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ABSTRACT  

 

In a multivariable servomechanism design, it is required that the output vector tracks a certain reference 

vector while satisfying some desired transient specifications, for this purpose a 2DOF control law 

consisting of state feedback gain and feedforward scaling gain is proposed. The control law is designed 

using block pole placement technique by assigning a set of desired Block poles in different canonical forms. 

The resulting control is simulated for linearized model of the HAVE DASH II BTT missile; numerical 

results are analyzed and compared in terms of transient response, gain magnitude, performance 

robustness, stability robustness and tracking. The suitable structure for this case study is then selected. 
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1. INTRODUCTION 
 

Unlike other engineering specialties whose subject of study is a specific engineering system such 

as an engine system or an airborne system, control systems theory studies only a general 

mathematical model of engineering systems. The reason that systems control theory has 

concentrated mainly on linear time-invariant systems is that only the mathematical models of this 

kind of systems can have general and explicit solutions. Furthermore, only the general and 

explicit understanding of the system can be used to guide generally, systematically, and 

effectively the complicated control system design [1]. The purpose and requirement of control 

systems is generally the control of plant system output (or response) Y(s)  so that it can quickly 

reach and stabilize to its desired state, such as the desired vehicle and engine speed, the desired 

radar and airborne system angle, the desired robot arm position, the desired container pressure 

and temperature, etc. The desired system output state is usually specified by the reference signal 

R(s). Hence how well the system output reaches its desired state determines the performance of 

the system; see [1, 4 and 17]. The control problems associated with these systems might be the 

production of some chemical product as efficiently as possible, automatic landing of aircraft, 

rendezvous with an artificial satellite, regulation of body functions such as heartbeat or blood 

pressure, and the ever-present problem of economic inflation [18].State space control theory 

provides distinctly general, accurate, and clear analysis on linear time-invariant systems, 

especially their performance and sensitivity properties. Only this kind of analysis and 

understanding can be used to guide generally and effectively the design of complex control 

systems. This is the reason that linear time-invariant system control results form the basis of the 

study of other systems such as nonlinear, distributive, and time-varying systems, even though 

most practical systems belong to the latter category. This is also the reason that the development 

of state space control theory has always been significant and useful. [17]. A large-scale MIMO 
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system, described by state equations, is often decomposed into small subsystems, from which the 

analysis and design of the MIMO system can be easily performed. Similarity block 

transformations are developed to transform a class of linear time-invariant MIMO state equations, 

for which the systems described by these equations have the number of inputs dividing exactly 

the order of the state, into block companion forms so that the classical lines of thought for SISO 

systems can be extended to MIMO systems [19]. Such systems can be studied via the 

eigenstructure, eigenvalues and eigenvectors, of the state matrix A. The eigenvalues and 

eigenvectors can determine system performance and robustness far more directly and explicitly 

than other indicators. Hence their assignment should improve feedback system performance and 

robustness distinctly and effectively [1].Eigenstructure assignment (EA) is the process of 

applying negative feedback to a linear, time-invariant system with the objective of forcing the 

latent-values and latent-vectors to become as close as possible to a desired eigenstructure. EA, in 

common with other multivariable design methodologies, is inclined to use all of the available 

design freedom to generate a control solution. It is a natural choice for the design of any control 

system whose desired performance is readily represented in terms of an ideal eigenstructure. 

Many research works has been done on EA [20, 21, 22, 23 and 24] and more specifically on flight 

control systems [25, 26, and 27]. 

 

The critical importance of system poles (eigenvalues of system dynamic matrix) on system 

performance are determined and examined by the location of those roots, however in a 

complementary the sensitivity of eigenvalues is determined by their corresponding eigenvectors 

which is a basic result of numerical linear algebra. Unfortunately numerical linear algebra, has 

not been commonly used in the existing textbooks on control systems, is a branch of study which 

concentrates on the sensitivity of linear algebraic computation with respect to the initial data 

variation and computational round-off errors [Fox, 1964]. Because linear algebra is the basic 

mathematical tool in linear control systems theory, the results of numerical linear algebra can be 

used directly in analyzing linear system sensitivities. When the controlled system is multi-input 

multi-output then an infinite number of gain matrices K may be found which will provide the 

required stability characteristics. Consequently, an alternative and very powerful method for 

designing feedback gains for auto-stabilization systems is the right and/or left block pole 

placement method. The method is based on the manipulation of the equations of motion in block 

state space form and makes full use of the appropriate computational tools in the analytical 

process. The design of state feedback control in MIMO systems leads to the so-called matrix 

polynomials assignment [2]. The use of block poles constructed from a desired set of closed-loop 

poles offers the advantage of assigning a characteristic matrix polynomial rather than a scalar one 

[3]. The desired characteristic matrix polynomial is first constructed from a set of block poles 

selected among a class of similar matrices, and then the state feedback is synthesized by solving 

matrix equations. The forms of the block poles used in our work are the diagonal, the controller 

and the observer forms. Robustness is assessed, in each case, using the infinity norm, the singular 

value of the closed loop transfer matrix and the condition number of the closed-loop transfer 

matrix. Time response is assessed by plotting the step response and comparing the time response 

characteristics [1]. A comparison study is conducted to determine, in light of the above criteria, 

the best choice of the form of the block poles. 

 

In thepresent paper, firstly we have started the work by introducing some theoretical preliminaries 

on matrix polynomials, after that a theoretical background on robustness and sensitivity  

analysisin term of responses is illustrated and briefly discussed, it is then followed by an 

application to BTT missilesby doing a comparison study in term of block roots form. As a fifth 

section a discussion of the obtained results is performed, and finally the paper is finished by a 

comparison study and a conclusion. 
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2. PRELIMINARIES 
 

2.1. DEFINITION OF A POLYNOMIAL MATRIX 

 

Definition:given a set of � × �complex matrices ���, ��, … , �	
the following matrix 

valued function of the complex variableλ	is called matrix polynomial of degree 

(index)	and order�:  (��λ�: is called also λ-matrix.) 
 																																										���� = ���	 + ���	�� + ⋯ + �	��� + �	�1� 
 

Consider the system described by the following dynamic equation: 

 ��� ��� = ����� + ��������� = ����� � , With� ∈ $%×%, � ∈ $%×&, � ∈ $'×%�2� 

 

Assuming that the system can be transformed to a block controller form, this means: 

 

i. The number 
%& = 	is an integer. 

ii. The matrix )* = ��, ��, … , �	���
is of full rank n. 
 

Then we use the following transformation matrix: 

+* =
,-
--
. +*	+*	�⋮+*	�	�0+*	�	��12

22
3 Where		+*	 = 67&7&, … , 8&96�, ��, … , �	���9��										�3� 

 

The new system becomes: 

 ��� ��� = �*���� + �*�������� = �*���� � �4� 
With  

 �* = +*�+*��,				�* = +*�,						�* = �+*��
 

 

�* =
,-
--
--
.			7&			7&⋮			7&−�	

			8&			7&⋮			7&−�	��

……………

			7&			7&⋮			8&−�� 12
22
22
3
, �* =

,-
--
--
.7&7&⋮7&8& 12

22
22
3
, �* = 6�	 �	�� ⋯ ��9 
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2.2.MATRIX TRANSFER FUNCTION 

 
The matrix transfer function of this open-loop system is given by: 
 +=>�?� = 	@�?� = A>�?�B>���?��5� 
Where: 

 

• A>�?� = 6��?	�� + ⋯ + �	��? + �	9 
• B>�?� = 68&?	 + ��?	�� + ⋯ + �	9 

 

This transfer function is called the Right Matrix Fraction Description (RMFD); we need 

to use it in the block controller form. It should be noted that the behavior of the system 

depends on the characteristic matrix polynomialB>�?�. 

 

2.3. CONCEPT OF SOLVENTS (BLOCK ROOTS) 
 
A root for a polynomial matrix is not well defined. If it is defined as a complex number it may not 

exist at all. Then we may consider a root as a matrix called block root. 

 

2.3.1. RIGHT SOLVENT 

 

Given the matrix polynomial of order� and index defined by: 

 

B>�?� = 8&?	 + ��?	�� + ⋯ + �	 = D �E?	�E	
EF� where�� = 8&										�6� 

 

A right solvent, denoted by$, is a � × � matrix satisfying: 

 

 B>�$� = ��$	 + ��$	�� + ⋯ + �	��$ + �	 = 0&					�7� 
 

 

2.3.2. LEFT SOLVENT 

 

A left solvent of the matrix polynomial B�?� defined above, denoted by	K, is � ×�matrix satisfying:B>�K� = K	�� + K	���� + ⋯ + K�	�� + �	 = 0&						�8� 
 

A right solvent, if exist, is considered as a right block root. A left solvent, if exist, is 

considered as a left block root. 
 

2.3.3. LATENT ROOT AND LATENT VECTOR 
 

• A complex number�satisfying detNB>���O = 0 is called a latent root ofB>���. 

• Any vector PQassociated with the latent root satisfying B>��E�PQ = 0&is a right latent 

vector ofB>���. 
 

The relationship between latent roots, latent vectors, and the solvents can be stated as follows: 
 

Theorem: IfB���has 	R	 linearly independent right latent vectors S�, S0, … , S% (left latent 

vectorsT�, T0, … , T%) corresponding to latent rootsS�, S0, … , S%,then UɅU��, �WɅW���is a right 



International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016 

21 

(left) solvent. Where:U = 6S�, S0, … , S%9,						�W = 6T�, T0, … , T%9X� and	Ʌ =YZ[\���, �0, … , �%�.Proof: see [16] 

 

Theorem: IfB���has 	R	latent roots��, �0, … , �%and the corresponding right latent 

vectorsS�, S0, … , S%has as well as the left latent vectorsT�, T0, … , T%are both linearly independent, 

then the associated right solvent $ and left solvent 	K	 are related by: $ = )K)��, Where ) = UW  and		U = 6S�, S0, … , S%9,						�W = 6T�, T0, … , T%9X�. and“T “stands for transpose.(Proof: 

see [16]) 
 

2.3.4. COMPLETE SET OF SOLVENTS 

 

Definition :Consider the set of solvents �$�, $0, … , $	
constructed from the eigenvalues ���, �0, … , �%�of a matrix�*,�$�, $0, … , $	
is a complete set of solvents if and only if:  

 

^ ∪ `�$E� = `��*�`�$E� ∩ `N$bO = ∅detNd>�$�, $0, … , $	�O ≠ 0� 																																												�9� 

Where: 

 `denotes the spectrum of the matrix. 

 d>is the block Vandermonde matrix corresponding to�$�, $0, … , $	
given as: 

d>�$�, $0, … , $	� =
,-
--
-. 8&$�⋮$�	��

8&$0⋮$0	��
……⋱…

8&$	⋮$		��12
22
23 																					�10� 

 

The conditions for the existence and uniqueness of the complete set of solvents have been 

investigated by P. Lancaster [15] and MalikaYaici [3]. 
 

Remark: We can define a set of left solvents in the same way as in the previous theorem. 
 

2.4. CONSTRUCTING A MATRIX POLYNOMIAL FROM A COMPLETE SET OF SOLVENTS 

 
We want to construct the matrix polynomial defined by B�λ�from a set of solvents or a setof 

desired poles which will determine the behavior of the system that we want.Suppose we have a 

desired complete set of solvents. The problem is to find the desired polynomial matrix or the 

characteristic equation of the block controller form defined by: 
 B��� = B��	 + B��	�� + ⋯ + B	 

 

We want to find the coefficientsBEfor Z = 1, … ,  
 

a. Constructing from a complete set of right solvents: 
 

Consider a complete set of right solvents �$�, $0, … , $	
for the matrix polynomialB���, If$Eis a 

right solvent of B���so:$E	 + B�$E	�� + ⋯ + B	 = 7& ⇒ 	 B�$E	�� + ⋯ + B	 = −$E	 
 

Replacing	Z		from	1	�l		we get the following: 
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mBn	, Bn�	���, … , Bn�o = −m$�	 , $0	 , … , $		od>��		�11� 

 

Where d>is the right blockVandermondematrix 

 

B. CONSTRUCTING FROM A COMPLETE SET OF LEFT SOLVENTS: 
 
Consider a complete set of left solvents�K�, K0, … , K	
for the matrix polynomial	B���If KEis a left 

solvent of B���so:   KE	 + KE	��B� + ⋯ + B	 = 7& ⇒ KE	��B� + ⋯ + B	 = −KE	 
 

Replacing	Z		from	1	�l		we get the following: 

 

,-
--
-. Bn	Bn�	���⋮Bn� 12

22
23 = −

,-
--
-.8&8&⋮8&

K�K0⋮K	

……⋱…
K�	��
K0	��⋮K		��12

22
23
��

,--
-.K�	
K0	⋮K		 122

23	�12� 
 

2.5. STATE FEEDBACK DESIGN 

 
Consider the general linear time-invariant dynamic system described by the previous 

state space equation (2). Now applying the state feedback � = −pqr����to this system, 

where: pqris a � × Rgain matrix.After using the block controller form transformation for 

the system, we get:� = −p*�*��� 
 

Where: pqr = p*+* = mp*	 , p*�	���, … , p*�o+*andp*E ∈ $&×&for			Z = 1, … , . Then the 

resulting closed loop system is shown below: 

���* = ��* − �*p*��*�* = �*�* � Where: ��* − �*p*� =
,-
--
--
. 			7&			7&⋮			7&−��	 + p*	�

……………

			7&			7&⋮			8&−��� + p*��12
22
22
3
 

 

The characteristic matrix polynomial of this closed loop system is: 
 B��� = 8&�	 + ��� + p*���	�� + ⋯ + ��	 + p*	�																													�13� 
 

From a set of desired eigenvalues, we construct the solvents then we construct the desired 

characteristic matrix polynomial in the form: 
 Bn��� = 8&�	 + Bn��	�� + ⋯ + Bn																																						�14� 
 

By puttingBn��� = B���we get the coefficients p*Eas follows: 
 p*E = BnE − �Efor	Z = 1, … , 																																												�15� 

 

After that we find the gain matrix by the following formulapqr = p*+*. 
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2.6. FEEDFORWARDGAIN DESIGN 
 

In this subsection the feedforwardgain will be determined in order to provide steady state 

tracking. Consider the MIMO system of equation (2), the control law is then given by���� =−pqqt��� − pqr���� Where: pqris the feedback gain matrix obtained one of the techniques 

discussed in the previous section, pqqis the feedforward gain in question and	t��� = tis a 

constant vector. The steady state is defined by the next conditions: 

 
 ��∞� = limw→y ���� = Constant, �� �∞� = 0, ��∞� = t 

 

The feedforwardpqqgain must be chosen so that the referencetlies within the null space 

of:	W = 68 − �� − Bp=���� − �p=��−1�p=� + Bp==9.A trivial solution is to chooseW = 0 

so that every vector t satisfies the condition. 

 
 pqq = 6�� − Bpqr��� − �pqr���� + B9~																																								�16� 
 
 

Remark: Thenotation �+�denotes the pseudo-inverse; and this method does not 

guarantee the existence of solution in the case where:6�� − Bpqr��� − �pqr���� + B9is 
not full rank. Strictly speaking, its existence is governed by the following theorem. 
 

Theorem: Thefeedforward gain that provides steady state decoupling and tracking exist 

if and only if:  rank ��� �� B�� = R + �(Proof: see [30] ) 

 

Remark: Thefeedforward gain depends on system matrices and the feedback gainpqr, 

hence it is influenced by perturbation, modeling error and the feedback gainpqr.    
 

 

3. ROBUSTNESS AND SENSITIVITY ANALYSIS  
 

One of the major concerns in control design is system’s immunity to modeling errors and 

different types of disturbances that may affect it, this is known as robustness. This issue will be 

addressed in this section. 
 

3.1. Basic definitions of matrix norms 

 
Definition: A matrix norm is a function from the set of all complex matrices (of all finite orders) 

into that satisfies the following properties [1], [28]: 

 
 1.		‖�‖ ≥ 0	and‖�‖ ≥ 0 ⟹ � = 0															2.		‖��‖ = �‖�‖for	all	scalars	� 3.		‖� + �‖ ≤ ‖�‖ + ‖�‖for	all	matrices	of	the	same	size. 4.		‖��‖ ≥ ‖�‖‖�‖for	all	conformable	matrices	. 
 

Definition: The most commonly used norms are the following 
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1. The matrix 1-Norm is defined as the largest absolute column sum, given by 

‖�‖� = maxb D�[Eb�E 															�17� 

2. The matrix 2-Norm is defined as the maximum singular value of�, given by ‖�‖0 = Max�singular	value	of	�� = Max �eig��⋆����� 																													�18� 

3. The matrix∞-Norm is defined as thelargest absolute row sum, given by 

‖�‖y = maxE D�[Eb�E 																																																�19� 

4. The ForbeniusNorm is also called Shure norm, it is defined as a square root of the 

trace �⋆� given by  

‖�‖q = Trace��⋆���� = �D�[Eb�0E,b �
�� 																																					�20� 

 

3.2. THE SENSITIVITY OF EIGENVALUES (ROBUST PERFORMANCE) 

 
Robust performance is defined as the low sensitivity of system performance with respect to 

system model uncertainty and terminal disturbance. It is well known that the eigenvalues of the 

dynamic matrix determine the performance of the system then from that the sensitivities of these 

eigenvalues determine the robustness of the system (2). 
 

Theorem:Let �		[RY	��be the eigenvalues of the matrices �	[RY		� + ∆� respectively, and let d	be the right eigenvectors matrix of	�	, then Wilkinson has derived the variation in eigenvalues 

as follows: minE��E − �E�� ≜ minEN∆��E�O ≤ ��d�. ‖∆�‖															�21� 

 ‖. ‖ Stands for the matrix norm and ��. �Is the condition number. (Proof:see[1]) 
 

Theorem:Let �E, �Qand�Qbe the Zw�eigenvalue, right and left eigenvectors of a 

matrix	�		respectively�Z = 1, … , R�, let�E + ∆�Ebe the Zw�eigenvalue of the matrix	� + ∆�, then 

for small enough‖∆�‖:		∆�E ≤ ‖�Q‖‖�Q‖‖∆�‖ ≜ ?��E�‖∆�‖															�22� 

 

Such that:	?��E� = ‖�Q‖‖�Q‖.(Proof: see [1].) 
 

This theorem shows that the sensitivity of an eigenvalue is determined by its corresponding left 

and right eigenvectors and it is valid for small perturbations in the matrix�. 
 

3.3. Relative change 

 
Let �E	[RY	�E�

be the eigenvalues of the matrices �	[RY		� + ∆� respectively.The relative 

changetEof the eigenvalue �Eis defined as follows: 

 

 

tE = ��E − �E��|�E| = |∆�E||�E| 									Z = 1, . . , R																																				�23� 
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3.4. ROBUST STABILITY 

 
The stability of a system is the most wanted property. So its sensitivity to uncertainties is very 

important when analyzing and designing the system. Stability is affected by the system 

eigenvalues of the dynamic matrix so the sensitivity of these eigenvalues directly affects the 

robust stability of the system (2). There are three robust stability measures using the sensitivity of 

this system eigenvalues defined as follows: 
 

Definition: Let���, �0, … , �%
be the set of eigenvalues of anR × Rmatrix denoted by �and 

assuming that all the eigenvalues are stable (Z.  :	$ ��E
 < 0	∀Z	) and all the eigenvalues are 

already arbitrary assigned for guaranteed performance, the three robust stability measures are 

defined by: 
 

1. £� = min�¤¥¤y¦`�� − §¨8�©, `denotes the smallest singular value. 

2. £0 = N��Λ�O��. |$ ��%
|such that: |$ ��%
| ≤ ⋯ ≤ |$ ���
| and Λis the diagonal 

matrix of �	. 
3. £« = min�¬E¬% N?��E�O��|$ ��E
|® 

 

3.5. TRACKING ROBUSTNESS 
 

Consider the MIMO system with reference vector t and output � which is controlled by the 

control law under study, beside that the modeling errors and disturbances can be modeled by a 

perturbation matrix∆�, the tracking error induced by this perturbation in the S-domain is: 

 ¯�?� = $�?� − °�?� = $�?� − pqq@�?�$�?�																																	�24� 

 

Or in more compact form 

 ¯�?� = 68 + pqq�6?8 − �� + ∆� − �pqr�9���9$�?�																					�25� 
 

To find the steady state error vector the final value theorem is used: 

  �∞� = lim±→� ?¯�?� = 68 − pqq��� + ∆� − �pqr����9t														�26� 

 

For perturbation small enough we have [28]: 

 �� + ∆� − �pqr��� ≈ 	�� − �pqr��� − �� − �pqr���∆��� − �pqr���											�27� 

 

Equation (26) become then:  �∞� = 6pqq��� − �pqr���∆��� − �pqr����9t.	Assume for 

simplicity	B = 0, hence replacing by its valuegives: 
  �∞� = 6�~∆��� − �pqr����9t															�28� 
 

Applying the 2-norm on this equation yields: 
 ‖ �∞�‖0‖t‖0 ≤ ‖�~‖0‖�‖0‖�� − �pqr���‖0‖∆�‖0																�29� 
 

Discussion: from this equation it can be seen clearly that the relative tracking error due to the 

perturbation depends on the closed loop matrix, hence we expect it to be different for various 

state feedback schemes.   
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4. DYNAMIC MODELING A
 
A missile is defined as a space

movements and estimating its flight path. Missiles can be classified according to their area of 

launching and the target’s area into the following four categories: gr

air, air to air and air to ground, in this work the air to ground bank

considered.For the purpose of this study, only the control function is considered. In the following 

sections the 6DOF dynamic mo

steady state conditions in order to obtain a linear state space model of the missile suitable for 

study. Afterward the controller objectives are stated and the output 

design requirement and specifications

 

4.1. MISSILE DYNAMICS  
 
Define the following reference frames

 

� Missile body fixed reference frame  

missile and axis point to the missiles nose (Figure 

� The space fixed (nonrotating) reference frame 

of the missile, which by performing Euler rotation 

and yaw respectively come to coincide with the

� Translation along the d direction (velocity) denoted 

� Rotation about the longitudinal axis (roll) denoted

� Rotation about the lateral horizontal axis (pitch) denoted

� Rotation about the vertical axis (yaw) denoted

missile with respect to�³́, °́, µ̅
 

Figure: 1 

 
Assumptions: The missile dynamic equation derived under the following assumptions:

 

� The missile is a rigid body.

� The mass m and inertia I
autopilot operation. 
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AND CONTROL OF BTT MISSILE 

A missile is defined as a space-traversing unmanned vehicle the means for controlling its 

movements and estimating its flight path. Missiles can be classified according to their area of 

launching and the target’s area into the following four categories: ground to ground

air, air to air and air to ground, in this work the air to ground bank-to-turn (BTT) missiles will be 

For the purpose of this study, only the control function is considered. In the following 

sections the 6DOF dynamic model of the missile is derived which is then linearized about the 

steady state conditions in order to obtain a linear state space model of the missile suitable for 

study. Afterward the controller objectives are stated and the output equations are derived wi

design requirement and specifications. 

frames and fundamental missile movements: 

Missile body fixed reference frame  �³, °, µ� with its origin at the center of gravity of the 

missile and axis point to the missiles nose (Figure 1). 

The space fixed (nonrotating) reference frame �³́, °́, µ̅� with its origin at the center of gravity 

missile, which by performing Euler rotation �¸, ¹, º�corresponding to the roll, pitch 

and yaw respectively come to coincide with the�³, °, µ� reference frame see (Figure 

direction (velocity) denoted d � ��, », ¼�X . 
Rotation about the longitudinal axis (roll) denotedS. 
Rotation about the lateral horizontal axis (pitch) denotedT. 
Rotation about the vertical axis (yaw) denotedt.and ¨ � �S, T, t�X be the angular velo´ ´ µ̅�fixe reference frame.  

 
Figure: 1 Missile configuration and Euler angles. 

The missile dynamic equation derived under the following assumptions:

The missile is a rigid body. I of the missile remain constant over the period of time 
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traversing unmanned vehicle the means for controlling its 

movements and estimating its flight path. Missiles can be classified according to their area of 

ound to ground, ground to 

turn (BTT) missiles will be 

For the purpose of this study, only the control function is considered. In the following 

which is then linearized about the 

steady state conditions in order to obtain a linear state space model of the missile suitable for 

equations are derived with 

with its origin at the center of gravity of the 

with its origin at the center of gravity 

corresponding to the roll, pitch 

reference frame see (Figure 1). 

be the angular velocity of 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The missile dynamic equation derived under the following assumptions: 

of the missile remain constant over the period of time 
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� The missile presents both mass and geometry symmetry with respect toXZ	and		XY	 
planes, which means that the coupling inertia termsIÀÁ for i, j � x, y, z	and	i ≠ j  are 

zeros. 

 
The nonlinear dynamic model of the BTT missile is described by the next set of coupled 

differential equations [29]: 
 

ÄÅÅ
ÅÅÅ
Æ
ÅÅÅ
ÅÅÇ �� � T − SÈ + É 1�d&Ê mËÌÍd&0��Î� + �ÎÏÐÏ + �ÎÑÐÑ + �ÎÒÐÒ� + �\. cos�¸�o

È� � −t + S� + É 1�d&Ê mËÌÍd&0N�Ó� + �ÓÏÐÏ + �ÓÑÐÑ + �ÓÒÐÒO + �\. sin�¸�o�̧ � SS� � É8ÓÓ −	8ÎÎ8ÔÔ Ê Tt + É 18ÔÔÊ mË&Íd&0��	� + �	ÏÐÏ + �	ÑÐÑ + �	ÒÐÒ�o
T� � Õ8ÎÎ −	8ÔÔ8ÓÓ Ö St + Õ 18ÓÓÖ mË&Íd&0��&� + �&ÏÐÏ + �&ÑÐÑ + �&ÒÐÒ�o

t� � É8ÔÔ −	8ÓÓ8ÎÎ Ê ST + É 18ÎÎÊ mË&Íd&0��%� + �%ÏÐÏ + �%ÑÐÑ + �%ÒÐÒ�o

� 

 

Where: Í	is the atmospheric density,ËÌ and Ë&are constant determined by the vehicle geometry. ×q� , ×qØ, ×Ù�and×ÙØare the missile’s aerodynamic coefficients given in below: 

 

×q� � Ú�Ô��Ó��Î�Û �
,--
-.−0.57 + 0.083�−0.21È�Î���, £&� 122

23,				×qØ � Ú�ÔÏ�ÓÏ�ÎÏ
�ÔÑ�ÓÑ�ÎÑ

�ÔÒ�ÓÒ�ÎÒÛ � ,--
-. 0.040.00−0.09

0.000.000.00
0.000.080.00122

23
 

	
×Ù� � Ü �	��&��%� Ý �

,--
-. −0.116È�&���, £&�0.08 122

23 ,				×ÙØ � Ü �	Ï�&Ï�%Ï
�	Ñ�&Ñ�%Ñ

�	Ò�&Ò�%Ò Ý � ,--
-. 0.00−0.6750.00

−0.1270.000.00
0.000.00−0.594122

23
 

 �Î���, £&� � �Î���� + �Î0���£&,				�&���, £&� � �&���� + �&0���£& 

 

With: �Î���� � −0.0015�« + 0.0125�0 − 0.5052� + 0.0429 �Î0��� � 0.0006�« − 0.0138�0 + 0.1230� − 0.0191 �&���� � −0.0055�« + 0.2131�0 − 2.7419� − 0.0381 �&0��� � 0.0014�« − 0.0623�0 + 0.8715� − 0.4041 £&: is	the	March	number	deÞined	as£& � d& ßà  

 
Note: this approximation is valid only for 0	deg ≤ � ≤ 25	deg and2.0	 ≤ £& ≤ 3.0	 which are 

satisfied in our case. (� � 10, £& � 2.75). The values of are given for an altitude 

of40,000á�	.The flight conditions are d& � 2662á�/? ß	steady state angle of attack�� � 10ã In 

the derivation of these equations it is assumed that the thrust forces Tä, Tåcomponents are 

negligible[29]. These equations will be taken as the state space representation of the missile 

autopilot, on which the control goals are specified. In the following section these equations will 
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be linearized about an equilibrium point (�� � ���, 0,0,0,0,0�) in order to get a LTI model.The 

linear dynamic model of BTT missile motion is given by the next state space equations: 

 

,--
---
--. ��T�È�t�S�̧� 122

222
223 �

,--
---
--.µææµçæµèæµÒæµ'æ0

100000

µæèµçèµèèµÒèµ'è0

00−1000

00��001

00gd�000 122
222
223

,--
--.
�TÈtŞ122

223 +
,-
---
. pÌ�ÎÏp&Ó�&ÏpÌ�ÓÏp&Î�%Ïp&Ô�	Ï0

pÌ�ÎÒp&Ó�&ÒpÌ�ÓÒp&Î�%Òp&Ô�	Ò0

pÌ�ÎÑp&Ó�&ÑpÌ�ÓÑp&Î�%Ñp&Ô�	Ñ0 12
222
3
ÜÐÏÐÒÐÑÝ															�30� 

 

Where the µ	terms are constant coefficients called the flight derivatives given by: 

 

ÄÅÅ
ÅÅÅ
Æ
ÅÅÅ
ÅÅÇ µææ � pÌ �é�Î�é� êÔë ,

µçæ � pÌ �é�Ó�é� êÔë ,
µèæ � p&Ô �é�	�é� êÔë ,
µÒæ � p&Ó �é�&�é� êÔë ,
µ'æ � p&Î �é�%�é� êÔë ,

µæè � pÌ �é�Î�éÈ êÔëµçè � pÌ �é�Ó�éÈ êÔëµèè � p&Ô �é�	�éÈ êÔëµÒè � p&Ó �é�&�éÈ êÔëµ'è � p&Î �é�%�éÈ êÔë

� 

 

Numerical values for missile’s model [29] are given next in the following table: 
 

Table: 1 Model parameters for the HAVE DASH II BTT missile. 
 

The parameter Notation Numerical value 

The gravity \ 32.174	ft/sec0 

Missile’s mass � 9.89	slug 

Geometry coefficients 
ËÌ 0.1534	ft0 Ë& 0.0959ft« 

Sound velocity ß 968	ft/sec 

Atmospheric density Í 5.124 × 10�ì 
The thrust force +Ô 389	lb 

The inertia matrix entries 

8ÔÔ 1.1913	slug 8ÔÔ 100.5139	slug 8ÔÔ 100.5749	slug 

 

 
Numerical evaluation of the tabulated values in the parametric model yield:  
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,--
---
--. ��T�È�t�S�̧� 122

222
223 �

,-
---
-.−0.0037−1.14620000

100000

00−0.00440.277033.90630

00−1000

00	0.1745001

000.0121000 12
222
23

,--
--.
�TÈtŞ122

223 +
,--
-.−0.0019−2.33840000

000.0017−2.021900

0000−37.12160 122
23 ÜÐÏÐÒÐÑÝ 

 

Where:�� � �: The	angle	of	attack�0 � È: Small	sideslip	angle 

 �« � ¸: The	bank	angle�� � ÐÏ: Elevator	deÞlection �0 � ÐÒ: Rudder	deÞlection�« � ÐÑ: Ailerons	deÞlection 
 

4.2. Block Pole Placement Comparison Study 

 

In this paper, the proposed control scheme consisting of state feedback gain and feedforward 

gain is applied to the HAVE DASH II BTT missile using different state feedback methods 

discussed before; the results are assessed and compared in order to choose the suitable method for 

the design case. The characteristics upon which the comparison is based are: 
 

� Controller gain magnitude. 

� Transient response characteristics. 

� Robustness in term of stability, performance and tracking. 
 

The dimension of the matrix �	is 6 × 6and the number of inputs is3. The rank of the matrix Ω* � 6�	��9is6, and then the system is block controllable of index	2. Therefore we can convert 

the system into block controller form by the following transformation matrix+*: 

+* � ,--
. ¯Ω*��¯Ω*���122

3 , Ω* � 6�		��9��and		¯ � 67«8«9 
 

We obtain the following: 
 

�* � ó 			7« 8«−�*0 −�*�ô �
,--
-. 000−1.14620.00000.0000

0000.0000−0.2770−1.8468

0000.00000.88735.9163

100−0.00370.00000.0000

01	00.0000−0.0044−0.0015

0010.0000−0.20840.0000 122
23
 

 

�* � ,--
. ¯Ω*��¯Ω*���122

3 � �
,--
-.7«
8« 122

23
 

 

We want to design a state feedback using block pole placement for the following set of desired 

eigenvalues:��,0,«,ì,õ,ö � �−4.90 ± 7.35Z, −17.1	, −5.25	, −7.5	, −10.9
 
 

� Right solvents in diagonal form (Case I) 
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pqr � ,--
-.−15.4640−18.24920

−5.27263.46300
−26.85779.8098−0.9134

−3.5605−5.0280−0.0000
−0.00000.0056−0.7543

4.6460−1.6785−5.0211122
23
 

 

pqq � ,--
-.15.968918.25890.0000

26.8727−9.9680−0.0000
−4.68901.73935.0211 122

23
 

 

� Right solvents in controller form (Case II) 
 

pqr � ,--
-. 745.2977−0.00122464.8502

−8.87170.4276−3.7787
−171.89560.35761188.3972

−899.18520.00252693.9081
0.03520.0326−0.8410

90.1430−0.0863−394.5275122
23
 

 

pqq � ,--
-.−744.7829−0.00002464.8608

168.1091−0.4946−1177.9664
−79.27510.0863361.9679122

23
 

 

� Right solvents in observable form (Case III) 
 

pqr � ,--
-.−2469.6252−115.2148786.8736

−445.9117−21.8781138.3562
−494.304063.2212368.2749

2857.7694133.3742−909.6800
−63.5247−3.190419.5929

−101.8413−19.8310−4.5283 122
23
 

 

pqq � ,--
-.2471.3579115.2758−787.2592

506.3381−62.7965−373.0190
67.301118.219015.5231122

23
 

4.2.1. TIME SPECIFICATIONS  
 

The magnitude and response characteristics for the three forms of solvents aresummarized in the 

following two tables: 

 

 

 

 

 

 
 

 

 

 

Table: 1 Gains magnitude for the three cases. 
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Controller 

gains 

Form of 

solvents 
The 1-norm The 2-norm The ∞-norm 

Forbenius 

norm 

 pqr 

diagonal 37.5808 31.9807 55.8008 38.9680 

controller 3.5931 × 10« 4.0327 × 10« 6.7463 × 10« 4.0376 × 10« 

observer 3.9008 × 10« 4.0389 × 10« 6.4330 × 10« 4.0449 × 10« 

 pqq 

diagonal 36.8406 31.6246 47.5305 38.2114 

controller 3.2096 × 10« 2.8559 × 10« 4.0048 × 10« 2.8606 × 10« 

observer 3.3739 × 10« 2.6641 × 10« 3.0450 × 10« 2.6731 × 10« 

 

 
Table: 2Time specifications (response characteristics). 

 

The  

Outputs 

Form of 

solvents 

Percent 

undershoot 

(%) 

Percent 

overshoot 

(POS%) 

Settling time �±�?� 

Rise time �Ò�?� 

 � 

diagonal − − 17.2261 0.6731 0.1809 

controller 667.1376 − − 1.2615 0.4523 

observer 142.0237 2.103 × 10« 0.8736 0.0114 

 È 

diagonal 9.7154 × 10�ì 3.3590 0.7696 0.3283 

controller 395.6040 2.9686 × 10« 0.8868 0.0089 

observer 3.3867 × 10« − − 1.2577 0.4229 

 ¸ 

diagonal − − − − 0.4529 0.2565 

controller 2.3281 × 10« 1.7755 × 10« 0.8755 0.0029 

observer 1.9255 × 10ì − − 1.2723 0.4234 

 

 
4.2.2. ROBUSTNESS ANALYSIS: 
 

Robust stability: Robust stability is determined using the measures defined in the previous 

section. First we find the norms of the left and right eigenvectors associated to each eigenvalue. 

The norms of the matrices consisting of the left and right eigenvectors respectively are: 

 

� Solvents in diagonal form: ‖d‖0 � 1.4595and ‖+‖0 � ‖d��‖0 � 42.8363 

Hence the sensitivity of all eigenvalues is ?�d� � ‖d‖0‖+‖0 � 62.5211 

 

� Solvents in controller form: ‖d‖0 � 1.9663and ‖+‖0 � ‖d��‖0 � 1.5458 × 10ì 

Hence the sensitivity of all eigenvalues is ?�d� � ‖d‖0‖+‖0 � 3.0.394 × 10ì 

 

� Solvents in observer form: ‖d‖0 � 1.8185and ‖+‖0 � ‖d��‖0 � 5.8622 × 10ì 

Hence the sensitivity of all eigenvalues is ?�d� � ‖d‖0‖+‖0 � 1.0661 × 10õ 

 

 

In the following the individual eigenvalues sensitivities are given for each of the three solvents 

from mentioned above. 

 
 

 

 

Table: 3 Eigenvalues sensitivities. 
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sensitivities Diagonal solvents Controller solvents Observer solvents ?N��,0 � −4.9 ± 7.35ZO 8.2812 6.1437 × 10« 384.4353 ?��« � −17.1� 30.2423 1.2298 × 10ì 781.5114 ?��ì � −5.25� 7.5088 1.3700 × 10« 2.0139 × 10ì ?��õ � −7.5� 8.6750 2.8577 × 10« 4.7608 × 10ì ?��ö � −10.9� 30.2446 1.5880 × 10« 2.7632 × 10ì 
 

Table: 4Stability measures. 
 

Stability measures Diagonal 

solvents 

Controller solvents Observer solvents 

 £� � min¥ ¦`�� − �p − §¨8�© 

 

 0.7226 

 1.3147 × 10�« 

 3.2389 × 10�« 

 £0 � N?�Λ�O��|$ ��%
| 
 

 0.0784 

 1.6121 × 10�ì 

 4.5963 × 10�õ 

 £« � min�¬E¬ö N?��E�O��|$ ��E
|® 

 

 0.2480 

 3.9842 × 10�ì 

 1.5753 × 10�ì 

 
 

Robust performance analysis:We generate a random small perturbation using MATLAB 

software, we get the following: 
 

 

∆� �
,-
---
-.0.00690.02560.01950.01640.00720.0165

0.02510.00900.01860.01080.01840.0106

0.00470.00460.00840.01420.00430.0119

0.05310.01970.00100.02420.01380.0123

0.01000.00380.00740.01840.02040.0273

0.00930.04030.00840.02580.02470.025612
222
23

, ‖∆�‖0 � 0.1021 

 

The new eigenvalues and corresponding change of each one are tabulated in table 5. 
 

Table: 5Change in eigenvalues due to random perturbation. 
 

Old 

eigenvalues 

New eigenvalues Relative change (tE) 
Diagonal Controller Observer Diagonal Controller Observer −4.9 + 7.35Z 	−4.9937+ 7.5839Z −15.1352 −17.7855 0.0285 2.4159 1.6793 

−4.9 − 7.35Z −4.9937− 7.5839Z −0.5110 
−4.0100+ 6.2699Z 0.0285 0.9691 1.5451 

−17.1 −16.1370 −41.5796 
−11.3004+ 19.0094Z 0.0563 1.4316 1.1622 

−5.25 −5.2876 
	−5.4459+ 2.0892Z −2.0493 0.0072 0.3997 0.6097 

−7.5 −7.2327 
−5.4459− 2.0892Z −4.0100− 6.2699Z 0.0356 0.3906 0.9568 

−10.9 −11.8109 −12.6083 
−11.3004− 19.0094Z 0.0836 0.1567 1.7444 

The tracking error due to this perturbation is: 
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� Case of diagonal solvents: 

 Δ� � 0.0024, ΔÈ � 0.0089,				Δ¸ � 0.0082 

 

� Case of controller solvents: 

 Δ� � −6.1205 × 10�ü, ΔÈ � 6.2267 × 10�ý,				Δ¸ � 3.5858 × 10�þ 

 

� Case of observer solvents: 

�  Δ� � 0.0872, ΔÈ � −01952,				Δ¸ � −1.1300 
 

5. DISCUSSION OF THE RESULTS 
 
Small gains are desirable because they minimize the control energy and prevent saturation of the 

controller elements and noise amplification. For time specifications, the smaller the settling time 

and maximum peak the better the time response. For the sensitivities of the eigenvalues, we 

choose the one that has the lowest sensitivity taking into account the distance of the eigenvalue 

from the §¨axis. For the robust stability the greater the value of its measure the more robustly 

stable the system, where £«is more accurate than £�and £0[1]. For robust performance, the 

smaller the value ofrelative change the better the performance. In our case, the crucial criterion is 

the robustness, because of the linearization of the model. From this results it can be observed that 

the diagonal solvents gives a smaller gains magnitude, better response, smaller sensitivities, and 

relatively higher performance measure. For the assumed perturbation, diagonal solvents gave less 

change in eigenvalues and less tracking errors. 
 

It should be noted that for observer solvents presents highly undesired results, besides, for the 

considered perturbation the controller structure of the solvents resulted in unstable modes in the 

system. 

 

6. CONCLUSION 

 
The goal of the present work in this paper is to design 2DOF control law consisting of feedback 

gain and feedforward gain for the BTT missile autopilot. Given that the system is multivariable, 

the feedback gain that assign the eigenvalues to desired locations is not unique, different 

possibilities has been tested in this work.Of prime importance is that while the overall speed of 

response of the closed loop system is determined by its eigenvalues, the shape of the transient 

response is determined to a large extent by the eigenvectors, this is seen from the fact that while 

the settling time is around one second for the different cases, the response shapes are totally 

different. 
 

The use ofthe three block canonical forms has shown that diagonal structure of solvents yield 

better results in term of gains, magnitudes, response and robustness, furthermore, the diagonal 

form of solvents is superior and less complexity in computations. In high performance missile 

design faster responses are needed, control efforts must be minimized, high oscillations are not 

tolerated and of course robustness is a must. According to the above discussion the block state 

feedback with diagonal solvents is the method to choose in this case of design.    
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