
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.3, August 2016 

DOI: 10.5121/ijitmc.2016.4301                                                                                                                       1    

 

ON APPROACH OF ESTIMATION TIME SCALES 

OF RELAXATION OF CONCENTRATION OF 

CHARGE CARRIERS IN HIGH-DOPED SEMI-

CONDUCTOR 

 

E.L. Pankratov
1
, E.A. Bulaeva

1,2 

  

1
Nizhny Novgorod State University, 23 Gagarin avenue,  

Nizhny Novgorod, 603950, Russia 
2
Nizhny Novgorod State University of Architecture and Civil Engineering,  

65 Il'insky street, Nizhny Novgorod, 603950, Russia 

 

ABSTRACT 
 

In this paper we generalized recently introduced approach for estimation of time scales of mass transport. 

The approach have been illustrated by estimation of time scales of relaxation of concentrations of charge 

carriers in high-doped semiconductor. Diffusion coefficients and mobility of charge carriers and electric 

field strength in semiconductor could be arbitrary functions of coordinate. 
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1. INTRODUCTION 
 

To date mathematical theory of mass transport has been elaborated in details [1-5]. However sev-

eral problems attracted an interest. Some of them are: estimation of diffusion coefficient [6,7], 

diffusion length [7,8], charge carrier mobility [9,10]. Some of important characteristics of non-

stationary charge carrier transport are temporal characteristics. The above characteristics attracted 

an interest due to necessity of analysis of performance of semiconductor devices. Traditional way 

to determine time scales of charge carrier transport required determination non-stationary solution 

of appropriate mass transport equation. If parameters of semiconductor (charge carrier diffusion 

coefficients and mobilities et al) and strength of electric field in semiconductor material are inde-

pendent on coordinate, mass transport equation could be easily solved [11,12]. In the common 

case of dependence of the above parameters and the electric field on coordinate exact solution of 

mass transport equation is unknown. Framework this paper we generalized recently introduced 

approach to estimate time characteristics of mass transport. 

 

To illustrate the approach we consider one-dimension transport of charge carriers in a semicon-

ductor material. Diffusion coefficients of charge carriers in the material (diffusion coefficient for 

electrons Dn(x) and diffusion coefficient for holes Dp(x)) are arbitrary functions of coordinate x, 

0≤ x ≤ L. Distribution of electrical potential ϕ  (x) is also arbitrary function of coordinate. We as-

sume, that we consider high-doped material. In this case we can neglect by non-primary charge 

carriers in comparison with primary one. We also assume, that at initial moment of time t=0 a 

distribution of charge carriers is presented in the considered material. With time these distribu-
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tions relaxating to their stationary distributions n (x,∞) и p (x,∞). Main aim of the present paper is 

estimation of relaxation time of stationary distributions of charge carriers concentrations. 
 

2. METHOD OF SOLUTION 
 

Charge carriers concentrations framework drift-diffusion approximation have usually complex 

time dependences. In this situation it is necessary to approximate these time dependences by a 

function with simple time dependence. One of the simplest approximations could be written as: 

( ) ( ) ( ) ( ) ( )( )[ ]xttxaxatx Θ−−+=Θ 11,, 1.0ψ . Let us assume dependence of parameters ( )xa0 , 

( )xa1
 and ( )xΘ on coordinate x, but do not write the argument in future. We determine relaxation 

time of distributions of charge carriers concentrations as interval between moments of initial 

states of the considered concentrations and moment of step-wise changing of the function 

( )Θ,, txψ . We determine values of parameters 
0a , 

1a  and Θ  of approximation function by mi-

nimization of the following mean-squared error 

 

( ) ( )[ ]∫ Θ−=
Nt

tdtxtxCU
0

2
,,, ψ .          (1) 

Here tN is the continuance of relaxation process, ( )txC ,  is the concentration of any type 

of charge carriers. We consider spatio-temporal distributions of concentrations of charge 

carriers as a solution of the second Fick's law 
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Here ( )txj
n

,
r

 is the current density of electrons, ( )txj
p

,
r

 is the current density of holes, q is the 

elementary charge. Current densities include into itself two components: diffusion ( )txj
diff

,
r

 and 

drift ( )txj
dr

,
r

 components. These components could be written as 
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Here ( )x
n

µ  and ( )x
p

µ  are the electron and hole mobilities, ( )xD
n

 and ( )xD
p

 are the diffusion 

coefficients of electron and hole. The second Fick's laws (2) and (3) with account the above ap-

proximations of current densities could be written as 
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Boundary and initial conditions for the Eqs. (4) and (5) could be written as: ( ) ( )xfxn
n

=0, , 

( ) ( )xfxp
p

=0, , ( ) ( ) ( ) ( ) 0,,0,,0 ==== tLjtjtLjtj
ppnn

rrrr
. The Eqs. (4) and (5) are equal to each 

other after replacement ( )xϕ  on ( )xϕ− . It should be noted, that determination relaxation time 

for one type of charge carriers gives a possibility to determine the relaxation time for another type 

of charge carriers. 

 

To determine relaxation time of distribution of concentration of charge carriers we determine op-

timal values of parameters of approximated function ( )Θ,,txψ  by minimization mean-squared 

error (1), i.e by using the following conditions 

 

0
0

=
∂

∂

a

U
, 0

1

=
∂

∂

a

U
, 0=

Θ∂

∂U
.         (6) 

 
The conditions (6) gives a possibility to obtain the following equations for calculation optimal 

value of parameters 0a , 1a  and Θ  

 

( ) Θ+=∫ 10
0

, atatdtxp N

tN

,      (7) 

 

( ) ( ) Θ+=∫
Θ

10
0

, aatdtxp ,                (7a) 

 

( ) 2, 10 aaxp +=Θ .              (7b) 

 
One can obtain analogous relations for concentration of electrons. 

 

We obtain nonlinear equations for estimation of relaxation time. Solution of the equations do not 

attracted any serous problems. Increasing of continuance time 
N

t  leads to some changing of pa-

rameters 
0a , 

1a  and shifting of moment Θ  of step-wise changing of approximation function. 

To obtain analytical relations for relaxation time they are attracted an interest asymptotically op-

timal criteria. Framework the criteria continuance of relaxation time is unlimited, i.e. ∞→
N

t .  

 

The criteria needs in additional condition on parameter 1a : ( ) ( )∞−= ,0,1 xpxpa . One shall de-

termine moment of step-wise changing of approximation function Θ  only. In this situation the 

required relaxation time could be calculated by solution of linear equation, i.e. we obtain linear 

criterion for estimation relaxation time. To obtain analytical solution of system of equations (7), 

(7a) and (7b) we consider them in the asymptotical case ∞→
N

t . To obtain the solution one shall 

to take into account, that in the limiting case a0 became equal to ( )∞,xp . In the same limiting 

case Eq.(7) transforms to the following form 

 

( ) ( )[ ]

( ) ( )[ ]0,,

,,
)( 0

xpxp

tdtxpxp

x
p
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∫ −∞
=Θ

∞

.           (8) 
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In this situation we obtain recently introduced asymptotically optimal approximation of temporal 

dependence of concentration of charge carriers by rectangle with equal square. One can obtain 

from Eq. (7b) another asymptotically optimal criterion to estimate time scales 

( ) ( ) ( )[ ] 2,0,, ∞−=Θ xpxpxp . 

 
However the criterion gives smaller quantity of analytical relations for relaxation time Θ  in com-

parison with rectangle with equal square. It should be noted, that asymptotically optimal criteria 

could be used only for monotonous dependences of concentration on time. If these dependences 

are not monotonous, one shall use solve Eqs. (7)-(7b) in common case. In this situation to obtain 

analytical relations for relaxation time we will consider monotonous dependences of concentra-

tion on time only and will use criterion (8). To calculate relaxation times we use the following 

approach [13-15]. 

 

Let us consider Laplace transformation of concentration and current density of holes 

 

( ) ( )∫=
∞

−

0

,, tdetxpsxY
ts

p
,      (9) 

 

( ) ( )∫=
∞

−

0
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pp
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Analogous relations could be written for concentration and current density of electrons. 

 

Using the Laplace transformation relation (8) and Eqs. (4) and (5) could be written as 
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To calculate relaxation time (12) it is not necessary to know concentration ( )sxY
p

,  and current 

density ( )sxG
p

,  for all values of Laplace parameter s. It is necessary to know the above functions 

for asymptotical values of the parameter 0→s . Let us consider the following power series 

 

...)()()(),(
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ppp
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Substitution the relation (13) into the relation (12) leads to the following result 
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Limiting theorems of Laplace transformation [16] gives a possibility to obtain the following re-

sults 
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In this situation stationary distributions of charge carrier concentration and current density are 

equal to ( )xZ
p

0
 and ( ) 0

0
=xH

p . With account relations (15) the relaxation time (14) could be 

written as 

( ) ( )
( ) ( )∞−

=Θ
,0,

1

xpxp

xZ
x

p

p
.    (16) 

 

To determine relaxation time one shall determine functions ( )xZ
p

0
 and ( )xZ

p

1
. Substitution of the 

series (13) into Eq.(11) gives a possibility to obtain equations for the functions ( )xZ
p

k
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Correlation between functions ( )xZ
p

k
 and ( )xH

p

k
 could be written as 

 

( )
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The first integral of the first equation of the system (17) could be written as 
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The integration constant pc  is equal to zero due to boundary conditions. The second integral of 

the first equation of the system (17) takes the form 

 

( ) ( )xpp pecxZ
β−

=
10
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Here ( )
( )
( )

( )
∫=
x

p

p

p
vd

vd

vd

vD

v
x

0

ϕµ
β . Boundary conditions give a possibility to determine the integra-

tion constant p
c1 . After the determination one can obtain stationary distribution of concentration 

with account of normalization in the following form 
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Here ( ) ( )
vdeL

L
v

p

p

∫=
−

0

β
ρ . Now we determine solution of the second equation of system (17). 

The first integral could be written as 
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Here ( ) ( ) ( )LxLP
ppp

ρρ= . Boundary conditions gives zero values of integration constant p
c2

. 

The second integral of the second equation of the system (17) takes the form 
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We determine integration constant p
c3

 by using boundary conditions and relation (18) 
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The relation could be simplify to the following form 
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Now we have a possibility to obtain the function ( )xZ
p

1
 in the final form 
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After calculation functions ( )xZ
p

0
 and ( )xZ

p

1
 we have a possibility to determine the relaxation 

time (16) 
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Replacement ( )xϕ  on ( )xϕ−  in the relation (24) gives a possibility to obtain relaxation time for 

electrons. If electric field in the considered semiconductor sample is absent, drift terms in Eqs. (4) 

and (5) will be equal to zero. The relaxation time (24) will be also independent on electric poten-

tial ( )xϕ . 

 

Example 1 Let us consider initial distribution of concentration of charge carriers in the following 

form: ( ) ( )
0xxxf −= δ . The initial distribution will be consider for all future examples. In this 

case relation (24) could be written as 
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Maximal relaxation time for the initial distribution could be obtain for 00 =x  and Lx = . In this 

situation one can obtain the following relation for relaxation time 
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If distance between points x0 and x decreases, the relaxation time (27) is also decreases. 

 

Example2 Let us consider the following constant parameters ( )x
n

µ , ( )x
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n
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( ) xddxE ϕ−= . In this situation ( )
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0Exbx −=ϕ . Now we consider only maximal relaxation time because calculation 

in more common case is bulky. In this situation one can obtain the following result 
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It is attracted an interest asymptotic behavior of relaxation times (28)-(29). At small and large 

dimensions of the considered semiconductor sample the relaxation time is linear on L: 

0max
EL

pp
µ=Θ . Analogous asymptotic behavior of relations (28)-(29) are the same at large and 

small values of diffusion coefficients. At the limiting case of small electric field Eqs. (4) and (5) 

will have only diffusion terms and maximal relaxation time will be equal to 
0

2

max
6 DL

p
=Θ .  

 

This result coincides with result, obtained in [13] for zero electric field strength. At the large val-

ue of electric field strength: 0max
EL

pp
µ=Θ . However at large value of E0 dependence of relax-

ation time on E0 will be compensated by nonlinear dependence of charge mobility on field E0: 

EE
crpp 0

µµ =  (the dependence could be used for 
cr

EE 4≥ ), where Ecr is the critical strength of 

electric field. At 
cr

EE =  drift velocity of charge carriers Ev
dr

µ=  became approximately equal 

to heat velocity mkTv
h

2=  (see, for example, [17]). Asymptotical behavior of relations (28)-

(29) at large values of mobilities is analogous to asymptotical behavior at large and small electric 

field.  
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Example 3 Let us consider distribution of electric potential the same as at Boltzmann equilibrium, 

i.e. ( )[ ] cxbxxxa +−−−= 1exp 11ϕ  for x ≤ L/2; ( )[ ] ( )( )[ −−−−−−=
111

exp1exp xLxxxxaϕ  

 ( )] cbxxaxL +−−−
11

exp for x ≥ L/2. Electric field strength, which corresponds to the poten-

tial, could be written as ( ) bxxaE +−=
1

exp  for x ≤ L/2; ( ) bxLaE +−=
1

exp  for x ≥ L/ 2.  

 

Calculation of the relaxation time leads to bulky result. In this situation we will not consider the 

result. 

 

Temporal characteristics of charge carriers transport in semiconductor samples in the case of 

Boltzmann equilibrium electric potential is essentially smaller in comparison with temporal cha-

racteristics for linear distribution of electric potential. 

 

3. CONCLUSIONS 
 

In this paper we generalized recently introduced approach for estimation of time scales of mass 

transport. The approach have been illustrated by estimation of time scales of relaxation of concen-

trations of charge carriers in high-doped semiconductor. Diffusion coefficients and mobility of 

charge carriers and electric field strength in semiconductor could be any functions of coordinate. 
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