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ABSTRACT 

 

Skew constacyclic codes are displaying vital role in the field of coding theory. This 

paper is mainly focused on skew –α constacyclic codes over R = Fq + uFq + vFq + 

uvFq, with u2 = v2 = 1, uv = vu, q = 3m, and α  is an unit of R  fixed by the 

authomorphism θ. It is briey derived as well that the Gray map of skew cyclic code of 
length n over R is skew quasicyclic code of length 4n over Fq of index 4. 

Furthermore, the decomposition of a skew  α constacyclic codes over R are also 

determined. A complete analysis about the relationship between skew α constacyclic 

code and its dual is also carried out. 
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1. INTRODUCTION 
 

Skew  cyclic  codes  over  finite  ring  has  gotten  much attention  of  the  researchers  
since  after the   first   idea   of   skew  cyclic   codes   which  is  a  natural  

generalization  of  cyclic codes  on  skew   polynomial  ring  ( [ 1 ] - [ 8 ] ) .  L.F.T .  

Cuitio  et  al .  determined  some  basic 
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properties of skew generalized cyclic (GC) codes over finite fields ([9]). Furthermore,

T. Yao et al. also studied the decomposition of skew cyclic code over the finite chain

ring H = Fq + uFq + vFq + uvFq with u2 = u, v2 = v, uv = vu, q = pm, with

p odd prime ( according to Frobenius automorphism)([10]). Later on, H. Islam et

al. introduced the Frobenius automorphism over H ([11]). Similarly, A. Dertli et

al. defined the Gray map from
Fq[u, v]

(u2 − 1, v2 − 1, uv − vu)
to F 4

q , and determined the

decomposition of skew cyclic code over the ring
Fq[u, v]

(u2 − 1, v2 − 1, uv − vu)
([12]).

Fq [u,v]
(u2−1,v2−1,uv−vu) , where q = 3m, and is also proved that the Gray

image of skew cyclic code of length n over
Fq[u, v]

(u2 − 1, v2 − 1, uv − vu)
is skew quasi-

cyclic code over Fq having length 4n and index 4. This paper is organized as follow:

In section 2, we will give some properties about the ringR =
Fq[u, v]

(u2 − 1, v2 − 1, uv − vu)
,

and recall some auxiliary results in coding theory. Section 3 define the Gray map,

and describe the Fq-image of skew cyclic code over R, and characterization of skew

constacyclic codes over R is presented in section 4.

2 Preliminaries

Let q = 3m and R =
Fq[u, v]

(u2 − 1, v2 − 1, uv − vu)
which is isomorphic to Fq + uFq +

vFq + uvFq, with u2 = v2 = 1. The ring has four maximal ideals with index of

stability 1, which are given in the following:

m1 =< u+ 1, v + 1 >, m2 =< u+ 1, v − 1 >,

m3 =< u− 1, v + 1 >, and m4 =< u− 1, v − 1 >.

And the map ψ defined by

ψ : R −→ R
m1
× R

m2
× R

m3
× R

m4

∼= F 4
q x 7→ (x+m1, x+m2, x+m3, x+m4)

3
In this article we have described the skew (a + a u + a v + a uv)-constacyclic

 code over the ring

International Journal on Information Theory (IJIT) Vol.9, No.1/2, April 2020

 2



is a canonical isomorphism. According to A.Dertli et al. ([12]) we recall the fol-

lowing definitions

Definition 2.1. The Frobenius automorphism θ acting on Fq defined by θ(y) = yp
t

for y ∈ Fq induces on automorphism of the ring R as: ∀α = r1+r2u+r3v+r4uv ∈ R,

θ(α) = rp
t

1 + rp
t

2 u + rp
t

3 v + rp
t

4 uv. then by the help of this R-authomorphism, we

can define a ring as :

R[y, θ] = {r0 + r1y + r2y
2 + · · ·+ ynrnn : ri ∈ R}, 1 ≤ i ≤ n with the multiplication

denoted by • such that (ryi) • (lyj) = rθi(li+j), and by the usual addition of

polynomials ring, R[y, θ] is called skew polynomial ring which is non-commutative

unless θ is identity.

Definition 2.2. The linear code C of length n over R is called skew α-constacyclic

with the automorphism θ, where α is unit of R fixed by θ if ∀r = (r1, r2, · · · , rn) ∈ C

⇒ τ(r) = (αθ((rn)), θ(r1), · · · , θ(rn−1)) ∈ C. In particular, if α = 1, then C is

called skew cyclic codes, and if α = −1 then C is said to be skew negacyclic code

over R.

While on another side, if α = 1, assuming τ(r) = (θ((rn)), θ(r1), · · · , θ(rn−1)) =

σ(r).

Definition 2.3. Let C be a linear code of length ln over Fq. If πl(C) = C, since

πl defined by

πl(r
1 | r2 | · · · | rl) = (σ(r1) | σ(r2) · · · | σ(rl)), for ri ∈ Fnq , 1 ≤ i ≤ l

, then C is named by skew quasi-cyclic code.

Definition 2.4. Set C⊥ = {~y = (y1, · · · , yn) ∈ Rn|
∑n

i=1 ziyi = 0,∀~z = (z1, · · · , zn) ∈

C}, then C⊥ the dual code of C.
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3 Gray map and Gray image of skew cyclic code over

R

According to the fundamental result on the decomposition of modules, we have the

following lemma:

Lemma 3.1. ([13]) Let R be a finite ring and I1, I2, · · · , In be ideals of R. The

following statements are equivalent:

• R = I1
⊕
I2

⊕
, · · · ,

⊕
In.

• There exists a unique family of idempotents (βi)1≤i≤n such that β2i = βi, βiβj = 0

for i 6= j,
∑n

i=1 βi = 1 and Ii = βiR, ∀i, j ∈ {1, · · · n}.

By [12] we recall the following family idempotent is given by β1, β2, β3, β4 where,

β1 = 1 + u+ v + uv, β2 = 1 + u− v − uv,

β3 = 1− u+ v − uv, β4 = 1− u− v + uv.

Any element of a of R can be written as

a = a1 + a2u+ a3v + a4uv =

β1(a1+a2+a3+a4)+β2(a1+a2−a3−a4)+β3(a1−a2+a3−a4)+β4(a1−a2−a3+a4).

Let C be a linear code of length n over R, and :

C1 = {a1 + a2 + a3 + a4 ∈ Fnq ||a1 + a2u+ a3v + a4uv ∈ C},

C2 = {a1 + a2 − a3 − a4 ∈ Fnq |a1 + a2u+ a3v + a4uv ∈ C},

C3 = {a1 − a2 + a3 − a4 ∈ Fnq |a1 + a2u+ a3v + a4uv ∈ C},

C4 = {a1 − a2 − a3 + a4 ∈ Fnq |a1 + a2u+ a3v + a4uv ∈ C}.

Assume that C = β1C1 + β2C2 + β3C3 + β4C4.

Lemma 3.2. if G1, G2, G3, andG4 are generator matrices of Linear codes C1, C2, C3, andC4

respectively, then the generator matrix of the linear code C which is defined above

has the following generator matrix
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
β1G1

β2G2

β3G3

β4G4


Let η be the map:

η : R[y,θ]
(yn−1) →

R[y,θ]
yn+1)

h(y) 7→ h(−y)

Theorem 3.3. if n is odd then η is a left R-module isomorphism.

Proof. Firstly, we have to prove that η is well-defined.

If h1(y) ≡ h2(y) (mod )(yn − 1) ⇐⇒ ∃p(y) ∈ R[y, θ]

⇐⇒ h1(y) = h2(y) + p(y)(yn − 1)

⇐⇒ h1(−y) = h2(−y) + p(−y)((−y)n − 1)

⇐⇒ η(h1(y)) ≡ η(h2(y)) (since n is odd). Hence it can be concluded that η is

well-defined.

Secondly, η is R-module monomorphism injective, and R[y,θ]
(yn−1) ,

R[y,θ]
(yn+1) are finite rings

which implies that η is a left R-module isomorphism.

By theorem 3.3 one can obtain the below corollary:

Corollary 3.4. suppose that C is a linear code of odd length n. Then C is skew-

cyclic code with respect to the automorphism θ over R if and only if η(C) is skew-

negacyclic code over R.

Proof. if C is skew-cyclic code over R ⇔ C is an ideal of R[y,θ]
(yn−1) since n is odd (by

3.3) η(C) is also an ideal of R[y,θ]
yn+1) ⇔ η(C) is skew-negacyclic code over R.

Lemma 3.5. Let fπ the permutation version of Gray map from Rn to F 4n
q given

by

fπ(r = (r0, r1, · · · , rn−1)) = (~a,~b,~c, ~d) with

International Journal on Information Theory (IJIT) Vol.9, No.1/2, April 2020

               5



~a = (r00 + r10 + r20 + r30, r
0
1 + r11 + r21 + r31, · · · , r0n−1 + r1n−1 + r2n−1 + r3n−1),

~b = (r00 + r10 − r20 − r3i , r01 + r11 − r21 − r31, · · · , r0n−1 + r1n−1 − r2n−1 − r3n−1),

~c = (r00 − r10 + r20 − r3i , r01 − r11 + r21 − r31, · · · , r0n−1 − r1n−1 + r2n−1 − r3n−1),

~d = (r00 − r10 − r20 + r30, r
0
1 − r11 − r21 + r31, · · · , r0n−1 − r1n−1 − r2n−1 + r3n−1)), where

ri = r0i + r1i u+ r2i v + r3i uv ∈ R for 0 ≤ i ≤ n− 1.

Let π4 be the operator shift of quasi-cyclic, and σ is the skew-cyclic shift which are

defined in preliminary. Then we have fπσ = π4fπ

Proof. Let r = (r0, r1, · · · , rn−1) ∈ R such that

ri = r0i + r1i u+ r2i v + r3i uv, for 0 ≤ i ≤ n− 1

fπσ(r) = fπ(θ(rn−1), θ(r0), · · · , θ(rn−2), with θ(ri) = r0i
pt + r1i

ptu+ r2i
ptv + r3i

ptuv

for 0 ≤ i ≤ n− 1.

On another side π4fπ(r) = π4(r
0
0 + r10 + r20 + r30, r

0
1 + r11 + r21 + r31, · · · , r0n−1 + r1n−1 +

r2n−1 + r3n−1,

r00 + r10 − r20 − r3i , r01 + r11 − r21 − r31, · · · , r0n−1 + r1n−1 − r2n−1 − r3n−1,

r00 − r10 + r20 − r3i , r01 − r11 + r21 − r31, · · · , r0n−1 − r1n−1 + r2n−1 − r3n−1,

r00 − r10 − r20 + r30, r
0
1 − r11 − r21 + r31, · · · , r0n−1 − r1n−1 − r2n−1 + r3n−1) = fπσ(r)

Theorem 3.6. A linear code C of length n is skew cyclic over R if and only if

fπ(C) is a skew quasi-cyclic code of length 4n over Fq of index 4.

Proof. Let C be a linear code of length n. Suppose that C is skew cyclic code i.e

σ(C) = C then fπ(σ(C)) = fπ(C).By lemma 3.5 we have π4(fπ(C)) = fπ(σ(C)),

which implies that π4(fπ(C)) = fπ(C), i.e, fπ(C) is skew quasi-cyclic code of length

4n.

Conversely, let fπ(C) be a skew quasi-cyclic code of index 4. By applying lemma

3.5 which gives us π4fπ(C) = fπ(C), we can get fπσ(C) = fπ(C).

As fπ is injective, then σ(C) = C, which implies C is skew cyclic code.
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4 Skew constacyclic codes over R

In this part we have described the decomposition of skew α-constacyclic codes over

R, since α is unit of R fixed by θ.

S. Jitman et al.([14]) have proved that a linear code of length n is skew λ-constacyclic

code over finite ring M if and only if the skew representation polynomial of C is a

left ideal of the ring M [x,Θ]
(xn−λ) .

Any element α0 + α1u+ α2v + α3uv ∈ R can be uniquely expressed as

α0 + α1u+ α2v + α3uv = (α0 + α1 + α2 + α3)β1 + (α0 + α1 − α2 − α3)β2 + (α0 −

α1 + α2 − α3)β3 + (α0 − α1 − α2 + α3)β4.

Now the decomposition of skew α-constacyclic codes over R can be given as follow-

ing

Theorem 4.1. Let α = α = α0 + α1u + α2v + α3uv be a unit of R fixed by θ.

suppose that C is a linear code over R can be written as a direct sum of linears

codes as follow:

C = β1C1 ⊕ β2C2 ⊕ β3C3 ⊕ β4C4, where Ci, for 1 ≤ i ≤ 4 are linear codes over Fq.

Then C is skew α-constacyclic code with automorphism θ over R if and only if C1

is skew [α0+α1+α2+α3]-constacyclic code over Fq, C2 is skew [α0+α1−α2−α3]-

constacyclic code over Fq, C3 is skew [α0−α1 +α2−α3]-constacyclic code over Fq,

and C4 is skew [α0 − α1 − α2 + α3]-constacyclic code over Fq.

Proof. Let r = (r0, r1, · · · , rn−1) ∈ C such that ri = β1ai + β2bi + β3ci + β4di, for

0 ≤ i ≤ n− 1.

Let a = (a0, a2, · · · , an−1), b = (b0, b2, · · · , bn−1), c = (c0, c2, · · · , cn−1),

and d = (d0, d2, · · · , dn−1) then we have a ∈ C1, b ∈ C2, c ∈ C3, and d ∈ C4.

Suppose C1 is skew [α0 +α1 +α2 +α3]-constacyclic C2 is skew [α0 +α1−α2−α3]-

constacyclic, C3 is skew [α0−α1+α2−α3]-constacyclic, C4 is skew [α0−α1−α2+α3]-

constacyclic codes over Fq.
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Then τ(r) = ([α0 + α1u+ α2v + α3uv]θ(rn−1), θ(r0), · · · , θ(rn−2))

= ([α0 + α1 + α2 + α3]θ(an−1), θ(a0), · · · , (an−2))β1

+ [α0 + α1 − α2 − α3](θ(bn−1), θ(b0), · · · , θ(bn−2))β2

+ ([α0 − α1 + α2 − α3]θ(cn−1), θ(c0), · · · , θ(cn−2))β3

+ ([α0 − α1 − α2 + α3]θ(dn−1), θ(d0), · · · , θ(dn−2))β4).

So τ(r) ∈ C , for r ∈ C.Then C is skew α-constacyclic code over R. Conversely, let

a = (a0, a2, · · · , an−1) ∈ C1, b = (b0, b2, · · · , bn−1) ∈ C2, c = (c0, c2, · · · , cn−1) ∈ C3,

and d = (d0, d2, · · · , dn−1) ∈ C4.

Suppose that ri = β1ai + β2bi + β3ci + β4di, for 0 ≤ i ≤ n − 1. Since C is skew

α-constacyclic, then

τ(r) ∈ C =⇒ ([α0 + α1 + α2 + α3]θ(an−1), θ(a0), · · · , θ(an−2)) ∈ C1,

[α0 + α1 − α2 − α3](θ(bn−1), θ(b0), · · · , θ(bn−2)) ∈ C2,

([α0 − α1 + α2 − α3]θ(cn−1), θ(c0), · · · , θ(cn−2)) ∈ C3, and

([α0 − α1 − α2 + α3]θ(dn−1), θ(d0), · · · , θ(dn−2))β4) ∈ C4.

We can conclude that C1 is skew ([α0 +α1 +α2 +α3]-constacyclcic code, C2 is skew

([α0+α1−α2−α3]-constacyclcic code, C3 is skew ([α0−α1+α2−α3]-constacyclcic

code, and C4 is skew ([α0 − α1 − α2 + α3]-constacyclcic code over Fq.

Lemma 4.2. ([15]) Let R be a finite ring and R× is its group of units.

If R can be written as a direct sum as following R = R1 ⊕ R2 ⊕ · · · ⊕ Rm of rings

Ri for ≤ i ≤ m, then R× will be written as R× = R×1 ⊕R
×
2 ⊕ · · · ⊕R

×
k .

Then by Lemma 4.2 we have concluded the following corollary:

Corollary 4.3. Let α = α0 +α1u+α2v+α3uv be an element of R. Then α can be

a unit in R if and only if (α0+α1+α2+α3), (α0+α1−α2−α3), (α0−α1+α2−α3),

and (α0 − α1 − α2 + α3) are non zero elements of Fq.

By Lemma [3.1] in [14].
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Corollary 4.4. Let C = β1C1⊕β2C2⊕β3C3⊕β4C4 where Ci, 1 ≤ i ≤ 4 are linear

codes over Fq. Then C is skew α-constacyclic code with automorphism θ. Then

its dual C⊥ = β1C
⊥
1 ⊕ β2C⊥2 ⊕ β3C⊥3 ⊕ β4C⊥4 is skew α−1-constacyclic codes over

R, where C⊥1 , C⊥2 , C⊥3 , and C⊥4 are skew [α0 + α1 + α2 + α3]
−1-constacyclic, skew

[α0 + α1 − α2 − α3]
−1-constacyclic, skew [α0 − α1 + α2 − α3]

−1-constacyclic, and

skew [α0 − α1 − α2 + α3]
−1-constacyclic codes over Fq of length n.

Proof. we have α is an element of R then a = a1 +a2u+a3v+a4uv = β1(a1 +a2 +

a3+a4)+β2(a1+a2−a3−a4)+β3(a1−a2+a3−a4)+β4(a1−a2−a3+a4). Since α is

an unit of R wich equivalent to (a1+a2+a3+a4), (a1+a2−a3−a4), (a1−a2+a3−a4),

and (a1 − a2 − a3 + a4) are also units.

we have C is skew α-constacyclic code⇐⇒ (by theorem 4.1) C1 is skew ([α0 +α1 +

α2 + α3]-constacyclcic code, C2 is skew ([α0 + α1 − α2 − α3]-constacyclcic code,

C3 is skew ([α0 − α1 + α2 − α3]-constacyclcic code, and C4 is skew ([α0 − α1 −

α2 + α3]-constacyclcic code over Fq. And by Lemma [3.1] in [14] ⇐⇒ C⊥1 is skew

[α0+α1+α2+α3]
−1-constacyclic, and C⊥2 is skew [α0+α1−α2−α3]

−1-constacyclic,

C⊥3 skew [α0−α1 +α2−α3]
−1-constacyclic, and C⊥4 is skew [α0−α1−α2 +α3]

−1-

constacyclic codes over Fq of length n. By aplying again theorem 4.1 we have C⊥

is skew α−1-constacyclic code over R.

5 Conclution

In this paper, we have introduced the linear codes of length n over R = Fq +uFq +

vFq +uvFq, where u2 = v2 = 1, and q = 3m. It has also been proved that the Gray

image of skew cyclic code of length n over R is skew quasi-cyclic code of length 4n

over Fq.

It has also shown in detail that each linear code over R can be defined by β1C1 ⊕

β2C2⊕β3C3⊕β4C4(where Ci,1 ≤ i ≤ 4 are linear codes of length n over Fq ) is skew

α-constacyclic code if and only if C1 is skew [α0 +α1 +α2 +α3]-constacyclic, C2 is
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skew [α0 + α1 − α2 − α3]-constacyclic, C3 is skew [α0 − α1 + α2 − α3]-constacyclic,

Fq and C4 is skew [α0 − α1 − α2 + α3]-constacyclic codes over Fq.
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