory IO 
 
The memory IO module performs memory mapping to locate the ROM and RAM in address 
space, and translates the read and write signals into ROM and RAM chip enable signals. Because 
the program counter's reset is at 0x0000, it needs to find its first instruction at that memory 
location. This is done by memory-mapping the ROM. 
 
3.10. CPU 
 
The CPU module[5] includes all of the other modules. It connects the control state machine to the 
datapath via the state translation module, connects the data path to the outside using the address 
multiplexer and memory IO module. The CPU module is shown in Fig 2. 
 4. TEST RESULTS AND DISCUSSION 
 The design is written using Verilog HDL‟s (Synopsys VCS) which easily allows the design to be 
simulated earlier in the design cycle in order to correct errors or experiment with different 
architectures. The simulation results have been verified using VCS and optimized using Synopsys 
Design Compiler. The verilog code is synthesized using faraday fsd0a_a_generic_core_tt1v25c 
CMOS technology. All the modules are verified separately. Result will give 32 bit outputs except 
for multiplication operation which produces 64 bit output. 64 bit register is instantiated 3 times in 
the design. halfValueIn is the 32 bit input given to the register. The general purpose register block 
contains 32 registers with the capability of 32 bits which is used for all operations. The register 
block has separate address inputs which are used to index the registers. alu_output_select address 
determines which address is sent directly to alu on the bus. Datapath combines all the previous 
modules. The data can be brought in and out of the chip. From the bidirectional data bus, values 
are loaded in to the registers. 14 operations are performed sequentially and the output is stored 
back in to registers. A part of the data path output is shown in Fig 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig 2. CPU Block Diagram 
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 Fig 3. Datapath Output 
 The CPU module includes all the modules with control state machine and translator along with 
address multiplexer. External SRAM and ROM is used as a text file for testing purpose and the 
memory drives the CPU. The values passed are shown in the result below 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig 4. Simulation of CPU operation 
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RTL code is taken in to Design compiler. Area, timing and power reports are obtained using 
Design Compiler. 
 
4.1. Area 
The optimized area for the entire core is 66562.3 . Report is shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 5. Simulation Result of Area Occupied 
 
4.2. Timing  
The timing report specifies an incremental delay and total path delay at each step. At the end, 
data arrival time is listed. The critical path delay is 7.90 ns, which shows that the core will work 
at 126 MHz, satisfies the requirement for IoT applications[2]. Data required time is the clock 
period which was tried to achieve,with time subtracted to account for the setup time the processor 
needs. Data required time is calculated and it is 7.91 ns. 
 
Data required time and data arrival time is compared. The clock speed constraint has been met 
and there is a slack of 0.01 ns. A part of the timing report is shown in Figure 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 6. Simulation Result of Timing Analysis 
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4.3. Power 
 The switching and the leakage power for all the cells are estimated. Total power consumed by the 
design is 1.72 mW @ 126MHz, which is well below the requirements specified in [2]. Power 
report is shown in Fig 6. and RTL schematic is shown in Fig 7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 7. Simulation Result of Power Consumption 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 8. RTL Schematic of Core 
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 5. CONCLUSION 
 The complete procedure of designing and simulating the generic 32 bit SoC core (co-processor) 
for IoT applications has been out laid in this paper. It has unique ISA that support several 
features. The processor is designed in verilog and verified using synopsys VCS tool. Report from 
the Design Compiler demonstrates that this is an optimized code. This Verilog code fits well into 
small field-programmable gate arrays (FPGAs), complex programmable logic devices (CPLDs) 
and application specific integrated circuits (ASICs) and therefore is ideally suited for IoT 
applications, especially wearable devices. This supports five stage pipelining, inorder to increase 
the speed without undue power consumption. The clock speed constraint has been met and there 
is a slack of 0.01 ns. The total estimated power consumed is 1.72 mW and the area constraint is 
met and the consumed area for the entire core is 66562.3  which proves that it is suitable 
candidate for IoT co-processor. 
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