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ABSTRACT  

 
In this paper, we give lower and upper bounds on the covering radius of codes over the ring  Z4 with respect 

to chinese euclidean distance. We also determine the covering radius of various Repetition codes, Simplex 

codes Type α and Type β and give bounds on the covering radius for MacDonald codes of both types over 

Z4.  
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1   INTRODUCTION      
 
In the last decade, there are many researchers doing research on code over finite rings. In 

particular, codes over Z4 received much attention [1, 2, 3, 7, 9, 13, 14]. The covering radius of 

binary linear codes were studied [4, 5]. Recently the covering radius of codes over Z4 has been 

investigated with respect to chinese euclidean distances [10]. In 1999, Sole et al gave many upper 

and lower bounds on the covering radius of a code over Z4 with chinese euclidean distances. In 

[12], the covering radius of some particular codes over Z4 have been investigated. In this 

correspondence, we consider the ring Z4.  In this paper, we investigate the covering radius of the 

Simplex codes of both types and MacDonald codes and repetition codes over Z4. We also 

generalized some of the known bounds in [1]. 

 

A linear code C of length n over Z4 is an additive subgroup of 
nZ4 .  An element of C is called a 

codeword of C and a generator matrix of C is a matrix whose rows generate C.  In [10], the 

chinese Euclidean weight wCE(x) of a vector  x  is 
 
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A linear Gray map φ from Z4 →Z
2

2  is defined by φ(x + 2y) = (y, x + y), for all x + 2y ∈ Z4. The 

image φ(C), of a linear code C over Z4 of length n by the Gray map, is a binary code of length 2n 

with same cardinality [13].  
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Any linear code C over Z4 is equivalent to a code with generator matrix G of the form 

 

                            
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where A, B and D are matrices over Z4. Then the code C contain all code words [v0, v1 ]G, where 

v0 is a vector of length k1 over Z4 and v1 is a vector of length k2 over Z2 . Thus C contains a total 

of 2124
kk  codewords. The parameters of C are given [n, 2124

kk
 , d] where d represents the 

minimum  chinese Euclidean distance of C.  

 
A linear code C over Z4 of length n, 2-dimension k, minimum chinese euclidean distance dCE is 

called an [n, k, dCE] or simply an [n, k] code.  

 
In this paper, we define the covering radius of codes over Z4 with respect to chinese euclidean 

distance and in particular study the covering radius of Simplex codes of type α and type β namely, 

S

k  and S


k  and their MacDonald codes and repetition codes over Z4. Section 2 contains basic 

results for the covering radius of codes over Z4. Section 3 determines the covering radius of 

different types of repetition codes. Section 4 determines the covering radius of Simplex codes and 

finally section 5 determines the bounds on the covering radius of MacDonald codes.  

 

2 Covering Radius of Codes  
 
Let d be a chinese euclidean distance. The covering radius of a code C over Z4 with respect to 

chinese euclidean  distance d is given by 

  

.  ),(minmax)(
4

ucdCr
Cczu

d n 
  

The following result of Mattson [4] is useful for computing covering radius of codes over rings 

generalized easily from codes over finite fields. 

  

Proposition 2. 5. (Mattson) If C0 and C1 are codes over Z4 generated by matrices G0 and G1 

respectively and if C is the code generated by   
1

0

0 G
G

G A

 
  
 

then rd (C) ≤ rd ( C0 ) + rd ( C1 ) 

and the covering radius of D (concatenation of C0 and C1 ) satisfy the following rd (D) ≥ rd ( C0 ) + 

rd ( C1 ), for all distances d over Z4.  

 

3 COVERING RADIUS OF REPETITION CODES  
 

A q-ary repetition code C over a finite field Fq = {α0 = 0, α1 = 1, α2 , α3 , . . . , αq−1 } is an [n, 1, n]  

code  qFC   , where ),,,(   . The covering radius of C is 







 

q

qn )1(  

[11]. Using this, it can be seen easily that the covering radius of block of size n repetition code 

[n(q-1),1,n(q-1)] generated by 


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






 
2

)1(

q

qn since it will be equivalent to a repetition code of length (q − 1)n.    

              

Consider the repetition code over Z4. There are two types of them of length n viz. unit repetition 

code Cβ : [n, 1, 2n] generated by  ]111[



n

G 
 and zero divisor repetition code Cα : (n, 2, 4n) 

generated by ]222[



n

G 
. The following result determines the covering radius with respect to 

chinese euclidean distance.  

 

Theorem 3. 1. nCr
n

CE 2)(
2

4 
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   and  nCrCE 2)( 
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Proof.  Let x = n

nn
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 . The code  nZC 4|)222(    , that is 

C = 

{00….0, 22…..2}, generated by [22….2] is an [n,1,2n] code. Then, dCE(x,00….0) = 

wtCE( 000000222
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C ) = min {
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Thus, by definition of covering radius rCE(
C )











2
4

n
                                         (3.1)              

 

Let x be any word in
nZ4

 . Let us  take x has ω0 coordinates as 0’s, ω1coordinates as 1’s, 

ω2coordinates as 2’s, ω3 coordinates as 3’s,  then ω0 + ω1+,ω2+ ω3 = n. Since 
C ={00….0,22…2}  

and chinese  euclidean weight of Z4: 0 is 0, 1 and 3 is 2 and 2 is 4, we have dCE(x,00…0) = n – ω0 

+ ω1 + 3 ω2+ ω3  and dCE(x,22…2) = n – ω2 + ω1 + 3 ω0+ ω3 .  

Thus dCE (x, Cα ) = min{  n – ω0 + ω1 + 3 ω2+ ω3 ,  n – ω2 + ω1 + 3 ω0+ ω3 }.   

 

                                           dCE (x, Cα ) ≤ n+ + n = 2n                                                                 (3.2) 

 

 Hence, from the Equation (3.1) and (3.2), we get  nCr
n

CE 2)(
2

4 









 . Now, we find the 

covering radius of Cβ covering  with  respect to the chinese euclidean weight. We have 

dCE(x,00…0) = n – ω0 + ω1 + 3 ω2+ ω3, dCE(x,11…1) = n – ω1 + ω0 +ω2+3 ω3, dCE(x,22…2) = n – 

ω2 +3 ω1 +ω3  and dCE(x, 33…3) = n – ω3 + 3ω1 +ω0+ ω2  for any  
nZx 4  . This implies dCE (x, 

Cβ ) = min{ n – ω0 + ω1 + 3 ω2+ ω3, n – ω1 + ω0 +ω2+3 ω3, n – ω2 +3 ω1 +ω3 , n – ω3 + 3ω1 +ω0+ 

ω2}  2n and hence rCE(Cβ) 2n .  To show that rCE(Cβ) 2n, let  
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   , where t 









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4

n , then dCE(x,00…0)=2n, 

dCE(x,11…1)=4n-8t, dCE(x,22…2)=2n and dCE(x,33….3)=8t.  

 

Therefore rCE(Cβ) min{2n,4n-8t,8t}  2n.  

 

To determine the covering radius of Z4 three blocks each of size n repetition code BRep
n3

 : [3n, 

1, 8n] generated by  









nnn

G 333222111  note that the code has constant chinese euclidean 

weight 8n and the block repetition code BRep
n3

 :{c0=(0…0 0….0 0…..0), c1=(1….12….2 

3….3), c2=(2…2 0…0 2….2), c3=(3….3 2….2 1…..1)}. Thus  x = 11 1
nZ 3

4 , we have dCE 

(x, BRep
n3

 ) = .4
2

4 n
n
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Hence by definition, rCE ( BRep

n3
 ) ≥ .4
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4 n

n






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
 To find 

the upper Let x = (u|v|w) 
nZ 3

4  with u, v and w have compositions (r0 , r1 , r2 , r3 ), (s0 , s1 , s2 , 

s3 ) and (t0 , t1 , t2 , t3 ) respectively such that  
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
3

0

3

0

,
i

i

i

i nsnr  and 



3

0

,
i

i nt  then dCE 

(x, c0)  = 3n − r0 +r1+ 3 r2 +r3− s0 + s1+3 s2 +s3− t0 +t1+ 3 t2+t3 , dCE (x, c1 ) = 3n − r1 +r0+r2+ 3 r3 

−  s2 +3s0+s1+s30 −  t3 +t0+ 3t1+t2 , dCE (x, c2 ) = 3n− r2 +r1+3r0+r3 − s0 +s1+3 s2+s3 − t2 +3t0+t1+t3 

and dCE (x, c3 ) = 3n− r3  +3 r1+r0+r2 −s2+3s0+s1+s3 −t1+3t3+t0+t2 . Thus dCE (x, BRep
n3  ) = 

min{3n − r0 +r1+ 3 r2 +r3− s0 + s1+3 s2 +s3− t0 +t1+ 3 t2+t3 , 3n − r1 +r0+r2+ 3 r3 −  s2 +3s0+s1+s30 

−  t3 +t0+ 3t1+t2, 3n− r2 +r1+3r0+r3 − s0 +s1+3 s2+s3 − t2 +3t0+t1+t3, 3n− r3  +3 r1+r0+r2 

−s2+3s0+s1+s3 −t1+3t3+t0+t2 . Thus we have the following theorem  

 

Theorem 3. 2. 







n

n
4

2
4  rCE (BRep

n3  ) 6n.  

One can also define a Z4 block (two blocks each of size n) repetition code Brep
n2

 : [2n, 1, 4n] 

generated by 


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G 222111 . We have following theorem  

Theorem 3. 3.  
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2
4  rCE (BRep

n3  ) 4n                 

Block code  BRep
nm

 can be generalized to a block repetition code (two blocks of size m and n 

respectively) BRep
nm  : [m + n, 1, min{4m, 3m + 3n}] generated by 



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Theorem 3.3 can be easily generalized for different length using similar arguments to the 

following.  

Theorem 3. 4. 2m+ 








2
4

n  rCE (BRep
nm  ) 2m+2n  
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4 SIMPLEX CODES OF TYPE Α  AND TYPE   OVER Z4 

 
Quaternary simplex codes of type α and type    have been recently studied in [2]. Type α 

Simplex code S

k   is a linear code over Z4 with parameters [4k,k] and an inductive generator 

matrix given by              
 

     















1111

3..332...221...110...00

kkkk

k
GGGG

G                                                              (4.1)                                                      

  

with G

1  =[0 1 2 3].  Type simplex code S


k   is a punctured version of S


k  with parameters [2k-1 

(2 k - 1), k ] and an inductive generator matrix given by  

 

                                                    









113210

201111
2

G                                   (4.2) 

    

and  for  k > 2                       















111

222000111

kkk

k
GGG

G


                                (4.3) 

                                                          

where   G


1k  is the generator matrix of S


1k . For details the reader is refered to [2]. Type α code 

with minimum chinese euclidean  weight is 8.  

Theorem  4. 1.  r CE (S

k  ) ≤ 22k+1-3 . 

Proof.  Let x = 11….. 1  nZ4
. By equation 4.1, the result of  Mattson  for  finite rings and using 

Theorem 3. 2, we get 

  r CE (S

k  )  ≤  r CE (S


1k  )+  r CE (<




)1(22

111

k




)1(22

222

k




)1(22

333

k

>) 

                   =  r CE (S 
1k

 )+ 6.22(k-1)   

                      = 6.22(k-1)  + 6.22(k-2)  + 6.22(k-3) +…..+  6.22.1  + r CE (S

1  ) 

    r CE (S

k  )   ≤  22k+1-3(since  r CE (S


1 ) = 5  ) 

 

Theorem 4.  2.  r CE (S

k  ) ≤ 2k (2k - 1) – 7  

 

Proof.  By  equation 4. 3, Proposition 2. 5  and  Theorem 3. 4,   we get       

  r CE (S

k  )   ≤  r CE (S


1k  )+  r CE (<  




)1(4

111

k




)2()32( 22

222

  kk

>) 

          =   r CE (S


1k  )+ 2(2k - 2) + 2(2k - 3) - 2(k - 2) 
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                     ≤  2( 2(2k - 2) + 2(2k - 4) +. . . +24 )+2(2(2k - 3) + 2(2k -5)+ . . .+ 23 ) –  

                        2(2(k - 2) + 2(k - 3) +  . . .+2 ) + r CE (S

2  )    

  r CE (S

k  )  ≤  2k - 1 (2k - 1) - 7(since  r CE (S


2 ) = 5  ).   

 

 5  MACDONALD CODES CODES OF TYPE Α   AND     OVER Z4 

 

The q-ary MacDonald code )(, qM tk  over the finite field Fq is a unique 













  11,,
1

tk
tk

qqk
q

qq code in which every non-zero codeword has weight either 
1kq  

or 
11   tk qq  [8].  In [11], he studied the covering radius of MacDonald codes over  a finite field. 

In fact, he has given many exact values for smaller dimension. In [6], authors have defined the 

MacDonald codes over a ring using  the generator matrices of simplex codes. For 2 ≤  t  ≤ k – 1, 

let 


tkG , be the matrix obtained from 
,kG by deleting columns corresponding to the columns of  


tG . That is,   

                                           




t

ktk
G

GG
0

\,                         (5.1)   

and let 


tkG , be the matrix obtained from 
kG by deleting columns corresponding to the columns 

of  

tG . That is,   

                     




t

ktk
G

GG
0

\,                                                       ( 5.2) 

      

where  [A \ B ] denotes the matrix obtained from the matrix A by deleting the columns of the 

matrix B and 0 is a(k - t) x 22t ((k - t) x 2t - 1 (2t - 1)). The code generated by the matrix 


tkG ,  is 

called code of type α and the code generated by the matrix


tkG , is called Macdonald code of type  

 . The type α code is denoted by


tkM , and the type   code is denoted by 


tkM , . The 


tkM ,  

code is [4k-4t,k] code over Z4 and 


tkM , is a [(2k-1-2t-1)(2k+2t-1),k] code over Z4. In fact, these 

codes are punctured code of

kS and 


kS respectively. 

  

Next Theorem gives a basic bound on the covering radius of above Macdonald codes. 

 
Theorem 5. 1.  

                             )(22)( ,

1212

,


trCE

rk

tkCE MrMr  
for t <  r ≤  k, 

Proof.   By  Proposition 2.1 and  Theorem 3.2, 

                          r CE (M


tk ,  )  ≤  r CE (<




)1(22

111

k




)1(22

222

k




)1(22

333

k

>)+r CE (M


tr ,  )    
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                                              )(4.6 ,1

1 
tkCE

k Mr 

  , for  k  ≥  r  > t. 

                                              )(4.6....4.64.6 ,

21 
trCE

rkk Mr   for  k  ≥  r  

> t. 

                          r CE (M


tk ,  )  ≤ 22k+1-22r+1+ r CE (M


tr ,  ) , for  k  ≥  r  > t.  . 

Theorem 5. 2. 

             )()21(2)12(2)( ,,


trCE

rrkk

tkCE MrMr   for t <  r ≤  k. 

Proof. Using Proposition 2.1 and Theorem 3.4, we have 

             )( ,


tkCE Mr   ≤   r CE (<  




)1(22

111

k




1)1(1)1(2 22

222

  kk

>)+ )( ,1


tkCE Mr   

                               ≤ 2.22(k-1)+2.22(k-1)-1-2(k-1)-1+ )( ,1


tkCE Mr   

                               = 2.22(k-1)+2.22(k-1)-1-22(k-1)-1+2.22(k-2)+2.22(k-2)-1-2.22(k-2)-1+ )( ,2


tkCE Mr   

                               ≤ 2.22(k-1)+2.22(k-1)-1-22(k-1)-1+2.22(k-2)+2.22(k-2)-1-2.22(k-2)-1+…+ 

                                    2.22r+2.22r-1+2.2r-1+ )( ,


trCE Mr  

                               = 22k-22r-2k+2r+ )( ,


trCE Mr , t <  r ≤  k. 

)( ,


tkCE Mr   ≤2k(2k-1)+2r(1-2r)+ )( ,


trCE Mr , t <  r ≤  k. 
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