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ABSTRACT 
 

In this correspondence, we give lower and upper bounds on the covering radius of codes  over the finite 

ring Z6 with respect to different distances such as Hamming, Lee, Euclidean and Chinese Euclidean. We 

also determine the covering radius of various Block Repetition Codes over Z6. 
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1. INTRODUCTION 
 
In the last decade, there are many researchers doing research on code over finite rings. There has 
much interest in codes over finite rings in recent years, especially the rings  Z2k where 2k denotes 
the ring of integers modulo 2k. In particular, codes over Z4 have been widely studied [1, 2, 3, 4, 
5]. Good binary linear and non-linear codes can be obtained from codes over Z4 via the gray map. 
The covering radius of binary linear codes was studied [6, 7]. Recently the covering radius of 
codes over Z4 has been investigated with respect to Lee, Euclidean distances [1, 10] and Chinese 
Euclidean distance [8]. In 1999, Sole et al gave many upper and lower bounds on the covering 
radius of a code over Z4 with different distances. In the recent paper, the covering radius of some 
codes over Z6 have been investigated. In this correspondence, we consider the finite ring is the set 
Z6 of integers modulo 6. 
 

A linear code C of length n over Z6 is an additive subgroup of 
nZ 6 . An element of C is called a 

codeword of C and a generator matrix of C is a matrix whose rows generate C. The Hamming 

weight wH(x) of a vector x in 
n

Z 6  is the number of non-zero coordinates.  
 

In [11], the Lee weight for a codeword x=(x1,x2,...,xn) 
n

Z 6∈  is defined by  

wL(x)= { }∑
=

−
n

i

ii xx
1

|6||| . 

 

The Lee distance between the codeword’s x and y
n

Z 6∈  is defined as dL(x,y)=wL(x-y). 
 

The Euclidean weight is given by the relation  
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wE(x)= { }∑
=

−
n

i

ii xx
1

22 |6|||  

and Euclidean distance between the codeword’s x  and y
nZ 6∈  is defined as dE(x,y)=wE(x-y). 

             The Chinese Euclidean weight wCE(x) of a vector x
n

Z 6∈  is 
 
 

∑
= 








−
n

i

ix

1

|)
6

2
cos(22|

π
 

 

and the Chinese Euclidean distance between the code words  x  and  y 
n

Z 6∈  is defined as 

dCE(x,y)=wCE(x-y). 

 
The Hamming, Lee, Euclidean and Chinese Euclidean distances dH(x,y),dL(x,y), dE(x,y) and 
dCE(x,y) between two vectors x and y are wH(x-y), wL(x-y),wE(x-y) and wCE(x-y) respectively. 
The minimum Hamming, Lee, Euclidean and Chinese Euclidean weights dH, dL, dE and dCE of C 
are the smallest Hamming, Lee, Euclidean and Chinese Euclidean weights among all non-zero 
codewords of C respectively. 

 

A linear Gray map φ  from →n
Z 6

nn
ZZ 32 ×   is the coordinates-wise extension 

of   the function from 
nZ 6  to 

nn ZZ 32 × defined by 0       (0, 0), 1       (1,1),  2       (0,2), 

 
 

3       (1,0),4      (0,1) and  5      (1,2).  The imageφ , of a linear code C over 
nZ 6∈  of length n  

by the Gray map, is a mixed binary/ternary code of length 2n[11]. 
            
Two codes are said to be equivalent if one can be obtained from the other by permuting the 
coordinates or changing the signs of certain coordinates or multiplying non-zero element in a 
fixed column. Codes differing by only a permutation of coordinates are called permutation-
equivalent. 

             
Any linear code C over Z6 is permutation-equivalent to a code with generator matrix G (the rows 
of G generate C) of the form  
 



















=
4,3

4,23,2

4,13,12,1

3300

2220

3

2

1

AI

AAI

AAAI

G
k

k

k

 

 

Where A{i,j} are matrices with entries 0 or 1 for i > 1 and Ik is the identity matrix of order k. Such 
a code is said to have rank {1k1, 2k2, 3k3} or simply rank { k1, k2, k3 } and |C| = 6k13k22k3.  
If k2 = k3 = 0, then the rank of C is {k1, 0, 0} or simply k1 = k. 
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In this paper, we define the covering radius of codes over Z6 with respect to different distances. 
Section 2 contains basic results for the covering radius of codes over Z6. 

 
Determines the covering radius of different types of block repetition codes are given in Section 3. 
 

2. COVERING RADIUS OF CODES 
 
Let d be the general distance out of various possible distances such as Hamming, Lee, Euclidean 
and Chinese Euclidean. The covering radius of a code C over Z6 with respect to a general 

distances d is given by { }{ }.),(minmax)(
6

cudCr
Cczu

d n ∈∈
=

 
 
The following result of Mattson [6] is useful for computing covering radius of codes over rings 
generalized easily from codes over finite fields.  
 
Proposition 2. 1.  If C0 and C1 are codes over Z6 generated by matrices G0 and G1 respectively 

and if C is the code generated by  
1

0

0 G
G

G A

 
=  
 

then rd (C) ≤ rd ( C0 ) + rd ( C1 ) and the covering 

radius of D (concatenation of C0 and C1 ) satisfy the following rd (D) ≥ rd ( C0 ) + rd ( C1 ), for all 
distances d over Z6.  

 

3. COVERING RADIUS OF REPETITION CODES 
 
A q-ary repetition code C over a finite field Fq = {α0 = 0, α1 = 1, α2 , α3 , . . . , αq−1 } is an [n, 1, n]  

code { }
qFC ∈= αα , where ),,,( αααα L= . The covering radius is 








 −

q

qn )1(  [9].  

Using this, it can be seen easily that the covering radius of block of size n repetition code [n(q-
1),1,n(q-1)] generated by 
 














= −−−

44 844 76

LL

48476

L

48476

L

876

L

n

qqq

nnn

G 111333222111 ααααααααα  is 







 −
2

)1(

q

qn since it will be equivalent to a 

repetition code of length (q − 1)n. 
 

 
       Consider the repetition code over Z6. There are two types of repetition codes of length n viz. 

1. unit repetition code  
βC : [n, 1, n, n, n, n] generated by ]111[

876

L

n

G =β . 

2. zero repetition code 
αC  : (n, 2, n, 3n, 9n, 4n) generated by ]333[

876

L

n

G =β and  

      
γC  : (n, 3, n, 2n, 4n, 3n) generated by ]242424[

48476

L

n

G =β  or ]424242[
48476

L

n

. 

 

The code generated by [22 ... 2] and [44... 4] are equivalent to the code 
γC . 

 

The following result determines the covering radius with respect to the Lee distance, Euclidean 
distance and Chinese Euclidean distance. 
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Theorem  3. 1. 

                

rL(
αC ) =

2

3n
,   

3

5
)(

n
Crn L ≤≤ γ

,    
2

3
)(

n
CrL =β

. 

Proof.   By the definition rL(
αC )= { }{ }),(minmax

6

cxd
Cczx n ∈∈

. Let  x = n

nn

Z6

22

0...003...33 ∈
876876

 . The code 

}|)3....33({ 6

nZC ∈= ααα
, that is 

αC ={00....0, 3 3.... 3}, generated by [3 3.... 3] is an (n, 2, n) code. 

Then dL( x, 00....0)= wtL( )0....000...003...33

22

−
876876

nn

=
2

n  wtL (3) =
 2

3n ,  since the Lee weight of  3 is 3 

and dL( x,33.... 3) =
2

3n .  Therefore, dL( x,
 αC ) = min{

2

3n
, 2

3n } =
2

3n  and hence  rL(
αC )≥

2

3n  . Let x 

be any word in 
nZ 6 .  Let us take x has ω0 coordinates as 0's, ω1 coordinates as 1's, ω2 coordinates 

as 2's, ω3 coordinates as 3's, ω4 coordinates as 4's and ω5 coordinates as 5's, then ω0 + ω1+ω2+ ω3 

+ω4+ ω5 = n. Since 
αC = { 00.... 0, 33…. 3} and Lee weight of 0 is 0,  1, 5 is 1, 2, 4 is 2 and 3 is 3,   

dL(x,00…0) = n- ω0 +ω2+2ω3 +ω4 and dL(x, 33…. 3) = n- ω3+2ω0+ ω1+ω5 .  
 
Thus dL(x, 

αC )=min{ n- ω0 +ω2+2 ω3 +ω4, n- ω3 +2ω0+ ω1+ω5 }. Since the minimum of { n- ω0  

+ω2+2 ω3 +ω4, n- ω3 +2ω0+ ω1+ω5 } is less than or equal to its average, implies dL(x, 
αC ) ≤  n+

2

n  = 

2

3n  and  rL(
αC ) ≤  

2

3n
. 

Hence,  rL(
αC ) = 

2

3n
. 

The correspondent arguments of γ  type, so, n ≤  

rL(
αC )≤

2

5n . The covering radius rL(
βC )

2

3n
≤ . To show that rL(

βC )
2

3n
≥ .  

 

Let      
n

tnttttt

Zx 6

5

555444333222111000 ∈=

− 876

L

876

L

876

L

876

L

876

L

876

L , where






=

6

n
t , then  

 
dL(x,00… 0) = n+3t, dL(x,11...1) =2n-3t,  dL(x, 22… 2) =3n-9t,  dL(x, 33…. 3) = 2n-2t,                                                                      
 

dL(x,44…. 4) = n+3t and dL(x,55…. 5) = 9t. Therefore rL(
βC )≥min{n+3t,2n-3t,3n-9t,9t}

2

3n
≥  and 

rL(
βC ) = 

2

3n
. 

 
The above similar arguments can be used to compute the covering radius of Euclidean weight and 
Chinese Euclidean weight for the  α

 
type, β

 
type and γ  type codes over Z6 (Euclidean weight of 

Z6 of 0 is 0, 1 and 5 are 1, 2 and 4 are 4 and 3 is 9 and Chinese Euclidean weight of Z6 of 0 is 0, 1 
and 5 are 1, 2 and 4 are 3 and 3 is 4). We have the following theorem 

 

Theorem 3. 2. 
 

                     rE(
αC ) =

2

9n ,   
3

11
)(2

n
Crn E ≤≤ γ

  and  
6

19
)(

n
CrE =β

. 
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Theorem 3. 3. 
 

                     rCE(
αC ) = n2 ,   nCr

n
CE 2)(

2

3
≤≤ γ

    and  .2)( nCrCE =β
. 

In order to determine the covering radius of Z6 two blocks each of size n repetition code 

BRep2n: [2n, 1, n, 2n, 4n, n] generated by ]333111[
876

L

876

L

nn

G = . We have following 

theorem  
 

Theorem 3. 4. 

Let C be a code over Z6 generated by the matrix ]333111[
876

L

876

L

nn

G = , then  rL(BRep2n) = 

3n, rE({BRep2n) = 
6

46n
 and rCE(BRep2n)=4n.  

Proof. 
              
By Theorem 3.1, the Proposition 2.1 and the given generator matrix G, we get 
 

rL({BRep2n) ≥  3n                                                       (3.1) 
 

For the reverse inequality, let x=(v|w)
 

n
Z

2

6∈  and let us take in v, 0 appears r0 times,  

1 appears r1 times, 2 appears r2 times, 3 appears r3 times, 4 appears r4 times and 5 appears 
r5times and  in w, 0 appears s0 times, 1 appears s1 times, 2 appears s2 times, 3 appears s3 

times, 4 appears s4 times and 5 appears s5 times with .
5

0

5

0

∑∑
==

==
i

i

i

i snr  Then dL( x,c0)= 

2n-r0+r2+2r3+r4-s0+s2+2s3+s4, dL(x, c1)= 2n-r1+r3+2r4+r5-s3+2s0+s1+s5,dL( x,c2)= 2n-
r2+r0+r4+2r5-s0+s2+2s3+s4, dL( x,c3)=2n-r3+2r0+r1+r5-s3+2s0+s1+s5, dL( x,c4)= 2n-
r4+r0+2r1+r2-s0+s2+2s3+s4 and dL( x,c5) = 2n-r5+r1+2r2+r3-s3+2s0+s1+s5. 
 
We get 
 
dL(x, BRep2n) = min{dL( x,c0), dL( x,c1), dL( x,c2), dL(x,c3), dL(x,c4), dL(x,c5)}  

       
≤ {2n-r0+r2+2r3+r4-s0+s2+2s3+s4+ 2n-r1+r3+2r4+r5-s3+2s0+s1+s5+ 

                      2n- r2+r0+r4+2r5-s0+s2+2s3+s4+ 2n-r3+2r0+r1+r5-s3+2s0+s1+s5+ 
                      2n-r4+r0+2r1+r2-s0+s2+2s3+s4+2n-r5+r1+2r2+r3-s3+2s0+s1+s5}/6. 
 

Therefore, dL(x, BRep2n)
 

n3≤ .  Thus   rL({BRep2n) ≤  3n                                   (3.2) 
 

By the Equations (3.1) and (3.2), so .3)Re( 2
npBr

n

L =  

Similarly, rE(BRep2n) =
 6

46n
 and  rCE(BRep2n) = 4n. 
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One can also define a Z6 codes of three blocks each of size n repetition code BRep3n:[3n, 

1, 2n, 4n, 8n, 6n] generated by ].333222111[
876

L

876

L

876

L

nnn

G =  The proof of the theorem 3. 5 

and 3. 6 is similar to the theorem 3. 4, we can state following  

Theorem 3. 5. 

Let C be a code over Z6 generated by the matrix ].333222111[
876

L

876

L

876

L

nnn

G = then 

1 . 4n ≤  rL(BRep3n) 
2

9n
≤ , 

2.  ≤
3

29n
 rE(BRep3n) 3

34n
≤  and 

3. 
6

37
)Re(

2

11 3 n
pBr

n n

CE ≤≤
. 

 
In Z6, the four blocks each of size n repetition code BRep4n: [4n, 1, 2n, 6n, 12n, 8n] 

generated by ].444333222111[
876

L

876

L

876

L

876

L

nnnn

G = We have following theorem  

 

Theorem 3. 6.  

Let C be a code over Z6 generated by the matrix ],444333222111[
876

L

876

L

876

L

876

L

nnnn

G = then 

1. 5n ≤  rL(BRep4n) 3

19n
≤ , 

2. 
3

45
)Re(

3

38 4 n
pBr

n n

E ≤≤  and  

3. 7n ≤  rCE(BRep4n) 6

49n
≤

. 

 

In order to determine the covering radius of Z6 codes of the five blocks each of size n 
repetition code BRep5n: [5n, 1, 3n, 8n, 16n, 12n] generated by  
 

                                        ].555444333222111[
876

L

876

L

876

L

876

L

876

L

nnnnn

G =   
We have 
 

 

Theorem  3. 7. 

Let C be a code generated by the matrix ].555444333222111[
876

L

876

L

876

L

876

L

876

L

nnnnn

G =   
 

Then, 
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1. 
6

47
)Re(

2

13 5 n
pBr

n n

L ≤≤ , 

2. 6

109
)Re(

6

89 5 n
pBr

n n

E ≤≤  and  

3.     9n ≤  rCE(BRep5n) 6

55n
≤  . 

The two different length of Block repetition code of size m and n is BRepm+n: [m+n, 1, m, 
min {2m,m+2n}, min {4m, 4m+6n}, min{3m,3m+2n}] generated by  

]333111[
876

L

876

L

nm

G = . We have the following theorem 
 

Theorem  3. 8. 
 

• 
 

≤
+

2

33 nm
 rL(BRepm+n) 

2

43 nm +
≤  

• rE(BRepm+n)  = 
6

2719 nm +
 and  

• rCE(BRepm+n) = 2m+2n.$  
 

Proof. 

 
By theorem 3.1 and by the above generator matrix  
 

                              rL(BRepm+n)  
2

33

2

3

2

3 nmnm +
=+≥                                             (3.3) 

 

Let z = ( x | y) nm
Z

+∈ 6

 
where x m

Z 6∈  and y n
Z 6∈ . Let us take x has m0 times 0 as 

coordinates, m1 times 1 as coordinates, m2 times 2 as coordinates m3 times 3 as 
coordinates 
m4 times 4 as coordinates and m5 times 5 as coordinates and y has n0 times 0 as 
coordinates, n1times 1 as coordinates, n2 times 2 as coordinates n3 times 3 as coordinates 

n4 times 4 as coordinates and n5 times 5 as  coordinates such that ∑
=

=
5

0i

i mm
 

and 

∑
=

=
5

0i

i nn  . Then by the above Matrix, the code is C= {c0= (00....0 00....0), c1=(11....1  3 

3.... 3),c2=(2 2.... 2  0....0),  c3 = (3 3.... 3  3 3..... 3), c4= (4 4 ..... 4  0 0 .... 0), c5=(5 5.... 5 
3 3 ... 3)}. 
                        dL(z,c0) = wtL(z-c0) = wtL((x|y)-c0) = wtL(x-c0)+wtL(y-c0) 
                                     = m1+2 m2+3m3+4 m4+5m5+n1+2 n2+3 n3+4 n4+5n5,  since the 
Lee weight of  2, 4 is 2 and 3 is 3 and 1, 5 is 1. 
Thus          dL(z,c0) = m+n-m0+m2+2m3+m4-n0+n2+2n3+n4. 
Similarly,  dL(z,c1) = m+n-m1+m3+2m4+m5 -n3+2n0+n1+2n5, 
                  dL(z,c2) = m+n-m2+m0+1m4+2m5 -n0+n2+2n3+n4, 



International Journal on Information Theory (IJIT) Vol.5, No.2, April 2016 

8 

 

                  dL(z,c3) = m+n-m3+2m0+m1+2m5 -n3+2n0+n1+2n5, 
                  dL(z,c4) = m+n-m4+m0+2m1+m2-n0+n2+2n3+n4 and  
                  dL(z,c5) = m+n-m5+m1+2m2+m3 -n3+2n0+n1+2n5.   
Therefore, 
 
dL(z, BRepm+n)

 
≤  {dL( z,c0)+dL( z,c1)+dL( z,c2)+dL( z,c3)+dL( z,c4})+dL( z,c5)}/6 

                          =  { m+n-m0+m2+2m3+m4-n0+n2+2n3+n4 + m+n-m1+m3+2m4+ 
                                m5- n3+2n0+n1+2n5 + m+n-m2+m0+1m4+2m5 -n0+n2+2n3+ 
                                n4 +m+n-m3+2m0+m1+2m5 -n3+2n0+n1+2n5  + m+n-m4+m0+ 
                                2m1+m2- n0+n2+2n3+n4 +m+n-m5+m1+2m2+m3 -n3+2n0+n1+2n5}/6 

                       
dL(z, BRepm+n)

  
= m+n+{3m+3n+3n5}/6 

                          = m+n+3m+3n+3n/6, since n5 ≤  n 
dL(z, BRepm+n)  = {3m+4n}/2. 
Thus rL(BRepm+n)

 
≤ {3m+4n}/2                                                            (3.4) 

 
From equation (3.3) and (3.4), {3m+3n}/2 ≤  rL({BRepm+n)

 
≤ {3m+4n}/ 2.  Similar 

arguments of above, we have rE(BRepm+n)= {19m+27n}/6 and rCE(BRepm+n)=2m+2n. 
 
In a three different Block repetition code of length is m, n  and o is  BRepm+n+o: [m+n+o, 
1, 2m, min{4m, 2m+2n+2o}, min{8m, 8m+4n+4o},  min{6m, 6m+n+o}] generated by 

}

]3332..22111[
876

L

876

L

onm

G =  . We have the following theorem 

 

Theorem  3.9. 
 

• {m+2n+2o}/2 ≤  rL(BRepm+n+o) ≤ {9m+10n+9o}/ 6, 

• {13m+9n+12o}/6 ≤  rE(BRepm+n+o) ≤ {13m+16n+15o}/6 and  

• 2m+{3n}/2+2o ≤  rCE(BRepm+n+o) ≤  2m+2n+2o. 
 

Four different Block repetition code of length are m, n, o and p: BRepm+n+o+p: [m+n+o+p, 
1, 2m, min{6m,2m+2n+2o+2p},min{12m, 12m+2n+2o+2p}, min {8m, 
3m+2n+2o+2p}]generated by 

                                       ]4443332.22111[
876

L

876

L

876

L

876

L

ponm

G = . We have the following  
 

Theorem 3.10. 

 

• m+n+o+p ≤  rL(BRepm+n+o+p) ≤ {9m+10n+9o+10p}/6, 

• {13m+12n+9o+12p}/6 ≤  rE(BRepm+n+o+p) ≤ {13m+16n+15o+16p}/6 and  

• 2m+{3n}/2+2o+{3p}/2 ≤  rCE(BRepm+n+o+p) ≤  2m+{13n}/6+2o+2p. 
  
             The five different Block repetition code of length of size are m, n, o, p and q,  
BRepm+n+o+p+q: [m+n+o+p+q, 1, 3m, min{8m, 2m+2n+2o+2p+q}, min{16m, 4m+4n+4o 
+4p+3q}, min {12m, 3m+3n+3o+2p+1q}] generated by    
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                                       ]555444333222111[
876

L

876

L

876

L

876

L

876

L

qponm

G =  . We have 
 

Theorem  3.11. 

 

• {3m+2n+3o+2p+3q}/2 ≤  rL({BRepm+n+o+p+q) ≤ {9m+10n+9o+10p+9q}/6, 

• {19m+12n+27o+12p+19q}/6 ≤  rE(BRepm+n+o+p+q) ≤ {19m+22n+27o+22p+19q}/6 
and  

• {4m+3n+4o+3p+4q}/2 ≤  rCE(BRepm+n+o+p+q) ≤ 2m+2n+2o+2p+2q. 
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