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1.   INTRODUCTION 
 

 In 1977, Rivest, Shamir, and Adleman[ 6 ] described the famous RSA algorithm which is based 

on the presumed difficulty of factoring large integers. In 1985, ElGamal [2] proposed a signature 

digital protocol that uses the hardness of the discrete logarithm problem[ 5  p.116 , 7  p. 213 , 8  

p. 228 ]. Since then, many similar schemes were elaborated and published[1,3 ].  

 

Among them, a new variant was conceived in 2010 by the second author[ 4 ].In this work, we 

apply a combination of the new variant of Elgamal and RSA algorithm to build a secure digital 

signature. The efficiency of the method is discussed and its security analyzed.  

 

The paper is organised as follows: In section 2, we describe the basic ElGamal digital signature 

algorithm and its variant. Section 3 is devoted to our new digital signature method. We end with 

the conclusion in section 4. 

 

In the paper, we will respect ElGamal work notations [3]. N , Z  are respectively the sets of 

integers and non-negative integers. For every positive integer n , we denote by ZZ n/  the finite 

ring of modular integers and by 
*)/( ZZ n  the multiplicative group of its invertible elements. Let 

a , b , c  be three integers. The GCD of a  and b  is written as ),( bagcd . We write 

][0.1 ccmba ≡  if c  divides ba − , and cba mod=  if a  is the rest in the division of b  by 

c . The bit length of n  is the number of bits in its binary model, with n  an integer .We start by 

presenting the basic ElGamal digital signature algorithm and its variant:  
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2.  ELGAMAL SIGNATURE SCHEME 
 

 In this section we recall ElGamal signature scheme[2] and its variant[4]. 

 

1. Alice chooses three numbers: 

- p , a large prime integer. 

- α , a primitive root of the finite multiplicative group 
*)/( ZZ p  

- x , a random element of {1,2,..., 1−p } 

 

2. She computes 
xy α=  mod  p . Alice’s public key is ),,( yp α , and x  is her private key. 

 

3. To sign the document m , Alice must solve the problem:  

 

                                                                   (1) 
 

where sr,  are the unknown variables. 

Alice fixes arbitrary r  to be 
k

r α=  mod  p , where k  is chosen randomly and invertible 

modulo 1−p . Equation (1) is then equivalent to:  

 

                                                                           (2) 

 

Since Alice has the secret key x , and as the number k  is invertible modulo 1−p , she calculates 

the other unknown variable s  by  

 

                                                              (3) 
 

4. Bob can verify the signature by checking if congruence (1) is valid for the variables r  and s  

given by Alice. 

 

3.  VARIANT OF ELGAMAL SIGNATURE SCHEME 
 

We present a variant of ElGamal digital signature system. 

 

This variant Error! Reference source not found. is based on the equation:  

 

                                                             (4) 
 

tsr ,,  are the unknown parameters, and ),,( yp α  are Alice public keys. p  is an integer (a large 

prime). α  is a primitive root of 
*

pZ . y  is calculated by 
xy α=  mod  p . x  is a random 

element of {1,2,...,p-1}. 
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Let )(= Mhm , where h  is a hash function, and M the message to be signed by Alice. 

To give the solution (3), she fixes randomly r  as pmodr k
α≡ , and s  to be pmods l

α≡ , 

where lk ,  are selected arbitrary in {1,2,...,p-1}. 

 

Equation (3) is then equivalent to:  

 

                                                  (5) 
 

as Alice recognize the values of xmlksr ,,,,, , she is able to calculate the last unknown variable 

t . 

Bob verify the signature by verifying the congruence (4). 

this system does not use the extended Euclidean algorithm for calculating 1)(  1
−

− pmodk .  

We clarify the scheme by the example given by the creator of this alternative[4].  

 

3.1  EXAMPLE 

 

Let ),,( yp α  be Alice public keys where: 509=p , 2=α  and 482=y . We assert that we are 

not confident if using a small value of α  does not abate the protocol. The private key is 

281=x . Suppose that Alice wants to generate a signature for the document M  for which 

432[508])( ≡≡ Mhm  with the exponents 208=k  and 386=l  are randomly taken. She 

computes ]332[2208 pr k
≡≡≡ α , ]39[2386 ps l

≡≡≡ α  and 1]440[ −≡++≡ plmksrxt . 

 

Bob or anyone can verify the relation ][ psry msrt
≡α . Indeed, we find that ]436[ p≡α  and 

]436[ psry msr
≡ . 

  

4.  OUR PROTOCOL 
  

4.1  DESCRIPTION 
 

 In this section, we describe our new digital signature. The protocol is based simultaneously on 

two hard problems. 

 

We assume first that h  is a public secure hash function like SHA1[5  p. 348 , 7  p. 242 , 8  

p.133 ]. 

 

We suppose that Alice public keys are ),,,( eyP α  where: 

- 12= +pqP , p , q  are three primes. 

- α , a primitive root of the multiplicative group 
*)/( ZZ p . 

- 
xy α=  mod  P , where x  is the private key of Alice, which is randomly taken in  

1}{1,2,..., −P . 
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- Element e  is the public exponent in the RSA cryptosystem. 

 
We propose the following protocol: 
 

If Alice wants to sign the message M , she must give a solution for the modular equation:  

 

                                                     (6) 

where )(= Mhm  mod  p , and r , s , t  are unknown. 

 

To solve equation (5) , Alice starts by putting:  

                                                           (7) 
 

                                                          (8) 

Equation (5)  becomes:  

  

                                                      (9) 
 

Alice uses the new variant of Elgamal algorithm[4] to solve equation (9) and to get the values of 

r′ , s′  and t . 

 

Then with her RSA private key she solves equations (7)  and (8) . The cupel r  and s  is her 

signature for the message M . 
 

Bob or anybody can check that the signature is valid by replacing r , s  and t  in relation (5) . 

 

4.2  EXAMPLE 
 

 Let us illustrate the method by the following example. 
 

Suppose that Alice’s public key is: 104543=1313*167*2= +P , 5=α , 23292=y , 7=e .  

The private keys for RSA and ElGamal systems are respectively: 9502=x  , 7399=d . 

 

Assume that 12345=)(= Mhm  is the hashed message that she likes to sign. 

 

If she takes Randomly 845=k  and 2561=l . 

 

She will find from equation 8  that 17744=r′ , 31839=s′ . 

 

Relation 4  implies 57764=t . 

 

Alice uses (6)  and (7)  to obtain:  
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 r ≡ 1][ −′ Pr d
≡ 75282   

s ≡ 1][ −′ Ps d
≡ 19005 . 

 To verify Bob puts 62833=mod= PA
t

α , 79849=mod= 1mod PyB Per −
, 

83421=mod1)mod(= 1)mod( PPrC Pese −
−  and 212997=mod1)mod(= PPsD me

− , and 

checks if PDCBA mod**= . 

 

4.3  SECURITY ANALYSIS 

 
Now that we have presented the protocol, we will discuss some possible attacks. Assume that 

Oscar is Alice’s opponent. 

 
ATTACK 1: If the attacker try to imitate the computation made by Alice, he can find r  and s , 

but to find t  he needs the value of the private key x  to solve equation 4 . 

 

ATTACK 2: Suppose Oscar is capable to solve the discrete logarithm problem [2]. He cannot 

calculate r  and s  from equation (7)  and (8)  he will be confronted to the factorisation of a 

large composite modulus [5,8]. 

 

ATTACK 3: Suppose Oscar is capable to solve RSA equations (7)  and (8) . Oscar cannot get t  

from equation (9)  since x  is Alice’s secret key. If he tries to get t  from equation (4) , he will be 

stopped by the discrete logarithm problem. 
 

4.4  COMPLEXITY OF OUR ALGORITHM 
 

As in [1], let expT , multT  and hT  be appropriately the time to calculate an exponentiation, a 

multiplication and hash function of a document M . We neglect the time needed for modular 

substraction, additions, comparisons and apply the conversion multexp TT 240= . 
 

 4.4.1 SIGNATURE COMPLEXITY 

 

To sign the message M , Alice must compute the six parameters:  

)(= Mhm mod  P , 
k

r α≡′  ][P , 
l

s α≡′  ][P , 
drr ′≡  1][ −P , 

d
ss ′≡  1][ −P , 

lmskrxt +′+′≡  1][ −P . 

Alice needs to perform four modular exponentiations, three modular multiplications and one hash 

function computation. So the global required time is :  

 

 hmulthmultexp TTTTTT +++ 963=34=1   

 

4.4.2 VERIFICATION COMPLEXITY  
 

Bob should calculate 4  exponentiations, 2  multiplications and one hash function. So the global 

required time is :  

 hmulthmultexp TTTTTT +++ 962=24=2   
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5.  CONCLUSION 
 

In this work, we proposed a new signature protocol that can be an alternative if old systems are 

broken. Our method is based simultanyously on RSA cryptosystem and DLP. 
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