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ABSTRACT

In this correspondence, we give lower and upper bounds on the covering radius of codes over the finite
ring Zs with respect to different distances such as Hamming, Lee, Euclidean and Chinese Euclidean. We
also determine the covering radius of various Block Repetition Codes over Zs,
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1. INTRODUCTION

In the last decade, there are many researchers doing research on code over finite rings. There has
much interest in codes over finite rings in recent years, especially the rings Z,, where 2k denotes
the ring of integers modulo 2k. In particular, codes over Z, have been widely studied [1, 2, 3, 4,
5]. Good binary linear and non-linear codes can be obtained from codes over Z, via the gray map.
The covering radius of binary linear codes was studied [6, 7]. Recently the covering radius of
codes over Z, has been investigated with respect to Lee, Euclidean distances [1, 10] and Chinese
Euclidean distance [8]. In 1999, Sole et al gave many upper and lower bounds on the covering
radius of a code over Z, with different distances. In the recent paper, the covering radius of some
codes over Z¢ have been investigated. In this correspondence, we consider the finite ring is the set
Z¢ of integers modulo 6.

A linear code C of length n over Zg is an additive subgroup of Z 2 . An element of C is called a
codeword of C and a generator matrix of C is a matrix whose rows generate C. The Hamming

. . n . .
weight wy(x) of a vector x in Z ¢ 1s the number of non-zero coordinates.

In [11], the Lee weight for a codeword x=(x1,X,...,X;) € VA 6” is defined by

n

wi(X)= Z {l X 6 — X |}-

i=1
The Lee distance between the codeword’s x and y€ Z 6" is defined as di (x,y)=w(X-y).

The Euclidean weight is given by the relation
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Wi (X)= Zn ﬂxi 16 - Xi |2}
i=1

and Euclidean distance between the codeword’s x and y€ Z 6" is defined as dg(X,y)=wg(X-y).

The Chinese Euclidean weight wcg(x) of a vector x€ Z 6" is

n

Z{m-2mq2?n%

i=1

and the Chinese Euclidean distance between the code words x and y € Z is defined as
dee(X,y)=Wce(x-y).

The Hamming, Lee, Euclidean and Chinese Euclidean distances dy(X,y),d.(X,y), dg(x,y) and
dce(x,y) between two vectors x and y are wp(X-y), Wi(X-y),wg(x-y) and wcg(x-y) respectively.
The minimum Hamming, Lee, Euclidean and Chinese Euclidean weights dy, d, dg and dcg of C

are the smallest Hamming, Lee, Euclidean and Chinese Euclidean weights among all non-zero
codewords of C respectively.

A linear Gray map ¢ from Z, — Z, X Z; is the coordinates-wise extension

of the function from Z6” to Z; X Z3” defined by 0— (0, 0), 1—» (1,1), 2—»(0,2),

3 —»(1,0),4—(0,1) and 5—(1,2). The image @ , of a linear code C over € ZGH of length n
by the Gray map, is a mixed binary/ternary code of length 2n[11].

Two codes are said to be equivalent if one can be obtained from the other by permuting the
coordinates or changing the signs of certain coordinates or multiplying non-zero element in a
fixed column. Codes differing by only a permutation of coordinates are called permutation-
equivalent.

Any linear code C over Zg is permutation-equivalent to a code with generator matrix G (the rows
of G generate C) of the form

Ikl A1,2 A1,3 A1,4
0 21, 24,, 2A4,,
0 0 3, 34,

G =

Where Aj;j, are matrices with entries O or 1 for i > 1 and I is the identity matrix of order k. Such
a code i1s said to have rank {lkl, 2k2, 3% or simply rank { ki, k;, k3 } and ICl = 6K13K208,
If k, = k3 = 0, then the rank of C is {k;, 0, 0} or simply k; =k.
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In this paper, we define the covering radius of codes over Zg with respect to different distances.
Section 2 contains basic results for the covering radius of codes over Z.

Determines the covering radius of different types of block repetition codes are given in Section 3.
2. COVERING RADIUS OF CODES

Let d be the general distance out of various possible distances such as Hamming, Lee, Euclidean
and Chinese Euclidean. The covering radius of a code C over Z¢ with respect to a general

distances d is given by 7 (C) = max illlicn{d(u, C)H
MEZG

The following result of Mattson [6] is useful for computing covering radius of codes over rings
generalized easily from codes over finite fields.

Proposition 2. 1. If Cjand C, are codes over Z4 generated by matrices Gy and G, respectively
0 G
and if C is the code generated by G = (G Alj then 14 (C) <14 (Cy) + 14 ( C;) and the covering
0

radius of D (concatenation of Cy and C, ) satisfy the following rq (D) > 14 ( Cy ) + 14 ( C, ), for all
distances d over Z.

3. COVERING RADIUS OF REPETITION CODES

A g-ary repetition code C over a finite field Fy= {ap=0, a;=1, 0, 03, ..., 041 } isan [n, 1, n]
code C = {E|(Z eF, }, where & = (&, &,++,&) . The covering radius is [”(‘I—ﬂ [9].
q

Using this, it can be seen easily that the covering radius of block of size n repetition code [n(q-
1),1,n(g-1)] generated by

n

—
G = 11...10(20(2...a2a3a3...a3...aqila '0‘1,71

—_r ”_ﬁlis
o {

n(g —1) 2} since it will be equivalent to a
q

repetition code of length (q — 1)n.

Consider the repetition code over Zg. There are two types of repetition codes of length n viz.

n

f_/H
1. unit repetition code Cy [n, 1, n, n, n, n] generated by Gﬂ =[11---1].

n

f_/H
2. zero repetition code C, : (n, 2, n, 3n, 9n, 4n) generated by G 5= [33---3]and

n n

C,: (n, 3, n, 2n, 4n, 3n) generated by Gﬁ =[2424...24] or [4242---42].

The code generated by [22 ... 2] and [44... 4] are equivalent to the code C,.

The following result determines the covering radius with respect to the Lee distance, Euclidean
distance and Chinese Euclidean distance.
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Theorem 3. 1.

_3n 5n 3n
r(C,) =5 nSrL(C;,)S?, rL(Cﬁ)zz-
;5
. —r
Proof. By the definition r;(C,)=Max irglcn {d(xa C)}} Let x =33...300...0€ Z; . The code
XE z4

C,={a(33..3)|le 7!}, thatis C,={00....0, 3 3.... 3}, generated by [3 3.... 3] is an (n, 2, n) code.

Then dq( x, 00....0)= wt;(33...300...0-00....0) = wt, 3) = 2, since the Lee weight of 3 is 3
2 2

and d; ( x,33.... 3) :%. Therefore, di( x, C,) = min{ 3n 3ny _3n and hence r.(C,)= 3n .Letx
2 22 2 2
be any word in Z 6” . Let us take x has w, coordinates as 0's, ®; coordinates as 1's, m, coordinates

as 2's, m; coordinates as 3's, w4 coordinates as 4's and ®s coordinates as 5's, then g . ®.02; ®3
+04, ®5 =n. Since C,= { 00.... 0, 33.... 3} and Lee weight of 0is 0, 1,5is 1,2, 4is 2 and 3 is 3,

di.(x,00...0) = n- ®g 12,003 04 and di (X, 33.... 3) = n- O30, O1.O5 .

Thus di(x, C,)=min{ n- @ ,®3,, ®3 04 N- O3 1200, ®1,05 }. Since the minimum of { n-

+0240 M3 104, N- O3 4200 M140s } s less than or equal to its average, implies di(x, C,) < n+” =
2

3n and r(C,)< % Hence, r.(C,) = % The correspondent arguments of y type, so, n<
2 2
r(C,)< on . The covering radius 1y ( Cﬂ)g 3n . To show that ry( Cﬁ)z ﬁ
2 2 2
t t t t t n-5t
Let  x=00--011--122---233---344.-455...5¢ Zg,wheretzm,then
6

di(x,00... 0) = n+3t, di.(x,11...1) =2n-3t, di(x, 22...2) =3n-9t, d.(X, 33.... 3) =2n-2t,

di(x,44.... 4) = n+3t and d;(x,55.... 5) = 9t. Therefore ry( Cﬁ)2min{n+3t,2n-3t,3n-9t,9t} > 3n and
2

rL(Cﬁ) = %1

The above similar arguments can be used to compute the covering radius of Euclidean weight and
Chinese Euclidean weight for the o type, f type and y type codes over Zq (Euclidean weight of

Zsof 0is 0, 1 and 5 are 1, 2 and 4 are 4 and 3 is 9 and Chinese Euclidean weight of Zs of 0 is 0, 1
and 5 are 1, 2 and 4 are 3 and 3 is 4). We have the following theorem
Theorem 3. 2.

1In 1
re(C,) =9§, ZnSrE(Cy)s? and VE(C/;)Z%H~
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Theorem 3. 3.

rce(C,) =2n, 3—; <1 (C,)<2n and 7.,(Cy)=2n..

In order to determine the covering radius of Zs two blocks each of size n repetition code

n n

2 —N
BRep™: [2n, 1, n, 2n, 4n, n] generated by G =[11:---133---3]. We have following

theorem

Theorem 3. 4.

n n

— 2
Let C be a code over Zg generated by the matrix G =[11---133---3], then r (BRep™) =

2n 46n 2n
3n, rg({BRep™) = ? and rcg(BRep™)=4n.
Proof.

By Theorem 3.1, the Proposition 2.1 and the given generator matrix G, we get

r.({BRep™) > 3n (3.1)

For the reverse inequality, let x=(viw) € 262 " and let us take in v, 0 appears 1o times,

1 appears r; times, 2 appears r, times, 3 appears r3 times, 4 appears 14 times and 5 appears
rstimes and in w, O appears sg times, 1 appears s; times, 2 appears s, times, 3 appears s3

5 5
times, 4 appears s4 times and 5 appears ss times with ZI’,- =n =z S;. Then dp( x,c)=
i=0 i=0
2n-19+1+213+14-Sp+82+283+S4, di(X, C1)= 2n-r1+13+2r4+15-83+280+81+S5,d( X,c0)= 2n-
I+ +r4+2r5-S0+So+283+84,  di(  X,C3)=2n-13+2r0+1+15-S34+2S0+S1+85, di( X,c4)= 2n-
r4+1+2r1+12-S0+82+283+84 and dp( X,Cs5) = 2n-r5+1+2r+13-S3+280+81+S5.
We get
2n .

di(x, BRep™) = min{di( x,cp), di( x,¢1), di( X,¢2), dr.(X,¢3), di(X,c4), dL(X,C5)}

<{2n-1g+12+21r3414-So+S2+283+84+ 2n-T1+13+214+15-S3+2S0+S | +85+

2N- Iy+rg+r4+215-S0+S2+283+84+ 2n-13+210+11+15-S3+2S0+S1+S5+
20-T4+10+211+12-Sp+S2+283+S4+2N-T5+11+212+13-S3+280+81+55 } /6.

Therefore, d(x, BRep™) <3n. Thus r({BRep™) < 3n (3.2)

By the Equations (3.1) and (3.2), so 7, (BRe p™) =3n.

. . 2n 46”’ 2n
Similarly, rg(BRep™) = ? and rcp(BRep™) = 4n.



International Journal on Information Theory (IJIT) Vol.5, No.2, April 2016

One can also define a Z¢ codes of three blocks each of size n repetition code BRep3 "[3n,

n n n

——
1, 2n, 4n, 8n, 6n] generated by G =[11---122---233--.3]. The proof of the theorem 3. 5

and 3. 6 is similar to the theorem 3. 4, we can state following
Theorem 3. 5.

n n n

—r
Let C be a code over Zg generated by the matrix G =[11---122---233---3].then

n
1.4n < r (BRep™) £7,

29 34
2. 2 < BRep™ <22 and
3 3
3, % <r..(BRep™) s%‘

In Zg, the four blocks each of size n repetition code BRep4“: [4n, 1, 2n, 6n, 12n, 8n]

n n n n

— —
generated by G =[11---122---233-..344.-.-4]. We have following theorem

Theorem 3. 6.
Let C be a code over Zg generated by the matrix G =[11---122---233--.344.-..4], then
19
1. 5n< r(BRep™) < Tn,
38 45
2. 2 <1 (BRep*) <22 and
3 3
49
3.7n < rep(BRep™) s?".

In order to determine the covering radius of Z¢ codes of the five blocks each of size n
repetition code BRepsn: [5n, 1, 3n, 8n, 16n, 12n] generated by

G=[11---122---233---344..-455---5].
We have

Theorem 3. 7.
n n n n n
—

Let C be a code generated by the matrix G =[11---122---233...344...455...5].

Then,
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1. %SrL(BRepS")S%,

89n 1091

2. ?s r.(BRep™) <

and

sn. N
3. 9n< reg(BRep™) S? .

The two different length of Block repetition code of size m and n is BRep™™: [m+n, 1, m,

min {2m,m+2n}, min {4m, 4m+6n}, min{3m,3m+2n}] generated by

m n

—r
G =[11---133---3]. We have the following theorem

Theorem 3. 8.

3m+3n
< i (BRep™") < St 4n
2 2
e r1g(BRep™™) = @ and

e rcg(BRep™™) =2m+2n.$

Proof.
By theorem 3.1 and by the above generator matrix

r.(BRep™™) > 37171 + 3?’1 = 3m; 3n

(3.3)

Let z=(xly) €Z™ where xe Z;" and ye Z;. Let us take x has my times O as

coordinates, m; times 1 as coordinates, m, times 2 as coordinates mj times 3 as
coordinates

my times 4 as coordinates and ms times 5 as coordinates and y has ng times O as
coordinates, nitimes 1 as coordinates, n, times 2 as coordinates nz times 3 as coordinates

5
ng times 4 as coordinates and ns times 5 as coordinates such that Zm, =m and
i=0

5
Zni =n . Then by the above Matrix, the code is C= {co= (00....0 00....0), ¢c;=(11....1 3
i=0
3...3),0=(22....2 0...0), c3=(33....3 33.....3),c4=(4 4 ..... 400...0),c5=(55....5
33..3)}.

d(z,c0) = wtrL(z-co) = WiL((xly)-Co) = WtL(X-Co)+WtL(y-Co)
=m;+2 mo+3msz+4 my+5ms+n;+2 ny+3 n3+4 ny+5ns, since the
Lee weightof 2,4is2and3is3and 1, 5is 1.
Thus di(z,c0) = m+n-my+my+2ms+my-Ng+ny+2n3+ny.
Similarly, di(z,ci) = m+n-m;+m3+2my+ms -n3+2np+n;+2ns,
di(z,c7) = m+n-my+mp+1my+2ms -np+ny+2n3+ny,
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di(z,c3) = m+n-m3+2mo+m;+2ms -n3+2no+n;+2ns,

di(z,c4) = m+n-my+moy+2m;+m;-ng+no+2n3+ny and

di(z,c5) = m+n-ms+m;+2my+ms3 -n3+2ng+n;+2ns.
Therefore,

dy(z, BRepm+“) < A{du( z,co)+dr( z,c1)+di( z,c2)+di( z,c3)+dL( z,c4})+dL( 2,c5)}/6
= { m+n-mo+mo+2ms+my-ng+ny+2n3+ny + m+n-m;+ms+2my+
ms. n3+2nog+n;+2ns + m+n-mpo+mo+ 1 my+2ms -ng+n+2n3+
ng +m+n-m3+2me+m;+2ms -nz+2ng+n;+2ns + m+n-my+my+
2m;+my- ng+ny+2n3+ny +m-+n-ms+m;+2my+ms -n3+2np+n;+2ns }/6

di(z, BRep™™) = m+n+{3m+3n+3ns}/6
= m+n+3m+3n+3n/6, since ns< n
di(z, BRep™™) = {3m+4n}/2.
Thus r (BRep™™) <{3m+4n}/2 (3.4)

From equation (3.3) and (3.4), {3m+3n}/2< r ({BRep™™) <{3m+4n}/ 2. Similar
arguments of above, we have rg(BRep™™)= {19m+27n}/6 and rcg(BRep™™")=2m+2n.

In a three different Block repetition code of length is m, n and o is BRep™"*: [m+n+o,
1, 2m, min{4m, 2m+2n+20}, min{8m, 8m+4n+40}, min{6m, 6m+n+o}] generated by

m n o
———

G =[11---122..233---3] . We have the following theorem

Theorem 3.9.

e {m+2n+20}/2< r (BRep™"™*°) <{9m+10n+90}/ 6,
e {13m+9n+120}/6< rg(BRep™™™) <{13m+16n+150}/6 and
¢ 2m+{3n}/24+20 < rcg(BRep™ ™) < 2m+2n+2o0.

Four different Block repetition code of length are m, n, o and p: BRep™""*P: [m+n+o+p,
1, 2m, min{6m,2m+2n+20+2p},min{ 12m, 12m+2n+20+2p}, min {8m,
3m+2n+20+2p}]generated by

G=[11---122.---233---344---4] . We have the following

Theorem 3.10.

e m+n+o+p < rp(BRep™™*P) <{9m+10n+90+10p}/6,
e {13m+12n+90+12p}/6 < rg(BRep™ ™) <{13m+16n+150+16p}/6 and
¢ 2m+{3n}/2+20+{3p}/2< rcg(BRep™ ") < 2m+{13n}/6+20+2p.

The five different Block repetition code of length of size are m, n, o, p and q,
BRep™ ™ """ [m+n+o+p+q, 1, 3m, min{8m, 2m+2n+20+2p+q}, min{16m, 4m+4n+4o
+4p+3q}, min {12m, 3m+3n+30+2p+1q}] generated by
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p q

G=[11---122---233---344...455---5] . We have

Theorem 3.11.

e {3m+2n+30+2p+3q}/2< 1 ({BRep™ ™ ) < {9m+10n+90+10p+9q}/6,
e {19m+12n+270+12p+19q}/6 < rg(BRep™ " *"P™) <{19m+22n+270+22p+19q}/6

and

e {4m+3n+40+3p+4q}/2< rcp(BRep™ ) <2m+2n+20+2p+2q.
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