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ABSTRACT 
 

Data collection is an essential, but time-consuming procedure in ecological research. An algorithm was 

developed by the author which incorporated two important computer vision techniques to automate 

butterfly cataloguing. Optical Character Recognition is used for character recognition and Contour 

Detection is used for image-processing. Proper pre-processing is first done on the images to improve 

accuracy of character recognition and butterfly measurement. Although there are limitations to Tesseract’s 

detection of certain fonts, overall, it can successfully identify words of basic fonts. Contour detection is an 

advanced technique that can be utilized to measure an image. Multiple mathematical algorithms are used 

to calculate and determine the precise location of the points on which to draw the body and forewing lines 

of the butterfly. Overall, 92% accuracy are achieved by the program for the set of butterflies measured.  
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1. INTRODUCTION 
 
Data collection is an important step of scientific research, especially in ecological and 

evolutionary studies. Scientists must gather a large amount of data to perform analyses of certain 

species and support their hypotheses. Much of the information is still contained in physical books 

that include images and descriptions. The traditional way to digitize the data is to manually 

measure the body sizes of organisms from these images and type the information into documents 

and spreadsheets. However, this method is time-consuming and inefficient. It requires a lot of 

manpower and is also prone to inaccurate measurements due to human errors.  

 

During my Earth Science internship at Stanford University, one of my tasks was to go through 50 

books, measure the forewing and body length of thousands of butterflies, extract taxonomic 

information about each species, and record everything in an Excel spreadsheet. The data 

collection process not only requires knowledge of Lepidoptera classification, but also needs focus 

and patience. Two interns can only measure 300 butterflies in three hours.  

 

My internship experience inspired me to search for efficient ways to automate the data collection 

process. While studying computer vision with Professor Susan Fox, I realized the application of 

computer vision would be the perfect solution to optimize the data collection process for 

ecological research. The goal of my project is to employ computer vision techniques to facilitate 

mass data collection and measurement. With computer vision, the ecological data catalogue 

process can be sped up significantly.  
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2. BACKGROUND INFORMATION 

 

2.1. What is Tesseract? 
 

Tesseract is an open-source Optical Character Recognition (OCR) engine that can detect 

approximately 100 languages [1]. In this project, pyTesseract [2], a Python wrapper for Google’s 

Tesseract-OCR Engine, is implemented for character detection. Tesseract follows a step-by-step 

process for character detection. The first step is a connected component analysis to organize 

character outlines into “Blobs.” Text lines are then found and broken into words based on the 

spacing between words. Character recognition is described as a “two-pass process”: the first pass 

involves recognizing each word and passing it to an adaptive classifier as training data, while the 

second pass recognizes words again to ensure that the all words are well-detected [3]. 

  

2.2. How are the butterflies measured? 
 

Two measurements are taken to quantify the butterfly’s body size. The first is the forewing length 

(or basal-apical length) which extends approximately from the upper half of the butterfly body to 

the outer edge of the butterfly’s forewing as shown below. The second is the butterfly’s body 

length which starts right below the butterfly’s head and ends at the tip of the body. (In my 

program, the body length will be measured from the top of the head to the end of the body.) 

 

 
Figure 1. Measurements taken for a butterfly 

 

 

2.3. How  are the butterflies typically displayed in books? 
Figure 2 is a mock-up example showing how the butterflies are displayed in books. The data 

recorded about the butterflies include but are not limited to: the book in which the butterflies are 

displayed, the butterfly’s family, genus, species, subspecies, authority, authority year, sex, page 

number, figure number, magnitude or scale, forewing length, and body length. The characteristics 

of the butterfly are often displayed beside or below the butterfly’s images. Other descriptions of 

the butterfly’s habitat and behaviours are sometimes included in the books, but unnecessary for 

data collection about the butterflies’ body sizes. 
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Figure 2.  A mock-up examples of a typical butterfly display in books 

 

2.4. Related Work 

 
In past studies of computer vision, butterflies were never detected and measured for ecological 

studies. However, fish have been  studied and measured quite often to automate the inefficient 

manual sorting of fish. D.J. White, C. Svellingen, and N.J.C. Strachan [4] detected the principal 

axis of the fish by finding the two furthest points on the outline of a fish, an idea I implemented 

into my own project to determine the butterfly’s forewing length. 

 

Various interesting methods were proposed for text detection, including Support Vector Machine 

(SVM), K-Nearest Neighbor (KNN), Neural Networks, and Tesseract for OpenCV. SVM, KNN, 

and Neural Networks all implement machine learning techniques to train the system to recognize 

letters and symbols. SVM [5] is a discriminative classifier defined by a hyperplane that maximizes 

the margin of training data to find the best match between the characters with which the classifier 

has been trained and the character needing recognition. Yafang Xue [6] implemented SVM 

classifiers as one method of OCR, but the algorithm accuracy reached only 83%. P. Kumar, N. 

Sharma, and A. Rana [7] measured a 94.8% accuracy for the SVM Classifier, but only 80.96% 

accuracy for Neural Networks. KNN [8] is another classification algorithm which locates the 

“nearest neighbor,” or most similar match, in the training data to the character needing recognition. 

The data collector can gauge how many, k, neighbors should be detected for matching. While 

SVM and KNN are simple machine learning algorithms for character recognition, the process for 

training the classifiers is arduous; one needs to train the system for each character and font to 

ensure the highest accuracy. After reading a study from K.M. Sajjad [9] about Tesseract in 

automatic license plate recognition, I decided that using Tesseract in my project would be the 

fastest, most accurate OCR method, since the character recognition is already implemented into the 

engine.  

 

The papers by Xue, Sajjad, White, and Kumar also presented effective pre-processing techniques, 

such as binarization, color thresholding, and resizing, that were applied to my butterfly images. 
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3. SOLUTION 
 
Two main computer vision techniques were investigated for this project 

: 

1. Optical Character Recognition (OCR): to read the taxonomic information of butterflies 

2. Contour Detection: to process the images of butterflies 

 

Optical Character Recognition is the conversion of typed, printed, or handwritten texts into 

machine-readable texts by a computer. I integrated an existing OCR Engine called Tesseract to 

conduct the character identification. The butterfly descriptions and measurements are then 

scanned and input into columns of a spreadsheet using the openpyxl library in Python. 

  

Contour Detection was necessary to isolate the shape of the butterfly and locate the points on the 

butterfly from which to measure their body and wing lengths. Multiple mathematical methods are 

used to help calculate and detect the locations for measurement. Although I used butterflies as a 

proxy for measurement, any object can be measured with computer vision.  

 

The solution is divided into two phases: (1) character recognition and (2) butterfly measurement 

and detection. Phase one incorporates Optical Character Recognition (OCR) to recognize and print 

the characters in the image, while Phase two manipulates various Python functions and libraries to 

detect contours, measure linear distances on butterflies, and enter data into a spreadsheet. The two-

phrase solution can be applied to scientific research for automated and efficient data collection. 

 

3.1 Character Recognition 
 

Figure 3 is the  flow-chart to show how character recognition is implemented. 

 

 
Figure 3. Character Recognition flow-chart 

3.1.1 Pre-processing 
 

Pre-processing is necessary to enhance the features of an image. Listed below are the pre-

processing techniques that I implemented. 

 
1) Gray-scale: The first step is to convert the image to a gray-scale image which only uses one 

channel and eliminates extraneous color information. Feature detection is improved, and 

noise is reduced as a result. 

2) Binarization: Binarization converts the image to black and white using a threshold value. 

Binary thresholding sets values above the threshold to the max value (white), and values 

less than or equal to the threshold to zero (black). 

3) Resize: The next step is to resize the dimensions of the image to two times the original. By 

testing the code, I found that scaling the text larger makes the character recognition 

more accurate. The font size is assumed to be around 10-12 points. 
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4) Erosion: The following pre-processing step is erosion, which adds a layer of pixels to the 

image and thickens the text. 

5) Sharpening: The final pre-processing step is sharpening. Sharpening is used to enhance the 

edges and features of each character. For example, I found that with one text, the program 

would confuse the letter ‘1’ and the symbol ‘]’. After image sharpening, the program was 

able to make the distinction. 

 

 
 

Figure 4. Result of each step of pre-processing 

 
3.1.2. Optical Character Recognition  
 

In the second half of the character recognition process, the program utilizes Tesseract, an 

open-source Optical Character Recognition (OCR) engine. Developed by HP in 1985, 

Tesseract is currently one of the most accurate OCR software tools. 

 
3.1.3. Test the Program 
 

I tested the program with three different fonts: sans-Serif (Calibri), Serif (Times New Roman), 

and Lucida Calligraphy to analyze the different ways the type of font can affect the accuracy. I 

also included narrow (Arial Narrow), italicized, bold, all capitalized, colored, and highlighted 

text, the full alphabet, and a text comparison for further analysis.  

 

The standard text I use for the tests is:  

 

Species: Danaus 

Genus: Plexippus 

Authority: Shannon 2017 

 

Shown in the table (Table 1) below are the results for each font type and characteristic added to 

the text. Note that kerning and line spacing are detected by Tesseract. All text was written in size 

12 font. Serif font was written in Times New Roman and Sans-Serif was written in Calibri.  
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Table 1. Final results of OCR in the program 

 

Sans-Serif – regular 

 

Sans-Serif -- all capitalized 

 

Serif – regular 

 

Serif -- all capitalized 

 

Lucida calligraphy – regular 

 

Lucida calligraphy -- all capitalized 

 

Arial narrow – regular 

 

Arial narrow -- all capitalized 

 

Italicized -- Sans-Serif, regular 

 

Bold -- Sans-Serif, regular 

 

Full Alphabet – Serif 

 

Full Alphabet -- Sans-Serif 

 

Red Text -- Sans-Serif 

 

Yellow Highlight -- Sans-Serif 

 

Results on August 19, 2017 

Lucida Calligraphy (top), Serif, Sans-Serif, 

Arial Narrow (bottom) 

 

*Note the text is different in this example. 

Results on August 26, 2017 

Serif (top), Sans-Serif, Lucida Calligraphy, 

Arial Narrow (bottom) 

 
*Note the text is different in this example. 



The International Journal of Multimedia & Its Applications (IJMA) Vol.10, No.1/2/3, June 2018 

7 

 

In general, simple fonts (Times New Roman, Calibri, and Arial Narrow) are more accurately 

recognized by the program. Text written in all capitals produced more incorrect results compared 

to text written regularly. Sans-Serif fonts, written regularly, were all recognized by Tesseract. 

When the Sans-Serif text is written in all capital letters, the software produced some errors (e.g. in 

the word ‘Plexippus’).” Serif fonts, written both ways, are accurately detected. There is again 

only one small error in the word “Plexippus,” when written in all capitals. Recognition of fonts 

with ornamentation, such as Lucida Calligraphy, produced the most inaccurate results, with no 

words being detected correctly. Narrow spacing between letters (Arial Narrow) did not hinder the 

program’s detection; this text was actually detected with the best accuracy.  

 

I input the full alphabet to see whether the program could detect all letters with the two most 

basic Serif and Sans-Serif fonts. Both fonts’ recognition produces the same results, with both c’s 

replaced with o’s. I then tested the program with italicized, bolded, colored, and highlighted text. 

Italicized and bolded text had no effect on the program, beside the small error in “Plexippus” 

where ‘l’ was confused with ‘i’ for the bold text. This may be because the bolding over-thickened 

the characters (which were already thickened during the eroding during pre-processing). The 

color and background color of the text did not affect the program’s character detection because 

color information was eliminated in the pre-processing. 

 

I found it interesting that the results of the text recognition changed when recorded on separate 

days. The earlier results show errors in both Times New Roman and Lucida Calligraphy text. The 

later results produce errors only in the Lucida Calligraphy text, but the errors are in different 

characters. The printed text also showed differences in line spacing. Recognition of Times New 

Roman and Lucida Calligraphy text is improved, while recognition of Calibri and Arial Narrow 

text are consistently perfect. My hypothesis is that the differences in the image window size 

affected the clarity of the text. Further research would have to be done to determine the exact 

causes of the discrepancies.  

 

4.1. Butterfly Recognition and Measurement 
 

Figure 5 shows the flow-chart of butterfly recognition and measurement. 

 

 

 
 
 

Figure 5. Butterfly measurement flow-chart 

 
 

4.1.1 Pre-processing 
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The butterfly image was converted to a gray-scale image to eliminate unnecessary color 

information. Again, color information makes the image contours more difficult to detect. 

The image is also sharpened to make contours clearer. 
 

 

4.1.2 Contour Detection 

All the contours on the butterfly image are detected. The outer shape of the butterfly is 

needed, so only the second largest contour (by area) is chosen. This step is shown in 

Figure 6. 

 

 
 

Figure 6. Before and after the largest contour was found 

 
4.1.3 Measuring the Body Length  
 

The following step is to calculate the body length. My initial approach was to locate the midline of 

the bounding box of the butterfly and find the highest and lowest points within 10 pixels of the 

midline, which correspond to the head and bottom end of the body. However, this method is 

ineffective for non-symmetrical butterflies, where the midline is skewed. 

 

 
 

Figure 7. Close-up of the bottom end of the body 

 

 

My current technique is to locate the bottom end of the butterfly body and calculate its distance 

from the head. I limited the range of contours to only look at the those within 50 pixels, left and 

right, of the midline to account for the potential skewness caused by non-symmetrical cases. Next, 

I chose three points that are 0, 2, and 4 pixels apart from the first. I then tested whether the middle 

point is the local minima as displayed in Figure 8. A line is directly drawn from the bottom end to 

the point where the line and head intersect, and the body length is determined. 
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Figure 8. Body length of the butterfly (in green) 

4.1.4 Measuring the forewing length  
 

1)  Drawing an Ellipse 
 

In order to measure the butterfly’s forewing length, I first drew an ellipse, which is similar to the 

butterfly body shape, around the butterfly’s body. The major axis is half of the body length (Figure 

9) and the minor axis is around 10 pixels, an approximation of the maximum body width of the 

butterfly. The minor axis is kept constant because there is usually little variation in the body width 

of butterflies among different species.  

 

 
 

Figure 9. Ellipse around the butterfly’s body (in red) 

 

2) Locating Point A 
 

 

The next task is to find the two points on which to draw the line for the forewing length. Figure 11 

shows where the points are usually found. I will call one point A, and the other point B. 

 

 
Figure 10. How the butterfly’s forewing length is measured 

 
 

I tested two different methods for detecting Point A. I first tried detecting the top of the butterfly 

head, then shifted this point 10 pixels down and five pixels to the right, and used that point as Point 

A. However, because of variations in the butterfly’s body size, this method proved unreliable. 
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After drawing the ellipse, I discovered that I could use the equation of the ellipse to find Point A(x, 

y) on the body.  

 

 

     
 

After testing multiple angles for θ, I observed that θ should be around π/20. 
 

3) Locating Point B 

 

 
The last step for the wing length measurement is finding Point B. I predicted that Point B would be 

the furthest point on the butterfly contour from Point A. Point B, in this case, must be on the right 

wing, so I made sure that the point was above and to the right of Point A. Finally, the distance 

formula was used to calculate the distance between Point A and B. 

 

 
 

Figure 11. Forewing length of the butterfly (in green) 

 

4.5. Converting from Pixels to Millimeters 
 

The final task for butterfly measurements is converting the body and wing length units from pixels 

to millimeters. I measured both lengths on a printed image of a butterfly, and used the pixel to 

millimeter ratio as the scale.  

 

4.6. Separating the butterfly image from the text 
 

The contours around the letters can be a distraction to the program’s line and contour detection on 

the butterfly. To avoid this issue, I separated the butterfly and text into two sub-images. Anything 

below the lowest point on the butterfly contour would be considered as text (assuming the text is 

below the butterfly). The character recognition was done on the text image, while butterfly 

measurements were performed on the butterfly images. 

 

4.7. Sorting the information into an Excel Spreadsheet 
 

(1)  
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I incorporated the openpyxl library in Python to manipulate Excel spreadsheets for data collection. 

Each time a set of images is passed through the program, a new workbook is generated. The first 

row of the spreadsheet are the designated headers, as shown in Figure 12. Labels in original image 

are used for each line of text to identify the genus, species, sex, etc. (in reality, there are no labels 

for the butterfly’s description). Each line of text is then separated into a list of strings. For each 

butterfly image, a row is appended to the worksheet, and the corresponding information is filled in 

the cells by matching the text labels to the column headers. An example is shown in Figure 12. 

 

The text labels are detected through fuzzy matching, with the SequenceMatcher function in the 

difflib library. In case Tesseract incorrectly recognizes some character(s) in the text label, I set the 

standard so that as long as 75% of the characters in the label are correct, the program can match the 

label with the header.  

 
Family → YES (100% match)    Famly → YES (83% match)    Femllv → NO  (50% match) 

 

4.8. Test the Program 
 

The Python program was tested on 12 images of butterflies taken from the book Learning About 

Butterflies by Carolyn Klass and Robert Dirig [10] and various websites. The program goes 

through all given directories and subdirectories to select the butterfly images.   
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Figure 12. Final result for the 12 butterfly images 

Results show that 11 out of 12 (92%) butterflies were successful in being measured and cataloged. 

The reason that the one butterfly (red box in Figure 14) was not identified correctly is that the 

butterfly’s wing color is similar to the background color. These factors affected the program’s 

ability to distinguish the contour of the butterfly. I also noticed that the rotation of the butterfly 

image disrupts the program’s ability to detect the contours. Because of differences in font for the 

text, there were minor errors in the character recognition. Overall, this program is proven to be 

highly accurate and efficient for measurements and data cataloging. 

 

 
 

Figure 14. Cataloged data in spreadsheet for 12 butterflies 

 

5. CONCLUSIONS 
 

Data collection is an essential, but a time consuming and manpower intensive step in ecological 

research. In this project, two important computer vision methods were implemented to automate 

data cataloging for ecological study. Optical Character Recognition is an effective approach to 

scan in written or printed information, which will then be sorted into a spreadsheet. Proper pre-

processing is first done on the images before Tesseract can be integrated for character recognition. 
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Although there are limitations to Tesseract’s detection of certain fonts, overall, Tesseract can 

successfully identify words of basic fonts. Contour detection is an advanced technique that can be 

utilized to measure an image. Shapes and mathematical calculations are crucial in determining the 

precise location of the points on which to draw the body and forewing lines of the butterfly. 

Finally, the butterfly information is input into a spreadsheet and a 92% accuracy are achieved by 

the program for the set of butterflies measured. While this program is currently limited to butterfly 

measurements, similar techniques can be applied to the measurement of more organisms.                                                       

 

With the help of computer vision, scientists no longer need to invest significant amounts of their 

time on data cataloging and measurement. The outcome of this project allows researchers to 

automate the data collection process and focus more on their research and analyses. 
 

6. FUTURE WORK 
 
In this project, I integrated OCR, specifically Tesseract, to automate mass data collection. 

Tesseract is a highly useful tool for character detection, but there are still some limitations that 

must be considered. Many factors, such as font size, font type, kerning, and line spacing, must be 

considered to ensure the most accurate results. I would like to explore more of these limitations, 

and analyze whether other OCR algorithms, such as K-Nearest Neighbor (KNN) and Support 

Vector Machine (SVM), can be trained to detect more fonts and handwritten text. Another possible 

project would be the implementation of a function that recognizes which words are the family, 

species, genus, sex, and authority and year, without the labels. 

 

Computer-based measurements were also successfully implemented in this project. The next step 

will be to test the program on more species of butterflies, and to observe whether various wing 

shapes, patterns, and colors may disrupt the program’s detection and yield unexpected results. To 

achieve a higher accuracy with the 12 butterflies above, I would explore additional pre-processing 

techniques that could discern the butterfly contour from the background. I would also like to 

integrate a feature that could rotate a butterfly image so the butterfly’s body would be parallel to 

the vertical edges of the image window. Finally, since the current program is specific to butterflies 

only, a potential project would be to apply similar techniques in the measurement of other 

organisms.  
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