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ABSTRACT 

 

In this paper we generalized recently introduced approach of estimation of time scales of mass trans-

port in inhomogenous materials under influence of inhomogenous potential field. Some examples of 

using of the approach were considered. 
 

INTRODUCTION 
 

Elaboration of solid state electronic devices leads to development of new and optimization of ex-

isting technological processes. Due to the elaboration one can obtain increasing of integration rate 

of elements of integrated circuits, their reliability and frequency characteristics. To develop new 

and optimization of existing technological processes it is attracted of interest estimation of time 

characteristics of mass transport: continuance of technological processes and their single steps. It 

is also attracted an interest estimation of time characteristics during functioning of electronic de-

vices (for example, switching times of diodes et al). In this paper as a development of works [1-6] 

we introduce an approach to estimate time characteristics of mass transport in multidimensional 

materials for different boundary conditions. The consider situation gives a possibility to take into 

account both technological processes of solid state electronics devices and charge carriers trans-

port during functioning of the above devices. We consider most simple to illustrate the approach 

situation of radial symmetry of mass transport in N+1-dimensional material (N=0, 1, 2). Diffusion 

coefficient D(r) of charge carriers, dopants, et al is an arbitrary function of radius r, 0≤r≤a. At the 

same time an arbitrary distribution of potential profile as a function of radius r, 0≤r≤a, is also 

presented in the considered material. Framework the paper we consider: 

 

(i) a matter (for example, dopant) with known initial distribution C(r,0)=f (r) and unit mass M =1 

existing in the considered material with insulated external boundary r = a; 
 

(ii) a matter (for example, excess charge carriers escaping the considered material) with known 

initial distribution C(r,0)=f (r) and unit mass M =1 existing in the considered material with 

drain on external boundary r  =  a; 
 

(iii) a source of a matter with constant concentration C(0,t)=C0 have been manufactured in central 

part of material with drain on external boundary r  =  a. In this case with time one can find statio-

nary flow of the considered matter (for example, current density of charge carriers). 
 

At initial moment of time (t=0) one can find starting of relaxation of distribution of concentration 

of the considered matter. Framework this paper we determine relaxation time of matter as a func-

tion of radius r from center in the considered material. As relaxation time in the case (ii) it is 

practicably to consider escape time of mass of matter. In the cases (i) and (iii) we consider the 

required time scale as relaxation time of concentration of the considered matter. 
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METHOD OF SOLUTION 
 

We determine variation of concentration C(r,t) in space and time as solution of the second 

Fick’s law 

 

{ }[ ] ),(),()(),()(
),(

trGdivtrCgradrgradtrCrDdiv
t

trC r
−=+= ϕ

∂

∂ .                               (1) 

 

Here function ),( trG
r

 is flow of matter. The flow is proportional to gradient of concentration 

 

[ ]),()(),()(),( trCgradrgradtrCrDtrG +−= ϕ
r

.                                  (2) 

 

Boundary and initial conditions for Eq.(1) could be written as  

(i) 0),0( =tG
r

, C(r,0) =ƒ (r), 0),( =taG
r

; 

 (ii) 0),0( =tG
r

, C(a,t)=0, C(r,0)=ƒ (r); 

 (iii) C(0,0)=C0, C(a,t)=0, C(r, 0)=0. 

 

We determine relaxation time of distribution of considered matter framework asymptotically op-

timal [5,6] criterion as equal-sized by square rectangle [1-6] 
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( ) ( )

( ) ( )0,,
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∫ −∞
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(ii)             ( ) ( )∫=Θ
∞

−

0

1 0 tdtMM
M

.             (4) 

 

Here ΘC(r) is the relaxation time of concentration of matter, ΘM is the escape time of mass of 

matter. Mass of matter could be estimated by integration of appropriate concentration 

 

( ) ∫=
V

VdtrCtM ),( .                            (5) 

 

Here V is the volume of localization of matter. Accounting of radial symmetry transforms the 

above relation to the following form 
 

( ) ( )∫=
a

N
rdtrCrtM

0

,γ . 

 

Here γ is angle normalization. γ is equal to unity in the one dimensional case; γ is equal to 2π in 

the two dimensional case; γ is equal to 4π in the two dimensional case. 

 

It should be noted, that criterion for estimation of relaxation time as equal-sized by square rectan-

gle could be used for analysis of monotonous in time concentration of matter [6]. If concentration 

of matter is nonmonotonous in time, it should be used the recently introduced nonlinear criterion 

[5,6]. 
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To calculate the relaxation times by using the criteria Eqs. (3) and (4) we used the Laplace trans-

formations on time of concentration, mass and flow of matter [7] 

∫=
∞
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)()(ˆ tdetMsM
st , ∫=

∞
−

0

),(),( tdetrCsrY
st , ∫=

∞
−

0

),(),(ˆ tdetrGsrG
st . 

 

The Laplace transformations of the Eq. (1) and relations (3) and (4) with account initial con-

ditions could be written as 
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It should be noted, that it is not necessary to calculate concentration, mass and flow of matter dur-

ing determination the relaxation times (7) and (8) for all values of the Laplace parameter s. They 

are attracted an interest only asymptotic behaviors of the above values for s→0. Let us to decom-

pose functions sY(r,s) and s G(r,s) in area of small values of parameter s into the following power 

series 
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Substitution of the series (9) into relations (7) and (8) leads to the following result 
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Limiting theorems of Laplace transformation [7] gives a possibility to obtain the following rela-

tions 
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In this situation stationary values of flow and concentrations of matter are equal to H0(r) = 0 

and Z0(r). Calculation of limits of (10) and (11) with account relations (12) gives a possibility to 

transform relaxation times (7) and (8) to the following form 
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To determine relaxation times one shall calculate functions Z0(r) and Z1(r). Substitution of the 
relation (9) into the equation (6) gives the following system of equations for the functions Zk(r) 
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and Hk(r) 
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Functions Zk(r) and Hk(r) are correlated by the following relation 
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The first equation of the system (15) could be solved by using standard approaches. Function 

Z0(r) for different boundary and initial conditions could be written as 

for the case (i)  

 

   Z0(r)=e
-ϕ  (r)

/[γ µ (a)], 
 

where ( ) ∫= −
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rN
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)(ϕµ ; 

 

for the case (ii)     Z0(r)=0, 
 

for the case (iii)   Z0(r)=С0e
ϕ  (0)-ϕ   (r)[µ (a)-µ  (r)]/µ (a). 

 

The second equation of the system (15) could be solved by using standard appro-aches. Function 

Z0(r) for different boundary and initial conditions could be written as 
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for the case (iii) ( ) ( ) ( ) ( ) ( ) ( )
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Substitution of functions Z0(r) and Z1(r) into relations (13) and (14) gives a possibility to obtain 
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relations for relaxation times in the following form 

for the case (i) ( )
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for the case (iii) ( ) ( ) ( ) ( ) ( )
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EXAMPLES OF CALCULATION OF RELAXATION TIME 

 
Example of initial distribution 

 

For materials without source we consider the following initial distribution of matter: f (r)=δ (r). 

In this case relaxation times (20) and (21) could be written as 
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for the case (ii)          ( ) ( )∫=Θ
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In future we will use only considered initial distribution of matter. 

 

Example of potential profile 1 

 

We consider free diffusion, when potential profile is constant for any point of material ϕ (r)=ϕ0. 

In this case relaxation times (22)-(24) will not dependent of potential. In this case these relaxation 

times (22)-(24) could be written as 
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for the case (iii)     ( )
( ) ( ) ( )
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In the simplest case of constant diffusion coefficient D(r)=D0 relations (25)-(27) takes the form 
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for the case (ii)    
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for the case (iii) ( )
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The relation (28) shows that the relaxation time of a matter concentration or mass in a material 

with insulated external boundaries increases with increasing of value of radius r. At small values 

of radius r concentration of the matter lose monotonous behavior in time. In this case to deter-

mine the relaxation time it should be used recently introduced nonlinear criterion. Dependence of 

the relaxation time (30) is nonmonotonous function of radius with zero values on external boun-

dary of the material r=a at zero value of radius r (i.e. at r =0). 

 

In the present time one could find wide using different multilayer structures (see, for example, 

[8]). We consider simplest multilayer structure with diffusion coefficient D(r)=D1[1(r)-1(r-

r1)]+D21(r-r1), where 1(r-α) is the unit step-wise function [7]. In the considered materials, which 

includes into itself the above two layers, the relaxation times (25)-(27) could be written as 

the case (i) 
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for the case (ii)     ( ) 
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for the case (iii) ( )
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In the case, when D1=D2, relations (31)-(33) coincide with relations (28)-(30). It could be shown, 

that increasing of number of layers in the considered multilayer structure leads to averaging of 
spatial distribution of diffusion coefficient and possibility to approximate the distribution by it’s 

average value D0 [9]. 

 

Example of potential profile 2 

 

Now we consider linear dependence of potential profile of radius ϕ (r)=α  r+ϕ0. In this situation 

fully analytical integration in relations for relaxation time (20)-(22) could be done only for one-
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Decreasing of the parameter α leads to decreasing difference between relations (34)-(36) and 

(28)-(30). 
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CONCLUSION 
 
In this paper we generalized recently introduced approach of estimation of time scales of mass 

transport in inhomogenous materials under influence of inhomogenous potential field. Some ex-

amples of using of the approach were considered. 
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