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ABSTRACT 

 
The aim of this paper is to introduce a comparison between cell tracking using active shape model (ASM) 

and active appearance model (AAM) algorithms, to compare the cells tracking quality between the two 

methods to track the mobility of the living cells. Where sensitive and accurate cell tracking system is 

essential to cell motility studies. The active shape model (ASM) and active appearance model (AAM) 

algorithms has proved to be a successful methods for matching statistical models. The experimental results 

indicate the ability of (AAM) method to give better accuracy for tracking the mobility of the WBC than 

(ASM) method. 
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1. INTRODUCTION    
 

Cell tracking and segmentation with high accuracy is important step in the cell motility studies. 

Understanding the mechanisms of cell motility is essential part for curative and preventative 

treatments to many diseases. For instance, tracking the number and velocity of rolling leukocytes 

is essential to understand and successfully treat inflammatory diseases [15]. Sensitive tracking for 

moving cells is important to do mathematical modeling to cell locomotion. Moreover, Zimmer 

[17] modified the snake model to track the movement of the cells and segment the first frame. 

Another research by Mukherjee [19] he developed a technique to handle segmentation process 

and tracking problem simultaneously. Li [20] used a technique with two stages; the first one is a 

tracker and a filter to detect the cell and also the cells which move in and out of the image area. 

Coskun [12] used imaging data to solve the inverse modeling problem to determine the mobility 

analysis of the cells. Recently, a number of researchers have been created automated techniques 

to track and detect the cells mobility.  Segmentation is an essential part in many signal processing 

techniques and its applications. Texture analysis is important in many areas such as image 

processing, determination of the object shape, scene analysis.  

 

The process of segmentation depends on the determination of the best positions of the points 

which represent the image. The purpose of image segmentation is to partition an image into 

meaningful regions based on measurements taken from the image and might be grey level, colour, 
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texture, depth or motion. Usually the process to determine the image starts with image 

segmentation as initial step. The goal of image segmentation is to cluster pixels into salient image 

regions, i.e., regions corresponding to individual objects, surfaces, or natural parts of objects.  

 

Active Shape Models (ASM) was originally designed as a method for locating given shapes or 

outlines within images (Cootes et al., 2000). An ASM-based procedure starts with the base shape, 

approximately aligned to the object, iteratively distorts it and refines its pose to obtain a better fit. 

It seeks to minimize the distance between model points and the corresponding pixels found in the 

image. 
 

Cootes et al. (2002) introduces the Active Appearance Models (AAM) algorithm. The original 

algorithm was described by Edwards’s et.al. (1998). The Active Appearance Model (AAM) 

algorithm has been widely used for matching statistical models of appearance to image data. The 

models, trained on suitably annotated examples, can synthesize new images of the objects of 

interest. To match them to new images one seeks the model parameters, which minimize the 

difference between the target image and the synthesized image. The AAM essentially learns the 

relationship between the residual differences in such a match and the parameter displacements 

required to correct the current offset from the optimal position. 
 

2. RELATED WORK 
 

In recent years, there has been significant research efforts toward the development of automated 

methods for segmentation and cell tracking for living cells as in [1][2][3][4][5]. Most of the time, 

images from microscopic studies are corrupted during the recording process and due to the noise 

from the electronics devices, which affect the quality of the image. 

 
 

Cell tracking with good accuracy is important in microscopic imaging studies. For instance, 

Image analysis of leukocytes cells is essential part for curative and preventative treatments to 

many diseases and also important to understand and successfully treat inflammatory diseases as 

in Ray et al. [23]. Sensitive tracking for moving cells is important to do mathematical modelling 

to cell locomotion. Zimmer [17] modified the Active Contour model to detect the mobility of the 

moving cells and also handle the cell division by providing an initial segmentation for the first 

frame. Mukherjee et al. [19] developed an algorithm by using threshold decomposition computed 

via image level sets to handle tracking problem and segmentation simultaneously. Li [20] 

developed an algorithm with two levels, a motion filter and a level set tracker to handle the cell 

detection and the cells that move in and out of the image. Coskun et al. [12] used imaging data to 

solve the inverse modelling problem to determine the mobility analysis of the cells. Recently 

there have been a number of researchers attempt to create automated algorithms to detect and 

track the cells from microscopic images as in Mélange [6]; and Mignotte [10]. 

 

This paper discusses the tracking cell accuracy as important task in many biological studies to 

understand the cell behaviour and the way in which cells interact with the world around them. 

One of the major goals of tracking the mobility of living cells is to find the best way to increase 

segmentation and  tracking accuracy under weak image boundaries, over and under segmentation, 

which the most cell tracking challenge problems and responsible for lacking accuracy in cell 

tracking techniques. 
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3. ALGORITHM 
 
In this section, a comparison between tracking video sequences using AAM model and ASM 

model, to investigate the tracking quality between the two methods. In order to achieve that, a set 

of video sequences of 32 live cells previously collected and computed manual by Jung et al. 

(1998), is used to test the ability of the two models to track the video sequences of WBC frames, 

and making a comparison between the tracking quality of the two methods. 

 
3.1    Active Shape Model-Based Tracking (ASM) 
 

 

           A shape consisting of n points can be considered as one data point in 2n dimensional 

space. A classical statistical method for dealing with redundancy in multivariate data is the 

principal component analysis (PCA). PCA determines the principal axes of a cloud of n points at 

locations ix . The principal axes, explaining the principal variation of the shapes, compose an 

orthonormal basis equation as },...,,{ 21 nPPP=Φ , of the covariance matrix: 
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 It can be shown that the variance across the axis corresponding 

to the 
thi eigenvalue iλ  equals the eigenvalue itself. By deforming the mean shape x , using a 

linear combination of eigenvectors Φ , weighted by socalled modal deformation parameters b, 

and can generate an instance of the shape. Therefore, the new shape can be expressed in the 

following manner: .bxx Φ+=  By varying the elements of b and modify the shape. By applying 

constraints and ensure that the generated shape is similar to the mean shape from the original 

training data. Through applying limits of iλ3± to each element ib  of b, where iλ  is the 

variance of the 
th

i parameter ib  , and operate on plausible values of b. The deformation of the 

shape is constrained to a subspace spanned by a few eigenvectors corresponding to the largest 

eigenvalues. If all principal components are employed, ASM can represent any shape and no prior 

knowledge about the shape is utilized. 

 

Shape Alignment: Given two 2D shapes, 1x  and 2x  our aim is to determine the parameters of a 

transformation T, which, when applied to 2x  can best align it with 1x  and one to one point 

correspondence. During alignment and utilize an alignment metric that is defined as the weighted 

sum of the squares of the distances between corresponding points on the considered shapes, and 

choose the parameters t of the transformation T to minimize E: 
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where W is a diagonal matrix of weights { 1w , 2w ,..., nw }. Expressing tT  in the following form: 

 



International Journal of Information Technology Convergence and Services (IJITCS) Vol.6, No.4, August 2016 

20 

 

                                                                                  (3.2) 

 

where denoting )sin(),cos( θθ sasa yx ==  and can rewrite equation (3.20) in the following 
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Differentiating w.r.t. remaining parameters and equating to zero gives: 
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2 .,)(  The parameters xt , yt  , xa  and ya  constitute   a solution 

which best aligns the shapes. An iterative approach to find the minimum of square distances 

between corresponding model and image points is as follows: 

 

Step 1. Initialize shape parameter b to zero. 

Step 2. Generate the model instance .bxx Φ+=  
 

Step 3. Find the pose parameters using equation (3.20), which best map x to Y. 
 

Step 4. Invert the pose parameters and then use to project image pixels Y into the model 

coordinate frame: )(1
YTy t

−= . 
 

Step 5. Project y into the tangent plane to x  through scaling it by )./(:)./(1 ' xyyyxy = . 
 

Step 6. Update b to match 
'

y  as follows: )( ' xyb T −Φ= . 
 

Step 7. If not converged, repeat starting from step 2. 
 

Step 8. Repeat all steps until all frames of the image sequence are processed. The result as a 

function of time enable estimation of the position and deformation of the corresponding cells for 

each frame in the sequence and update shape and position.  
 

Step 9. Segmentation and tracking transforms the raw images into a file that encodes the 

boundaries of every cell at every time point, directly allowing computation of shape and motion 
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parameters. These extracted data for shape and position can be used to quantify parameters 

characterizing cell shape and motion. Segmentation and tracking transforms the raw images into a 

file that encodes the boundaries of every cell at every time point, and allow the computation of 

shape and motion of the cells. 

 

3.2    Active Appearance Model-Based Tracking 
 

In this subsection, Cootes et al. (2002) introduces the Active Appearance Models (AAM) 

algorithm. The original algorithm was described by Edwards’s et.al. (1998). The Active 

Appearance Model (AAM) algorithm has been widely used for matching statistical models of 

appearance to image data. The models, trained on suitably annotated examples, can synthesize 

new images of the objects of interest. To match them to new images one seeks the model 

parameters, which minimize the difference between the target image and the synthesized image. 

The AAM essentially learns the relationship between the residual differences in such a match and 

the parameter displacements required to correct the current offset from the optimal position. 

           

Statistical Models of Appearance: An appearance model can represent both the shape and texture 

variability seen in a training set. The training set consists of labeled images, where key landmark 

points are marked on each example object. Using the notation of Cootes et.al. (1998), the shape 

of an object can be represented as a vector x and the texture (grey-levels or colour values) 

represented as a vector g. The shape and texture are controlled by a statistical model of the form: 

 

ssbPxx +=                                                                                                                       (3.4) 

ggbPgg +=                                                                                                                     (3.5) 

 

where sb are shape parameters, gb  are texture parameters. Since often shape and texture are 

correlated and can take this into account in a combined statistical model of the form: 

 

cCb ss =                                                                                                                            (3.6) 

cCb gg =                                                                                                                           (3.7) 

 

The combined appearance model has parameters, c, controlling the shape and texture at the same 

time. Combining the equations (3.22, 3.23) and (3.24, 3.25) gives: 

 

cQxx s+=                                                                                                                       (3.8) 

 

cQgg s+=                                                                                                                      (3.9) 

 

where x   is the mean shape (in a normalized frame), g  the mean texture  and 
sQ , 

gQ  are 

matrices describing the modes of variation derived from the training set. To generate the positions 

of points in an image and use the following equation: 
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)(xTX t=                                                                                                                         (3.10) 

 

where x are the points in the model frame, X are the points in the image, and )(xTt  applies a 

global transformation with parameters t. For instance, in 2D, )(xTt  is commonly a similarity 

transform with four parameters describing the translation, rotation and scale. The texture in the 

image frame is generated by applying a scaling and offset to the intensities, )(gTg uim = where u 

is the vector of transformation parameters. AAM Tracking: The AAM algorithm is a method of 

rapidly matching an appearance model to an image. It is a form of gradient descent algorithm, in 

which the gradient is assumed to be fixed at all iterations, and can thus be estimated in advance 

from a training set. This allows efficient matching to take place, even when there are many model 

parameters. The original matching algorithm was first described by Edwards’s et.al. (1998) and 

expanded and refined by Cootes et.al. (2001).            Basic algorithm: The appearance model 

parameters, c, and shape transformation parameters, t, define the position of the model points in 

the image frame, X, which gives the shape of the image patch to be represented by the model. 

During matching the pixels in this region of the image, img , are sampled and projected into the 

texture model frame, )(
1

ims gTg
−

= . The current model texture is given by cQgg gm += . 

The difference between model and image (measured in the normalized texture frame) is giving by 

the equation (3.30): 

 

ms ggPr −=)(                                                                                                                 (3.11) 

 

where P are the parameters of the model, ).||( TTTT
utcP =  A simple scalar measure of 

difference is the sum of squares of elements of r, .)( rrPE
T=  In addition, Cootes et al., (2001) 

can be used to minimize and modify the parameters the following: 
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P

r

∂

∂
 is estimated by numeric differentiation, systematically displacing each parameter from the 

known optimal value on typical images and computing an  average  over  the training set. R is 

computed and used in all subsequent searches with the model. 

 

Basic AAM Search: Equation (3.30) can be used to suggest a correction to make in the model 

parameters based on a measured residual r. Given a current estimate of the model parameters, c, 

the pose t, the texture transformation u, and the image sample at the current estimate, img , one 

step of the iterative matching procedure is as follows: 

 

step1. Project the texture sample into the texture model frame using )(
1

ims gTg
−

=  

step 2. evaluate the error vector, ms ggr −= , and the current error, 
2|| rE =

 

step 3. compute the predicted displacements, )( PRrP −=δ  
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step 4. update the model parameters ,PkPP δ+→  where initially k=1, 

step 5. calculate the new points, X` and model frame texture 
,

mg  

step 6. sample the image at the new points to obtain 
,

img  

step 7. calculate a new error vector, ,,1, )( mimu ggTr −= −  

step 8. if Er ≤2, ||  then accept the new estimate, otherwise try at k=0.5, k=o.25 etc. 

 

This procedure is repeated until no improvement is made to the error, 
2, || r , and convergence is 

declared (or a maximum number of iterations is reached).  

 
Shape AAM: Cootes et.al. (1998),  proposed a variant on the AAM in which instead of the 

residuals driving the appearance model parameters, c, they could be used to drive the pose, t, and 

shape model parameters, sb , alone. The texture model parameters could then be directly 

estimated by fitting to the current texture, and rRdt t= , .rRdb ss =  The matching procedure 

modified as follows: 

step 1. Normalize the current texture sample to obtain sg . 

step 2. Fit the texture model to the sample using )( ggPb s

T

gg −= . 

step 3. Compute the residual as  ms ggr −= . 
 

step 4. Predict the pose and shape parameter updates using Edwards et al. (1998). 
 

step 5. Apply and test the updates as for the basic algorithm. 
 

Step 6. Repeat all steps until all frames of the image sequence are processed. The result  as a 

function of time enable estimation of the position and deformation of the corresponding cells for 

each frame in the sequence and update shape and position.   
 

Step7. Segmentation and tracking transforms the raw images into a file that encodes the 

boundaries of every cell at every time point, directly allowing computation of shape and motion 

parameters. These extracted data for shape and position can be used to quantify parameters 

characterizing cell shape and motion. Segmentation and tracking transforms the raw images into a 

file that encodes the boundaries of every cell at every time point, and allow the computation of 

shape and motion of the cells. 

 
These extracted data for shape and position can be used to quantify parameters characterizing cell 

shape and motion. Segmentation and tracking transforms the raw images into a file that encodes 

the boundaries of every cell at every time point, and allow the computation of shape and motion 

of the cells. 

 

3.3 Accuracy Performance Measure 
 

 

The performance of the enhanced cell tracking technique is measured by how well the system can 

track the WBC. Two methods are used to evaluate the enhanced technique.  
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• Percentage of frames tracked. If a computed cell center is within one cell radius of the 

manually observed cell center, then we consider that frame as tracked. The percentage is 

computed as the ratio of number of frames tracked to the total number of frames in the 

sequence.  

total

P
N

N
f =                                                                                                                         (3.13) 

 
 

where Pf  is the percentage of frames tracked,  N is the number of frames tracked, and totalN  is 

the total number of frames in the image sequence. 

 
• The second method is used to measure the performance of our enhanced technique is 

calculating the Root Mean Squared Error (RMSE) between the manual (ground truth) and 

the computed displacement. In addition, compare the RMSE achieved with the RMSE for 

the other methods (Jung et al., (1998), and also earlier observation of Ley et al., (1996)).  

The RMSE (in microns) describes how accurately the tracker tracks the cell as compared 

predicted (computed) to the actual (ground truth or manual) data. RMSE gives the standard 

deviation of the model prediction error.  

 

A smaller value indicates better model performance. The root mean square error (RMSE) is 

giving a sense of the predicted values error. Also how close the predicted values are to the actual 

values. The RMSE mathematical formula is giving by:  

 

n

XX
RMSE

n

i ipredictediactual∑ =
−

= 1

2

,, )(
                                                           (3.14)   

 
where Xactual is actual values and Xpredicted is predicted values, and i represent the current predictor, 

and n represents the number of predictors. The combination of the percentage of frames tracked 

and the RMSE yields the qualitative performance Ratings. 

 

3.4 Validation and Benchmarks 

 
 

To validation and evaluate the quality of an automated cell tracking procedure, a comparison 

have been made between the manually marked data, also known as ground-truth, of three video 

sequences protocols and the automated extracted data, to compare a computationally produced 

tracking with the ground truth annotation.  

 

In addition, compare the experiment results with the other research methods results such as Jung 

et al., (1998), Scott et al. (2001), and earlier observation of Ley et al. (1996).  

 

4. RESULTS AND DISCUSSION  
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An Active Appearance Model (AAM) is a statistical model that describes both the shape of an 

object and the image texture around the shape. The AAM is an extension of an Active Shape 

Model (ASM).  

 

As shown in Table 4.4, Figure 4.11, and Figure 4.12, the result of the comparison between the 

AAM, ASM automated methods, and the Manual calculation shows that AAM has better 

accuracy in tracking the WBC, where the results of AAM is similar to the manual 

calculation(ground truth). 

 

 

The main objective here is comparing the mobility results between the two methods. The results 

indicate the ability of AAM to give better accuracy for tracking the mobility of the WBC.  

 

The conclusion for the comparison shows that although an AAM may be more robust than an 

ASM, but an ASM tends to have a larger capture range if started from a poorly initialized 

solution. This is because an ASM searches around the current location, whereas the AAM only 

examines the image directly under its current area. 

 
Table 4.1: Some mobility results for both Manual(ground truth), (AAM) and (ASM) tracking of the 

leukocytes cells. 

 

Cell 

 

 

GTVel

 

(µm/s

)  

AAMVel  

(Experimen

tal) (µm/s)    

ASMVel  

(Experimen

tal) 

(µm/s)      

GTIndexShape.

 
AAMIndexShape.

 

(Experimental) 
)(

.

alExperiment

ASMindexShape

 

 

 1 7.0 7.2 6.7 2.4 2.2 2.3 

 2 3.5 3.4 3.1 2.7 2.7 2.5 

 3 2.5 2.4 2.6 1.5 1.7 1.4 

 4 2.1 2.2 2.4 2.2 2.3 2.3 

 5 3.1 3.3 3.2 2.5 2.6 2.1 

 6 5.6 5.7 5.8 1.5 1.5 1.4 

 7 6.8 6.7 6.3 1.3 1.2 1.5 

 8 7.5 7.5 7.2 2.5 2.6 2.4 

 9 1.3 1.2 3.3 2.9 2.9 2.5 

10 2.4 2.4 2.1 1.7 1.8 1.6 

11 3.5                       3.6                       3.2                       2.5                      2.6                      2.2                      

12 7.6                       7.6                      7.1                      2.6                       2.4                       2.4                       

13 2.8 2.7 2.4 2.8 2.7 2.5 

14 2.6 2.8 2.1 2.1 2.2 1.9 

15 2.4 2.4 2.2 1.2 1.3 1.4 

16 7.5 7.4 7.2 2.6 2.5 2.2 

17 4.3 4.4 4.1 2.3 2.1 1.9 

18 4.5 4.4 4.3 1.3 1.4 1.8 

19 7.8 7.7 7.3 2.5 2.4 2.1 

20 1.6 1.7 1.5 1.1 1.2 1.5 
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GTVel :GROUND TRUTH       AAMVel : AAM VELOCITY (EXPERIMENTAL)       ASMVel : ASM 

VELOCITY  (EXPERIMENTAL) 

GTIndexShape. :GROUND TRUTH (CHANGE SHAPE INDICATOR)   AAMindexShape. : CHANGE SHAPE 

(EXPERIMENTA)        ASMindexShape. :CHANGE SHAPE(EXPERIMENTAL) 

 
 

Figure 4.1: Experiments results for the automated deformation tracking results for the tracked cells from 

video sequences. A comparison between AAM, ASM, and the manual calculation from Jung et al. (1998). 

 

 
 

Figure 4.2: Experiments results for the automated velocity tracking results for the tracked cells from video 

sequences. A comparison between AAM, ASM, and the manual calculation from Jung et al. (1998). 
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5.   CONCLUSION 

 
In this paper, a comparison between cell tracking using active shape model (ASM) and active 

appearance model (AAM) algorithms has been made, to investigate the cells tracking quality 

between the two methods. Sensitive and accurate cell tracking system is essential to cell motility studies. 
The active shape model (ASM) and active appearance model (AAM) algorithms has proved to be a 

successful methods for matching statistical models. 

 

The comparison between (AAM), (ASM) methods, and the manual calculation (ground truth) 

method based on experimental result, shows that the (AAM) algorithm results indicate the ability 

of (AAM) method to give better accuracy for tracking the mobility of the WBC than (ASM) 

method. 
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