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ABSTRACT

In this paper we generalized recently introduced approach of estimation of time scales of mass trans-
port in inhomogenous materials under influence of inhomogenous potential field. Some examples of
using of the approach were considered.

INTRODUCTION

Elaboration of solid state electronic devices leads to development of new and optimization of ex-
isting technological processes. Due to the elaboration one can obtain increasing of integration rate
of elements of integrated circuits, their reliability and frequency characteristics. To develop new
and optimization of existing technological processes it is attracted of interest estimation of time
characteristics of mass transport: continuance of technological processes and their single steps. It
is also attracted an interest estimation of time characteristics during functioning of electronic de-
vices (for example, switching times of diodes et al). In this paper as a development of works [1-6]
we introduce an approach to estimate time characteristics of mass transport in multidimensional
materials for different boundary conditions. The consider situation gives a possibility to take into
account both technological processes of solid state electronics devices and charge carriers trans-
port during functioning of the above devices. We consider most simple to illustrate the approach
situation of radial symmetry of mass transport in N+ 1-dimensional material (N=0, 1, 2). Diffusion
coefficient D(r) of charge carriers, dopants, et al is an arbitrary function of radius r, 0<r<a. At the
same time an arbitrary distribution of potential profile as a function of radius r, 0<r<a, is also
presented in the considered material. Framework the paper we consider:

(i) a matter (for example, dopant) with known initial distribution C(r,0)=f(r) and unit mass M =1
existing in the considered material with insulated external boundary r=a;

(if) a matter (for example, excess charge carriers escaping the considered material) with known
initial distribution C(r,0)=f(r) and unit mass M =1 existing in the considered material with
drain on external boundary r=a;

(ii7) a source of a matter with constant concentration C(0,f)=C, have been manufactured in central
part of material with drain on external boundary » = a. In this case with time one can find statio-
nary flow of the considered matter (for example, current density of charge carriers).

At initial moment of time (#=0) one can find starting of relaxation of distribution of concentration
of the considered matter. Framework this paper we determine relaxation time of matter as a func-
tion of radius r from center in the considered material. As relaxation time in the case (ii) it is
practicably to consider escape time of mass of matter. In the cases (i) and (iii) we consider the
required time scale as relaxation time of concentration of the considered matter.
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METHOD OF SOLUTION

We determine variation of concentration C(r,f) in space and time as solution of the second
Fick’s law

JC(r,t)

e div[D(n{C(r,1) grado(r)+ grad C(r,t)}|=—divG(r,1) - 1)

Here function G(7,1) is flow of matter. The flow is proportional to gradient of concentration

G(r,t)==D(r)[C(r,t) gradp(r)+ grad C(r,1)]. )
Boundary and initial conditions for Eq.(1) could be written as
) G(0,1) =0, cr0) =f (n. G(a,t) =0;

(i) G(0,1) =0, Cla,n=0, C(r.0)=F (r);
(iii) C(0.0)=Cy, C(a.H)=0, C(r, 0)=0.

We determine relaxation time of distribution of considered matter framework asymptotically op-
timal [5,6] criterion as equal-sized by square rectangle [1-6]

I[C(r,oo)—C(r,t)]dt’
C(r,oo)—C(r,O)

(i) and (iii) (3)

(i) @, =M (0)M(t)dt- )

Here Oc(r) is the relaxation time of concentration of matter, ®,, is the escape time of mass of
matter. Mass of matter could be estimated by integration of appropriate concentration

M(t)=[C(r,t)dV - )

Here V is the volume of localization of matter. Accounting of radial symmetry transforms the
above relation to the following form

Here yis angle normalization. ¥is equal to unity in the one dimensional case; ¥is equal to 27 in
the two dimensional case; ¥is equal to 4in the two dimensional case.

It should be noted, that criterion for estimation of relaxation time as equal-sized by square rectan-
gle could be used for analysis of monotonous in time concentration of matter [6]. If concentration
of matter is nonmonotonous in time, it should be used the recently introduced nonlinear criterion
[5,6].
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To calculate the relaxation times by using the criteria Egs. (3) and (4) we used the Laplace trans-
formations on time of concentration, mass and flow of matter [7]

M(s)=[M@e"dr Y(r.s)= TC(VJ) edt, G(r,s)= TG(r,t)e'”dt.

The Laplace transformations of the Eq. (1) and relations (3) and (4) with account initial con-
ditions could be written as

divD(r)| grado(r) Y (r,s)+ grad Y(r,s)|-sY (r,s) =—f(r). (6)

®, () =lim - =35 Q)
=0 s[C(r,00) = C(r,0)]

®, =limM(s). (8)

It should be noted, that it is not necessary to calculate concentration, mass and flow of matter dur-
ing determination the relaxation times (7) and (8) for all values of the Laplace parameter s. They
are attracted an interest only asymptotic behaviors of the above values for s—0. Let us to decom-
pose functions s¥(r,s) and s G(r,s) in area of small values of parameter s into the following power
series

sY(r,s)=Z,(r)+sZ,(r)+5°Z,(r)+.... sG(r,s)=H, (r)+sH (r)+s*H,(r)+... (9)
Substitution of the series (9) into relations (7) and (8) leads to the following result

C(r,0)-2,(r)-s2,(r)-s2,(r)-...

o{r)=lin s [Clre0) = C(r0)]
©=1im L[ (2, (1) +5Z,(7+5°Z, (1) +..) d r- (11
550 Ky Y

Limiting theorems of Laplace transformation [7] gives a possibility to obtain the following rela-
tions

limsY (r,5) = C(r,e0) =Z,(r)» imsG(r,s) = G(r,e0) = H,(r)- (12)

In this situation stationary values of flow and concentrations of matter are equal to Hy(r) =0
and Zy(r). Calculation of limits of (10) and (11) with account relations (12) gives a possibility to
transform relaxation times (7) and (8) to the following form

@C(r)zi’"), (13)
(N =2,(r)
®, =7r'z(r)dr- (14)

0

To determine relaxation times one shall calculate functions Zy(r) and Z;(r). Substitution of the
relation (9) into the equation (6) gives the following system of equations for the functions Z(r)
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and H(r)
i}\,i I"ND(r) dLm+dLMZO(r) =0
rdr| dr dr
- (15)
oD 204000, |2, 0)- )
rdr| dr dr
ii rND(}"){de(r)‘i'd(D(r)'Zk(r)}:|=Zk-1(r)’ k>2
rdr| dr dr
Functions Z(r) and H,(r) are correlated by the following relation
de(r)+d¢(r)Zk(,,):_L(”). (16)
dr  dr D(r)

The first equation of the system (15) could be solved by using standard approaches. Function
Zy(r) for different boundary and initial conditions could be written as
for the case (i)

Zo(n=e* "Nyu(a),

where ,U (a) = ]{rNeﬂ”(r)d s
0

for the case (i) Zy(r)=0,
for the case (iii) Zo(N=Coe? O Olu (a)-u (N (a).

The second equation of the system (15) could be solved by using standard appro-aches. Function
Zy(r) for different boundary and initial conditions could be written as

for the case (i) 7 ()= e“’("}UQ(V)F (v)dv— lQ(v)I V)F(v)dv-
oW 0)av+ 16 o)y a7
v Vo

where, Q(r)=e?"/*"D(r), F(x) =TVNf(V)d Ve S§(r)= jQ(V)dV/TQ(Y)d v I()=p (1 p1.(a),

0

ew(v) N
N , (18)
vND(v)J(;u flu)dudv

for the case (if) Z,(r)= e""(")j

for the case (ii1) 7 ()= C(,e“’“”“’(”[f o(y)v'e " [0(x)d xdvd y-
0 0 v

a

-sifol)yefoWdxavay|/fo0dy- (19

0 v

Substitution of functions Zy(r) and Z,(r) into relations (13) and (14) gives a possibility to obtain
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relations for relaxation times in the following form

a

or the case (i r)= 1 a v)r\v)dv—
forthecase 0, (1)= o7 7l Q0IFG)a

r

—J’zﬂ(V)Q(V)F(V)dV—TQ(V)ﬂ(V)dV+EI(V),U(V)Q(V)dV}’ (20)
o)
0, = 1<) by ay.
w=17] v D () (v)d v
for the case (ii) 0 :},Teq)(V)ﬂ(V)F(v)dv, (21)
M VYD (v)

y

for the case (iii) @ (r) = [S (r)TQ(y)ije"”(")TQ(x)d xdvdy—

0 0

—iQ(y)I vNe‘¢(")ifQ(x)dxd vd y}/jQ(v)d v (22)

EXAMPLES OF CALCULATION OF RELAXATION TIME

Example of initial distribution

For materials without source we consider the following initial distribution of matter: f (r)=9 (v).
In this case relaxation times (20) and (21) could be written as

forthe case ) ©, ()= 7] u()Q0)d v~ u(a) Qb)dv+

+foWu(v)dy —(T)I Vu)ov)d v} (23)
for the case (ii) 9,,= J’T,U )ov)dv- (24)

In future we will use only considered initial distribution of matter.

Example of potential profile 1

We consider free diffusion, when potential profile is constant for any point of material ¢ (r)=@,.
In this case relaxation times (22)-(24) will not dependent of potential. In this case these relaxation
times (22)-(24) could be written as
; aydy ya™ae dv
for the case (1) @_ ()= /4 f _7 - +
N+1:D(v) N+1:v"D(v)

1 il[ vdv _ 1 il[vmzdv’ (25)
0

+
N+1:D(v) (N+1)a""s D(v)
for the case (i) o -7 }Vd", (26)
" N+19D(v)
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for the case (iii) 0.(r)= {B deDV(VJ I VNG;V( )]i < 1 X

v)o y"D(y)

)ve wdxdvdy ol wdxdvdy| /¢ dv . 2
o e e L D()}MD(V) 7

In the simplest case of constant diffusion coefficient D(r)=D, relations (25)-(27) takes the form

. s N+ _I=N _ =N
for the case (i) @_(r)= 2(Na+71) 7a(1 (N )Dr .
0 0
+ - ] a’ ,N#1 (28a)
2(N+1)D, (N +1)N +3)D,

2 22 2
®,(r)="%|1- 2ln[ ] 441 _ 2 . N=l (28b)

4D, r)|" 4D, 8D,
for the case (ii) 0 = ya’ | (29)

" (N+1)D,
for the case (iii) @C(r): ( — 1] ) {(;lzv]c\l;)((l?’_ NN))_ Zzal;)+ 3;31}\/\1} 300
a - + - + -
2
0.(r)=—" ln(“j,Nﬂ. (300)
4a°D, r

The relation (28) shows that the relaxation time of a matter concentration or mass in a material
with insulated external boundaries increases with increasing of value of radius r. At small values
of radius r concentration of the matter lose monotonous behavior in time. In this case to deter-
mine the relaxation time it should be used recently introduced nonlinear criterion. Dependence of
the relaxation time (30) is nonmonotonous function of radius with zero values on external boun-
dary of the material r=a at zero value of radius r (i.e. at r =0).

In the present time one could find wide using different multilayer structures (see, for example,
[8]). We consider simplest multilayer structure with diffusion coefficient D(r)=D[1(r)-1(r-
ri)]+D,1(r-ry), where 1(r-@) is the unit step-wise function [7]. In the considered materials, which
includes into itself the above two layers, the relaxation times (25)-(27) could be written as

the case (i)

1+y (P a* -7 1
0. (r<r,N#1)= NS - «
wlr<n.N#1) 2(1+N)(D D 14 N)B+N)

2

O A A Y A Bt S I (la)
D D 1-N°\ D, D 2(N+1)D

1 2
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2 22 2
®c(s(r>rpN¢1)= ! 7/7”1_}_(1"!‘7)61 nmer
2(N +1) D,

(aN+3 _ rN+3) }/aNH (al—N _ rl—N) (31b)

—_ —_ s

a"'(1+N)3+N)D, 1-N* D

2 2 2 4 4 4
O.,(r<rN=1)="1_ 4220 77 U+y)=r~r —% /A /T
4D, 4D, 8a’\ D, D,

_va {1111 H+;ln (H (31¢)
2 | D r D, r,

' 4| D, D,
_ (5 a=r -7“211{“)- r (31d)
8a’\ D, D, 2D, \r) 4D,
2 2 .2
for the case (ii) e, =N+ L L0, (32)
2\D, D,
for the case (iii) g (r<r N;tl) D”]N
cor o D, +D,(a 21+N
_azrll—zv+r]1—Na2+r]2a1— _2r]3N (3 N) _N r [rl ND +( ]Nr]N)]_
D; DD, D; D; 2(1+N)D, D,
3-N
o DD, . (33a)
2B3-N)D? [ (™ =)D, +(a™ = '™ )D,

®C5(r>rl,N¢1)={

Dzrll—N + Dl (rl - N) 1 27’12 (a1—1v _ rl—N) ’,13—N
)2

+1—+
D™ +D(a™ —r™) 2(1+N) DD, D
. a - r}zal—N 1 Yot r'& N . r]]—N (az _ r]z) ~ rl‘Hv B (rz _ rlz)rll—zv B
Dj DX(2- 2( )D? | 2DX(1+N)
o a1 o e ) W R (. N
2(1+ N)D!D; D.D,(1+ N) 2B-N)(1+ N)D;
_ rr _ (’"H] - ’GH)_'_ h (”] - )} D, , (33b)
(+N)DD, 23-N)D} 20+N)D; |a™ —r"
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2 2 2 2 2
O, (r<rN=1)= Fnnla_ 7 m['ﬁj_azm[ﬁjﬂﬁ”ln@/@ 7l
4D; 4DD, \a) 4D, \a 8D,
D,Inr/r, _r2(1+1nr1/r)_r21na/r1 DD, , (33¢)
D,Ina/r,+ D, Inr/r, 4D} 4D D, | D,Inr/r+D,na/r,

1

2 2_n2
®C§(r>r]’N:1)={DzlnrlD]lnr/r]+D21nr1/a{rl{3 In (a]+l}+a4 21 In [a]+
h

D/Ina/r,+D,Inr;/r | 4D} r

1

2DD, 2D} 2DD, 2D} 4D?

1 1

rflna/rl+ r +a2—2rf (az—rlz)lna/r]_‘_az—rlz(l+lna/r])}+r2—r2

_}qzln}]/r+}qzlna/)]+r2—r2 a +,,2_,,121n£_,,2_,,2 rlzln(r/rl)}

“ln————
4D} 4DD, 2D} r 8D} 4D} r 8D}  4DD

1

r

o () @3

In the case, when D =D, relations (31)-(33) coincide with relations (28)-(30). It could be shown,
that increasing of number of layers in the considered multilayer structure leads to averaging of
spatial distribution of diffusion coefficient and possibility to approximate the distribution by it’s
average value D, [9].

Example of potential profile 2

Now we consider linear dependence of potential profile of radius ¢ (r)=a r+@,. In this situation
fully analytical integration in relations for relaxation time (20)-(22) could be done only for one-
dimension case (N=0). In the case of larger dimensions relations for relaxation time depend on

the following functions E(r)= jv"e“"d v and E'(r)= = jv’le"”d v, which are not integrating
0 0

analytically [10]. Relations for relaxation times for linear potential and constant diffusion coeffi-
cient D(r)=D, could be written as

for the case (i) @Cs(r,N =0)=

2

ID lwa(2y+1)=(y+1)e* -

aa

—2y+ e +a(r—a)-< _el —j—aa}, (34a)
—e

0 (r.N =1)=——{Ela)- pinlaa)-alali+7)=r]-E()1-7)-

—1In j)+ ye(l+aa)E(a)- E(r)]} ! [l—e"’“ —aae +2(1-¢)-

_aZDO
—2aa+E (a)-n(za)+E(@)|l-e* -aae™)", (34b)
o (rN =z)=}{zE(a)(1+ N+ a(aye1)-2pmn(aa)+ &t
a’'D, aa ar
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] —A1—e)E(a)-E(r)]+ y(1+ aa)ge“"’”’ —y+

-aa

1-e
ar

a—r

+2

+ar— ye“'(

ar

+2E(r)+20°a*y[E(a)- E(r)lch(aa)}-

2

! {2(-¢“)-aa(l+aa)e™ +
a’D,

de ™ +i—4e—m—4[l—e'““ —aae"’“]+ 4(e"“ —1)+

4(l-e)-4E (a)-
+ali-e) (@) a’D, aa «a

+E(a)+4aa+8E (a)- 81n(0!a)}[2(1—e'““)— aae™(aa+ 2)}1, (34¢)

for the case (ii) 0,,(N=0)= ye“"—le—aa’ (35a)
a 0
E(a)-In(aa)-aa
e,,(N=1)=y T : (35b)
o (N=2)=2 12| ¢E(a)-*- L2 _Inl@a)_ | (35¢)
e a’D, |« a| aa «
1
for the case (iii) @ (r,N =0)= X
o ) aDO(e““—e“)
X [Ee: _3({62"“ —1}— 2a0e™ )— (e"(“") +e” —e™ —1)— ra(e‘” +e” )}’ (36a)
% —

OclrN =1):§8Ive; iyem[E(“)—E(y)]d ydv—
_ivep iyem[E(a)—E(y)]dydw (36b)

NIKsY

e e P B

+21na/r+e_e_aE(a)}_aTe 2 fsz(v)dvdy}—
r 0

a’ a y o

1 je” =1 |e* r re
_ £ 2 _ 2 -av . (36¢)
Do{ S +[ p aE(a)}[a 2aE(r)} { = {v E(v)e™dvd y}

Decreasing of the parameter « leads to decreasing difference between relations (34)-(36) and
(28)-(30).
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CONCLUSION

In this paper we generalized recently introduced approach of estimation of time scales of mass
transport in inhomogenous materials under influence of inhomogenous potential field. Some ex-
amples of using of the approach were considered.
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