ON THE COVERING RADIUS OF CODES OVER Z₄ WITH CHINESE EUCLIDEAN WEIGHT

P. Chella Pandian¹ and C. Durairajan²

¹Department of Mathematics Srimad Andavan Arts and Science College(Autonomous), India. ²Department of Mathematics, Bharathidasan University, India.

ABSTRACT

In this paper, we give lower and upper bounds on the covering radius of codes over the ring Z_4 with respect to chinese euclidean distance. We also determine the covering radius of various Repetition codes, Simplex codes Type α and Type β and give bounds on the covering radius for MacDonald codes of both types over Z_4 .

KEYWORDS

Covering radius, Codes over finite rings, Simplex codes, Hamming codes. (2010) Mathematical Subject Classification: 94B25, 94B05, 11H31, 11H71.

1 INTRODUCTION

In the last decade, there are many researchers doing research on code over finite rings. In particular, codes over Z_4 received much attention [1, 2, 3, 7, 9, 13, 14]. The covering radius of binary linear codes were studied [4, 5]. Recently the covering radius of codes over Z_4 has been investigated with respect to chinese euclidean distances [10]. In 1999, Sole et al gave many upper and lower bounds on the covering radius of a code over Z_4 with chinese euclidean distances. In [12], the covering radius of some particular codes over Z_4 have been investigated. In this correspondence, we consider the ring Z_4 . In this paper, we investigate the covering radius of the Simplex codes of both types and MacDonald codes and repetition codes over Z_4 . We also generalized some of the known bounds in [1].

A linear code C of length n over Z_4 is an additive subgroup of Z_4^n . An element of C is called a codeword of C and a generator matrix of C is a matrix whose rows generate C. In [10], the

chinese Euclidean weight $w_{CE}(x)$ of a vector x is $\sum_{i=1}^{n} \left\{ 2 - 2\cos(\frac{2\pi x_i}{4}) \right\}$

A linear Gray map φ from $Z_4 \rightarrow Z_2^2$ is defined by $\varphi(x + 2y) = (y, x + y)$, for all $x + 2y \in Z_4$. The image $\varphi(C)$, of a linear code C over Z_4 of length n by the Gray map, is a binary code of length 2n with same cardinality [13].

Any linear code C over Z₄ is equivalent to a code with generator matrix G of the form

$$G = \begin{bmatrix} I_{k_0} & A & B\\ 0 & 2I_{k_1} & 2D \end{bmatrix},$$
(1.1)

where A, B and D are matrices over Z₄. Then the code C contain all code words $[v_0, v_1]G$, where v_0 is a vector of length k_1 over Z₄ and v_1 is a vector of length k_2 over Z₂. Thus C contains a total of $4^{k_1}2^{k_2}$ codewords. The parameters of C are given [n, $4^{k_1}2^{k_2}$, d] where d represents the minimum chinese Euclidean distance of C.

A linear code C over Z_4 of length n, 2-dimension k, minimum chinese euclidean distance d_{CE} is called an [n, k, d_{CE}] or simply an [n, k] code.

In this paper, we define the covering radius of codes over Z_4 with respect to chinese euclidean distance and in particular study the covering radius of Simplex codes of type α and type β namely, S_k^{α} and S_k^{β} and their MacDonald codes and repetition codes over Z_4 . Section 2 contains basic results for the covering radius of codes over Z_4 . Section 3 determines the covering radius of different types of repetition codes. Section 4 determines the covering radius of Simplex codes and finally section 5 determines the bounds on the covering radius of MacDonald codes.

2 Covering Radius of Codes

Let d be a chinese euclidean distance. The covering radius of a code C over Z_4 with respect to chinese euclidean distance d is given by

$$r_{d}(C) = \max_{u \in \mathbb{Z}_{4}^{n}} \left\{ \min_{c \in C} \{ d(c, u) \} \right\}$$

The following result of Mattson [4] is useful for computing covering radius of codes over rings generalized easily from codes over finite fields.

Proposition 2. 5. (Mattson) If C₀ and C₁ are codes over Z₄ generated by matrices G₀ and G₁ respectively and if C is the code generated by $G = \begin{pmatrix} 0 & G_1 \\ G_0 & A \end{pmatrix}$ then $r_d(C) \le r_d(C_0) + r_d(C_1)$

and the covering radius of D (concatenation of C_0 and C_1) satisfy the following $r_d(D) \ge r_d(C_0) + r_d(C_1)$, for all distances d over Z₄.

3 COVERING RADIUS OF REPETITION CODES

A q-ary repetition code C over a finite field $F_q = \{\alpha_0 = 0, \alpha_1 = 1, \alpha_2, \alpha_3, \dots, \alpha_{q-1}\}$ is an [n, 1, n] code $C = \{\overline{\alpha} | \alpha \in F_q\}$, where $\overline{\alpha} = (\alpha, \alpha, \dots, \alpha)$. The covering radius of C is $\left[\frac{n(q-1)}{q}\right]$ [11]. Using this, it can be seen easily that the covering radius of block of size n repetition code [n(q-1),1,n(q-1)] generated by $G = \left[\underbrace{\alpha_1 \alpha_2 \alpha_2 \cdots \alpha_2 \alpha_3 \alpha_3 \cdots \alpha_3 \cdots \alpha_{q-1} \alpha_{q-1} \cdots \alpha_{q-1}}_{n}\right]$ is

 $\left\lceil \frac{n(q-1)^2}{q} \right\rceil$ since it will be equivalent to a repetition code of length (q-1)n.

Consider the repetition code over Z₄. There are two types of them of length n viz. unit repetition code C_{β} : [n, 1, 2n] generated by $G_{\beta} = [\overbrace{11\cdots1}^{n}]$ and zero divisor repetition code C_{α} : (n, 2, 4n) generated by $G_{\alpha} = [\overbrace{22\cdots2}^{n}]$. The following result determines the covering radius with respect to chinese euclidean distance.

Theorem 3. 1.
$$4\left\lfloor \frac{n}{2} \right\rfloor \le r_{CE}(C_{\alpha}) \le 2n$$
 and $r_{CE}(C_{\beta}) = 2n$.
Proof. Let $\mathbf{x} = 22 \cdots 200 \cdots 0 \in \mathbb{Z}_{4}^{n}$. The code $C_{\alpha} = \{\alpha(22 \cdots 2) \mid \alpha \in \mathbb{Z}_{4}^{n}\}$, that is $C_{\alpha} = \{00 \dots 0, 22 \dots 2\}$, generated by $[22 \dots 2]$ is an $[n, 1, 2n]$ code. Then, $d_{CE}(\mathbf{x}, 00 \dots 0) = 4\left\lfloor \frac{n}{2} \right\rfloor$ and $d_{CE}(\mathbf{x}, 22 \dots 2) = 4\left\lfloor \frac{n}{2} \right\rfloor$.
Wt_{CE} $(22 \cdots 200 \cdots 0 - 22 \cdots 2) = 4\left\lfloor \frac{n}{2} \right\rfloor$. Therefore $d_{CE}(\mathbf{x}, C_{\alpha}) = \min\{4\left\lceil \frac{n}{2} \right\rceil, 4\left\lfloor \frac{n}{2} \right\rfloor\}$.

Thus, by definition of covering radius $r_{CE}(C_{\alpha}) \ge 4 \left\lfloor \frac{n}{2} \right\rfloor$ (3.1)

Let x be any word in \mathbb{Z}_{4}^{n} . Let us take x has ω_{0} coordinates as 0's, ω_{1} coordinates as 1's, ω_{2} coordinates as 2's, ω_{3} coordinates as 3's, then $\omega_{0+} \omega_{1+}, \omega_{2+} \omega_{3=}$ n. Since $C_{\alpha} = \{00, \ldots, 0, 22, \ldots, 2\}$ and chinese euclidean weight of \mathbb{Z}_{4} : 0 is 0, 1 and 3 is 2 and 2 is 4, we have $d_{CE}(x, 00, \ldots, 0) = n - \omega_{0}$ $+ \omega_{1} + 3 \omega_{2+} \omega_{3}$ and $d_{CE}(x, 22, \ldots, 2) = n - \omega_{2} + \omega_{1} + 3 \omega_{0+} \omega_{3}$. Thus $d_{CE}(x, C_{\alpha}) = \min\{n - \omega_{0} + \omega_{1} + 3 \omega_{2+} \omega_{3}, n - \omega_{2} + \omega_{1} + 3 \omega_{0+} \omega_{3}\}$.

$$d_{CE}(x, C_{\alpha}) \le n + n = 2n$$
 (3.2)

Hence, from the Equation (3.1) and (3.2), we get $4\left\lfloor \frac{n}{2} \right\rfloor \le r_{CE}(C_{\alpha}) \le 2n$. Now, we find the covering radius of C_{β} covering with respect to the chinese euclidean weight. We have $d_{CE}(x,00...0) = n - \omega_0 + \omega_1 + 3 \omega_{2+} \omega_3$, $d_{CE}(x,11...1) = n - \omega_1 + \omega_0 + \omega_{2+} 3 \omega_3$, $d_{CE}(x,22...2) = n - \omega_2 + 3 \omega_1 + \omega_3$ and $d_{CE}(x, 33...3) = n - \omega_3 + 3\omega_1 + \omega_{0+} \omega_2$ for any $x \in \mathbb{Z}_4^n$. This implies $d_{CE}(x, C_{\beta}) = \min\{n - \omega_0 + \omega_1 + 3 \omega_{2+} \omega_3, n - \omega_1 + \omega_0 + \omega_{2+} 3 \omega_3, n - \omega_2 + 3 \omega_1 + \omega_3, n - \omega_3 + 3\omega_1 + \omega_{0+} \omega_2\} \le 2n$ and hence $r_{CE}(C_{\beta}) \le 2n$. To show that $r_{CE}(C_{\beta}) \ge 2n$, let

$$x = \underbrace{00\cdots01}^{t} \underbrace{1\cdots122\cdots233\cdots3}_{CE} \in Z_{4}^{n} \quad \text{, where } t = \left\lfloor \frac{n}{4} \right\rfloor, \text{ then } d_{CE}(x,00\ldots0) = 2n,$$

$$d_{CE}(x,11\ldots1) = 4n-8t, d_{CE}(x,22\ldots2) = 2n \text{ and } d_{CE}(x,33\ldots3) = 8t.$$

Therefore $r_{CE}(C_{\beta}) \ge \min\{2n, 4n-8t, 8t\} \ge 2n$.

To determine the covering radius of Z₄ three blocks each of size n repetition code BRep³ⁿ : [3n, 1, 8n] generated by $G = \begin{bmatrix} n & n & n \\ 1 & 1 & 1 & 2 & 2 & 3 & 3 \end{bmatrix}$ note that the code has constant chinese euclidean weight 8n and the block repetition code BRep³ⁿ : {c₀=(0...0 0...0 0....0), c₁=(1....12....2 3....3), c₂=(2...2 0...0 2....2), c₃=(3....3 2....2 1....1)}. Thus x = 11 \cdots 1 $\in Z_4^{3n}$, we have d_{CE} (x, BRep³ⁿ) = $4 \lfloor \frac{n}{2} \rfloor + 4n$. Hence by definition, r_{CE} (BRep³ⁿ) ≥ $4 \lfloor \frac{n}{2} \rfloor + 4n$. To find the upper Let x = (u|v|w) $\in Z_4^{3n}$ with u, v and w have compositions (r₀, r₁, r₂, r₃), (s₀, s₁, s₂, s₃) and (t₀, t₁, t₂, t₃) respectively such that $\sum_{i=0}^{3} r_i = n, \sum_{i=0}^{3} s_i = n$ and $\sum_{i=0}^{3} t_i = n$, then d_{CE} (x, c₀) = $3n - r_0 + r_1 + 3 r_2 + r_3 - s_0 + s_1 + 3 s_2 + s_3 - t_0 + t_1 + 3 t_2 + t_3, d_{CE} (x, c_1) = <math>3n - r_1 + r0 + r2 + 3 r_3 - s_2 + 3s_0 + s_1 + 3 r_2 + r_3 - s_0 + s_1 + 3 s_2 + s_3 - t_0 + t_1 + 3 t_2 + t_3 - s_0 + s_1 + 3 s_2 + s_3 - t_2 + 3t_0 + t_1 + 3 t_3 + t_0 + t_2 . Thus d_{CE} (x, BRep³ⁿ) = min{3n - r_0 + r_1 + 3 r_2 + r_3 - s_0 + s_1 + 3 s_2 + s_3 - t_0 + t_1 + 3 t_2 + t_3, 3n - r_1 + r0 + r2 + 3 r_3 - s_2 + 3s_0 + s_1 + 3 r_2 + r_3 - s_0 + s_1 + 3 s_2 + s_3 - t_0 + t_1 + 3 t_3 + t_0 + t_2 . Thus d_{CE} (x, BRep³ⁿ) = min{3n - r_0 + r_1 + 3 r_2 + r_3 - s_0 + s_1 + 3 s_2 + s_3 - t_0 + t_1 + 3 t_2 + t_3, 3n - r_1 + r0 + r2 + 3 r_3 - s_2 + 3s_0 + s_1 + s_3 - t_1 + 3t_1 + t0 + r2 - s_2 + 3s_0 + s_1 + s_3 - t_2 + 3t_0 + t_1 + t_3 - t_3 + t_1 + t0 + r2 - s_2 + 3s_0 + s_1 + s_3 - t_1 + 3t_1 + t_2 - t_3 - s_0 + s_1 + 3 s_2 + s_3 - t_2 + 3t_0 + t_1 + t_3 - t_3 + 3 r_1 + r0 + r2 - s_2 + 3s_0 + s_1 + s_3 - t_1 + 3 t_1 + t0 + r2 - s_2 + 3s_0 + s_1 + s_3 - t_1 + 3t_1 + t_3 - t_3 - s_1 + 3t_1 + r0 + r2 - s_2 + 3s_0 + s_1 + s_3 - t_1 + 3t_1 + t_3 - t_3 - s_1 + 3t_1 + r0 + r2 - s_2 + 3s_0 + s_1 + s_3 - t_1 + 3t_1 + t_3 - t_3 - s_1 + 3t_1 + r0 + r2 - s_2 + 3s_0 + s_1 + s_3 - t_1 + 3t_1 + t0 + r2 - s_2 + 3s_0 + s_1 + s_3$

Theorem 3.2. $4\left\lfloor \frac{n}{2} \right\rfloor + 4n \leq r_{CE} (BRep^{3n}) \leq 6n.$

One can also define a Z₄ block (two blocks each of size n) repetition code Brep²ⁿ : [2n, 1, 4n] generated by $G = \left[\overbrace{11\cdots122\cdots2}^{n}\right]$. We have following theorem **Theorem 3. 3.** $4\left\lfloor \frac{n}{2} \right\rfloor + 2n \le r_{CE}$ (BRep³ⁿ) $\le 4n$ Block code BRep^{m+n} can be generalized to a block repetition code (two blocks of size m and n respectively) BRep^{m+n} : [m + n, 1, min{4m, 3m + 3n}] generated by $G = \left[\overbrace{11\cdots122\cdots2}^{m}\right]$.

Theorem 3.3 can be easily generalized for different length using similar arguments to the following.

Theorem 3. 4. $2m + 4 \lfloor \frac{n}{2} \rfloor \leq r_{CE} (BRep^{m+n}) \leq 2m+2n$

4 SIMPLEX CODES OF TYPE A AND TYPE β OVER Z_4

Quaternary simplex codes of type α and type β have been recently studied in [2]. Type α Simplex code S_k^{α} is a linear code over Z_4 with parameters $[4^k,k]$ and an inductive generator matrix given by

$$G_{k}^{\alpha} = \left[\frac{00...0|11...1|22...2|33..3}{G_{k-1}^{\alpha} | G_{k-1}^{\alpha} | G_{k-1}^{\alpha} | G_{k-1}^{\alpha} | G_{k-1}^{\alpha} \right]$$
(4.1)

with $G_1^{\alpha} = [0 \ 1 \ 2 \ 3]$. Type simplex code S_k^{β} is a punctured version of S_k^{α} with parameters $[2^{k-1} (2^k - 1), k]$ and an inductive generator matrix given by

$$G_2^{\beta} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 2 \\ 0 & 1 & 2 & 3 & 1 & 1 \end{bmatrix}$$
(4.2)

and for
$$k > 2$$
 $G_k^{\beta} = \begin{bmatrix} 11 \cdots 1 & 00 \cdots 0 & 22 \cdots 2 \\ \hline G_{k-1}^{\alpha} & G_{k-1}^{\beta} & G_{k-1}^{\beta} \end{bmatrix}$ (4.3)

where G_{k-1}^{α} is the generator matrix of S_{k-1}^{α} . For details the reader is referred to [2]. Type α code with minimum chinese euclidean weight is 8.

Theorem 4.1. $r_{CE}(S_k^{\alpha}) \le 2^{2k+1}-3$.

Proof. Let $x = 11....1 \in \mathbb{Z}_4^n$. By equation 4.1, the result of Mattson for finite rings and using Theorem 3. 2, we get

$$r_{CE}(S_{k}^{\alpha}) \leq r_{CE}(S_{k-1}^{\alpha}) + r_{CE}(\langle 11\cdots 1, 22\cdots 2, 33\cdots 3 \rangle)$$

= $r_{CE}(S_{k-1}^{\alpha}) + 6.2^{2(k-1)}$
= $6.2^{2(k-1)} + 6.2^{2(k-2)} + 6.2^{2(k-3)} + \dots + 6.2^{2.1} + r_{CE}(S_{1}^{\alpha})$
 $r_{CE}(S_{k}^{\alpha}) \leq 2^{2k+1} - 3(\text{since } r_{CE}(S_{1}^{\alpha}) = 5)$

Theorem 4. 2. $r_{CE}(S_k^{\beta}) \le 2^k(2^k-1) - 7$

Proof. By equation 4. 3, Proposition 2. 5 and Theorem 3. 4, we get

$$r_{CE}(S_{k}^{\beta}) \leq r_{CE}(S_{k-1}^{\beta}) + r_{CE}(\langle 11 \cdots 1 2^{2^{(2k-3)}}, 2^{(k-2)} \rangle)$$

 $= r_{CE}(S_{k-1}^{\beta}) + 2^{(2k-2)} + 2^{(2k-3)} - 2^{(k-2)}$

$$\leq 2(2^{(2k-2)} + 2^{(2k-4)} + \ldots + 2^4) + 2(2^{(2k-3)} + 2^{(2k-5)} + \ldots + 2^3) - 2(2^{(k-2)} + 2^{(k-3)} + \ldots + 2) + r_{CE}(S_2^{\beta})$$

$$r_{CE}(S_k^{\beta}) \leq 2^{k-1}(2^k - 1) - 7(\text{since } r_{CE}(S_2^{\beta}) = 5).$$

5 MACDONALD CODES CODES OF TYPE A AND β OVER Z₄

The q-ary MacDonald code $M_{k,t}(q)$ over the finite field F_q is a unique $\left[\frac{q^k - q^t}{q - 1}, k, q^{k-1} - q^{t-1}\right]$ code in which every non-zero codeword has weight either q^{k-1} or $q^{k-1} - q^{t-1}$ [8]. In [11], he studied the covering radius of MacDonald codes over a finite field. In fact, he has given many exact values for smaller dimension. In [6], authors have defined the MacDonald codes over a ring using the generator matrices of simplex codes. For $2 \le t \le k-1$, let $G_{k,t}^{\alpha}$ be the matrix obtained from $G_{k,}^{\alpha}$ by deleting columns corresponding to the columns of G_{t}^{α} . That is,

$$G_{k,t}^{\alpha} = \left[G_k^{\alpha} \setminus \frac{0}{G_t^{\alpha}} \right]$$
(5.1)

and let $G_{k,t}^{\beta}$ be the matrix obtained from G_{k}^{β} by deleting columns corresponding to the columns of G_{t}^{β} . That is,

$$G_{k,t}^{\beta} = \left[G_{k}^{\beta} \setminus \frac{0}{G_{t}^{\beta}} \right]$$
(5.2)

where $[A \ B]$ denotes the matrix obtained from the matrix A by deleting the columns of the matrix B and **0** is $a(k - t) \ge 2^{2t} ((k - t) \ge 2^{t-1} (2^t - 1))$. The code generated by the matrix $G_{k,t}^{\alpha}$ is called code of type α and the code generated by the matrix $G_{k,t}^{\beta}$ is called Macdonald code of type β . The type α code is denoted by $M_{k,t}^{\alpha}$ and the type β code is denoted by $M_{k,t}^{\beta}$. The $M_{k,t}^{\alpha}$ code is $[4^{k}-4^{t},k]$ code over Z_4 and $M_{k,t}^{\beta}$ is a $[(2^{k-1}-2^{t-1})(2^{k}+2^{t}-1),k]$ code over Z_4 . In fact, these codes are punctured code of S_k^{α} and S_k^{β} respectively.

Next Theorem gives a basic bound on the covering radius of above Macdonald codes.

Theorem 5.1.

$$r_{CE}(M_{k,t}^{\alpha}) \le 2^{2k+1} - 2^{2r+1} + r_{CE}(M_{r,t}^{\alpha})$$
 for $t < r \le k$,

Proof. By Proposition 2.1 and Theorem 3.2,

$$r_{\text{CE}}(M_{k,t}^{\alpha}) \leq r_{\text{CE}}(\langle 11 \cdots 1 22 \cdots 2 33 \cdots 3 \rangle) + r_{\text{CE}}(M_{r,t}^{\alpha})$$

6

$$= 6.4^{k-1} + r_{CE}(M_{k-1,t}^{\alpha}), \text{ for } k \ge r > t.$$

$$\leq 6.4^{k-1} + 6.4^{k-2} + \dots + 6.4^{r} + r_{CE}(M_{r,t}^{\alpha}) \text{ for } k \ge r$$

> t.

$$r_{\text{CE}}(M_{k,t}^{\alpha}) \le 2^{2k+1} - 2^{2r+1} + r_{\text{CE}}(M_{r,t}^{\alpha}), \text{ for } k \ge r > t.$$

Theorem 5.2.

$$r_{CE}(M_{k,t}^{\beta}) \le 2^{k}(2^{k}-1) + 2^{r}(1-2^{r}) + r_{CE}(M_{r,t}^{\beta})$$
 for $t < r \le k$.

Proof. Using Proposition 2.1 and Theorem 3.4, we have

$$\begin{aligned} r_{CE}(M_{k,t}^{\beta}) &\leq r_{CE} \left(< \overbrace{11\cdots1}^{2^{2(k-1)}} \overbrace{22\cdots2}^{2^{2(k-1)-1}-2^{(k-1)-1}} \right) \\ &\leq 2.22^{(k-1)+2} \cdot 2.2^{2(k-1)-1} \cdot 2^{(k-1)-1} + r_{CE}(M_{k-1,t}^{\beta}) \\ &= 2.2^{2(k-1)+2} \cdot 2.2^{2(k-1)-1} \cdot 2^{2(k-1)-1} + 2.2^{2(k-2)} + 2.2^{2(k-2)-1} \cdot 2.2^{2(k-2)-1} + r_{CE}(M_{k-2,t}^{\beta}) \\ &\leq 2.2^{2(k-1)+2} \cdot 2.2^{2(k-1)-1} \cdot 2^{2(k-1)-1} + 2.2^{2(k-2)} + 2.2^{2(k-2)-1} \cdot 2.2^{2(k-2)-1} + \dots + \\ &2.2^{2r} + 2.2^{2r-1} + 2.2^{r-1} + r_{CE}(M_{r,t}^{\beta}) \\ &= 2^{2k} \cdot 2^{2r} \cdot 2^{k} + 2^{r} + r_{CE}(M_{r,t}^{\beta}), \ \mathbf{t} < \mathbf{r} \leq \mathbf{k}. \end{aligned}$$

 $r_{CE}(M_{k,t}^{\beta}) \leq 2^{k}(2^{k}-1)+2^{r}(1-2^{r})+r_{CE}(M_{r,t}^{\beta}), t \leq r \leq k.$

ACKNOWLEDGEMENTS

The first author was supported by a grant (F. No.: 4-4/2014-15(MRP-SEM/UGC-SERO, Nov. 2014)) for the University Grants Commission, South Eastern Regional office, Hyderabad – 500 001.

References

- [1] Aoki T., Gaborit P., Harada, M., Ozeki, M. and Sol'e P., "On the covering radius of Z4 codes and their lattices", IEEE Trans. Inform. Theory, vol. 45, no. 6, pp. 2162-2168(1999).
- [2] Bhandari M. C., Gupta M. K. and Lal A. K., "On Z4 Simplex codes and their gray images", Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, AAECC- 13, Lecture Notes in Computer Science 1719, 170-180(1999).
- [3] Bonnecaze A., Sol'e, P., Bachoc, C. and Mourrain B., "Type II codes over Z4", IEEE Trans. Inform. Theory, 43, 969-976(1997).
- [4] Cohen G. D., Karpovsky, M. G., Mattson, H. F. and Schatz J. R., "Covering radius-Survey and recent results", IEEE Trans. Inform. Theory, vol. 31, no. 3, pp. 328-343(1985).
- [5] Cohen C., Lobstein, A. and Sloane N. J. A., "Further Results on the Covering Radius of codes", IEEE Trans. Inform. Theory, vol. 32, no. 5, 1986, pp. 680-694(19977).
- [6] Colbourn, C. J. and Gupta M. K., "On quaternary MacDonald codes", Proc. Information Technology:Coding and Computing (ITCC), pp. 212-215 April(2003).
- [7] Conway, J. H. and Sloane N. J. A., 1993, "Self-dual codes over the integers modulo 4", Journal of Combin. Theory Ser. A 62, 30-45(1993).

- [8] Dodunekov S. and Simonis, J., "Codes and projective multisets", The Electronic Journal of Communications 5 R37(1998).
- [9] Dougherty S. T., Harada M. and Sol'e P., "Shadow codes over Z4", Finite Fields and Their Appl. (to appear).
- [10] Gupta M. K., David G. Glynn and Aaron Gulliver T., On Senary Simplex Codes. Lecture Notes in Computer Science.
- [11] Durairajan C., " On Covering Codes and Covering Radius of Some Optimal Codes", Ph. D. Thesis, Department of Mathematics, IIT Kanpur (1996).
- [12] Gupta M. K and Durairajan C., On the Covering Radius of some Modular Codes. Journal of Advances in Mathematics of Computations 8(2), 9, 2014.
- [13] Hammons A. R., Kumar P. V., Calderbank A. R., Sloane N. J. A. and Sol'e P., The Z4-linearity of kerdock, preparata, goethals, and related codes.IEEE Trans. Inform. Theory, 40, 301-319 (1994).
- [14] Harada M., New extremal Type II codes over Z4. Des. Codes and Cryptogr. 13, 271-284 (1998).