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ABSTRACT 

The development of microarray gene technology has provided a large volume of data to many fields. 

Microarray data analysis and classification has demonstrated an effective methodology for the effective 

diagnosis of diseases and cancers. Although much research has been performed on applying machine 

learning techniques for microarray data classification during the past years, it has been shown that 

conventional machine learning techniques have intrinsic drawbacks in achieving accurate and robust 

classifications. So it is more desirable to make a decision by combining the results of various expert 

classifiers rather than by depending on the result of only one classifier. We address the microarray 

dataset based cancer classification using a newly proposed ensemble classifier generation technique 

referred to as RotBoost, which is constructed by combining Rotation Forest and AdaBoost. The 

experiments conducted with 8 microarray datasets, among which a classification tree is adopted as the 

base learning algorithm, demonstrate that RotBoost can generate ensemble classifiers with significantly 

lower prediction error than either Rotation Forest or AdaBoost more often than the reverse. 
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1. INTRODUCTION 

Microarray technology has provided the ability to measure the expression levels of thousands of 

genes simultaneously in a single experiment. This scheme provides an effective experimental 

protocol for gaining insight into the cellular mechanism and the nature of complex biological 

process. Microarray data analysis has been developing at fast speed in recent years and has 

become a popular and standard way in most current genomics research works [1] 

    Each spot on a microarray chip contains the clone of a gene from a tissue sample. Some 

mRNA samples are labelled with two different kinds of dyes, for example, Cy5 (red) and Cy3 

(blue). After each mRNA interacts with the genes, i.e., hybridization, the color of each spot on 

the chip will change. Then, the resulted image reflects the characteristics of the tissue at the 

molecular level [2-3].  

   However, the amount of data in each microarray is too overwhelming for manual analysis, 

since a single sample often contains measurements for around 10,000 genes. Due to this 

excessive amount of information, efficiently produced results require automatic computer 

controlled analysis of data. Many computational tools have been applied to mine through this 

huge amount of gene expression data to discover biologically meaningful knowledge.  

   One of the main important computational groups for analysis of microarray data is machine 

learning-based approaches. Machine learning techniques have been successfully applied to 

cancer classification problem using gene microarray data [4].  
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    As more and more gene microarray datasets become publicly available, developing 

technologies for analysis of such data becomes an essential task [5, 6]. Having said that, so far 

various machine learning and pattern recognition methods are increasingly utilized, for instance, 

discriminant analysis [7], neural networks [8], and support vector machines [9–11]. A 

considerable amount of researches involving microarray data analysis are focused on cancer 

classification, aiming at classifying test cancer samples into known classes with the help of a 

training set containing samples whose classes are known [12]. To tackle this issue, several 

methods based on gene expression data have been suggested. Some of these are applicable only 

to binary classification, such as the weighted voting scheme of Golub et al. [13], whereas others 

can handle multiple classification problems. These approaches range from traditional methods, 

such as Fisher’s linear and quadratic discriminant analysis, to more modern machine learning 

techniques, such as classification trees or aggregation of classifiers by bagging or boosting (for 

a review see [14]) [12]. There are also approaches which are able to identify test samples that do 

not belong to any of the known classes by imposing thresholds on the prediction strength [13, 

15]. 

    Despite these progresses, gene microarray cancer classification has remained a great 

challenge to computer scientists. The main challenges lie in the nature of microarray data, which 

is mostly high-dimensional and noisy. Natural biological instabilities are very likely to import 

measurement variations and bring implications to microarray analysis [4]. This makes learning 

from microarray data a difficult task especially under the effect of curse of dimensionality. 

Indeed, gene expression data often contains many irrelevant and redundant features, which in 

turn can affect the efficiency of most machine learning techniques.     

   There is therefore a great requirement to build up robust methods that are able to overcome 

the limitation of the small number of microarray input instances and reduce the influence of 

uncertainties so as to produce reliable classification (cancerous/non-cancerous) results. In most 

cases, one single classification model may not lead to high classification accuracy. Instead, 

multiple classifier systems (ensemble learning methods) have proved to be an effective way to 

increase prediction accuracy and the robustness of a learning system [16].  

   Although the application of multiple classifier systems (MCS) to microarray dataset 

classification is still a new field, recently some different MCSs have been proposed to deal with 

the gene microarray data classification problem. For example, Dettling et al. [17] used a revised 

boosting algorithm for tumor classification, Ramon et al. [18] applied Random Forest to tackle 

both gene selection and classification problems simultaneously, and Peng [19] designed a SVM 

ensemble system for microarray dataset prediction. 

   These techniques generally work by means of firstly generating an ensemble of base 

classifiers by applying a given base learning algorithm to different alternative training sets, and 

then the outputs from each ensemble member are combined in a suitable way to create the 

prediction of the ensemble classifier. The combination is often performed by voting for the most 

popular class. Examples of these techniques include Bagging, AdaBoost, Rotation Forest and 

Random Forest [20].  

   AdaBoost technique creates a mixture of classifiers by applying a given base learning 

algorithm to successive derived training sets that are formed by either resampling from the 

original training set or reweighting the original training set according to a set of weights 

maintained over the training set [20]. Initially, the weights assigned to each training instance are 

set to be equal and in subsequent iterations, these weights are adjusted so that the weight of the 

instances misclassified by the previously trained classifiers is increased whereas that of the 

correctly classified ones is decreased. Thus, AdaBoost attempts to produce new classifiers that 

are able to better predict the ‘‘hard” instances for the previous ensemble members. 

   The main idea of Rotation Forest is to provide diversity and accuracy within an ensemble 

classifier. One possible way to promote diversity can be achieved by a principal component 
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analysis (PCA) based feature extraction for each base classifier. Indeed, the accuracy is sought 

by keeping all principal components and also using the whole data set to train each base 

classifier. In view of the fact that both AdaBoost and Rotation Forest are successful ensemble 

classifier generation techniques and they apply a given base learning algorithm to the 

permutated training sets to construct their ensemble members with the only difference lying in 

the ways to perturb the original training set, it is plausible that a combination of the two may 

achieve even lower prediction error than either of them.  

   In [21] an ensemble-based technique called RotBoost which is constructed by integrating the 

ideas of Rotation Forest and AdaBoost is proposed. According to this study, RotBoost was 

found to perform much better than Bagging and MultiBoost on the utilized benchmark UCI 

datasets. Here, we inspired from RotBoost technique and apply it for the first time on 8 

publically available gene microarray benchmark data sets. Indeed, we present a comparative 

study of RotBoost results with several ensemble and single classifier systems including 

AdaBoost, Rotation Forest, Bagging and single tree. Experimental results revealed that the 

RotBoost ensemble method (with several basis classifiers) perform best among the considered 

classification procedures and thus produces the highest recognition rate on the benchmark 

datasets.     

   The rest of this paper is organized as follows. Section 2 our proposed algorithm for an efficient 

classification of gene microarray data. Section 3 presents experimental results against 8 

publically available benchmark gene microarray datasets. Finally, Section 4 concludes this 

study.  
 

 

2. MATERIAL AND METHOD 

This paper proposes an approach for the construction of accurate and diverse ensemble 

members by means of learning from the best sub-sets of initial microarray genes. The method 

proposed in this paper is comprised of three main stages, i.e. feature selection based on fast 

correlation based filter, ensemble classifier generation method using a combination of Rotation 

Forest and AdaBoost algorithms and evaluating the generalisation ability of various 

ensemble/non-ensemble classifier systems. The details of these stages are discussed in the 

following sections.   

 

2.1. Datasets 

In this work, we utilized 8 publicly available benchmark datasets [22]. A brief overview of these 

datasets is summarized in Table 1. Data pre-processing is an important step for handling gene 

expression data. This includes two steps: filling missing values and normalization. For both 

training and test dataset, missing values are filled using the average value of that gene. 

Normalization is then carried out so that every observed gene expression has mean equal to 0 

and variance equal to 1. In summary, the 8 datasets had between 2–5 distinct diagnostic 

categories, 60–253 instances (samples) and 2000–24481 genes after the data preparatory steps 

outlined above. 
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Table 1.  Description of 8 gene microarray datasets. 

Dataset # Total Genes (T) # Instances (n) # Classes (C) 

Colon Tumor 2000 62 2 

Central Nervous System (CNS) 7129 60 2 

Leukaemia 6817 72 2 

Breast Cancer 24481 97 2 

Lung Cancer 12533 181 5 

Ovarian Cancer 15154 253 2 

MLL 12582 72 3 

SRBCT 2308 83 4 

 

2.2. RotBoost Ensemble Technique 

As it was stated before, Rotboost is constructed by integrating the ideas of Rotation Forest and 

AdaBoost ensemble classifier generation techniques with the aim of achieving even lower 

prediction error than either of these individual techniques. Consider a training set L which is 

defined as follows:  

  

1{( , )}N

i i iL x y ==                                                                                                                 (1) 

 

Assume that the above training set consisting of N independent instances, in which each sample 

(xi, yi) is described by an input attribute vector xi as follows: 

 

( )1 2, ,..., d

i i i idx x x x R= ∈                                                                                                 (2) 

 

   and a class label yi which takes value from the label space φ = {1, 2, …, k}. Now, in a typical 

classification problem, the goal is to use the information only from L to construct classifiers that 

have good generalization ability, namely, perform well on the previously unseen test data which 

are not used for learning the classifiers. 

   For simplicity of the notations, let X be an N x d matrix composed of the values of d input 

attributes for each training instance and Y be an N-dimensional column vector containing the 

outputs of each training instance in L. Alternatively, L can be expressed as concatenating X and 

Y horizontally, that is, L = [X Y]. Now, we can show the base classifiers which are included into 

an ensemble classifier, say, C* by C1, C2, . . . , CT [20]. Indeed, let E = ( X1, X2, . . . ,Xd)
T be the 

attribute set composed of d input attributes. Before starting on proposing the RotBoost 

algorithm, we briefly review the ensemble methods AdaBoost and Rotation Forest as follows. 

   AdaBoost [23] is a sequential algorithm in which each new classifier is built by taking into 

account the performance of the previously generated classifiers. 

In this ensemble method, a set of weights wt(i) (i = 1, 2, ...N) are maintained over the original 

training set L. The weights initially set to be equal (namely, all training instances have the same 

importance). In subsequent iterations, these weights are adjusted so that the weight of the 

instances misclassified by the previously trained classifiers is increased whereas that of the 

correctly classified ones is decreased. In this way, the difficult input samples can be better 

predicted by the next trained classifiers [20].  

   In AdaBoost, the training set Lt utilized for learning each base classifier Ct is acquired by 

either resampling from the original training set L or reweighting the original training set L 

according to the updated probability distribution wt maintained over L. Here, the resampling 

scheme is applied as it has less complexity for implementation. Indeed, each base classifier Ct is 
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assigned to a weight in the training phase and the final decision of the ensemble classifier is 

obtained by weighted voting of the outputs from each ensemble member. 

   Rotation Forest is another proposed ensemble classifier generation method [24] in which the 

training set for each base classifier is constructed by incorporating PCA to rotate the original 

feature axes. On the other hand, in order to create the training data for a base classifier, the 

feature set E is randomly split into K subspaces and then PCA is applied to each of these 

subspaces. To retain the variability information in the data all principal components are 

preserved. Thus, K axis rotations take place to form the new attributes for a base classifier. 

   The main idea of Rotation Forest is to simultaneously preserve individual accuracy and 

diversity within the ensemble individual base classifiers. To be more specific, diversity is 

promoted through doing feature extraction for each base classifier and accuracy is obtained by 

keeping all principal components and also using the whole data set to train each base classifier. 

   The detailed steps of Rotation Forest are described in [20]. It has been already pointed out by 

many researchers that [24], for an ensemble classifier to achieve much better generalization 

capability than its component members, it is essential that the ensemble classifier consists of 

highly accurate base members which at the same time disagree as much as possible. It has also 

been noted by [25] that the prediction accuracy of an ensemble classifier can be further 

improved on condition that the diversity of the ensemble members is increased whereas their 

individual errors are not affected.  

   When employing the above proposed RotBoost algorithm to solve a classification task, some 

parameters required to be defined beforehand. As with the most ensemble methods, the values 

of the parameters S and T that, respectively, specify the numbers of iterations done for Rotation 

Forest and AdaBoost should be fine tuned by the user and the value of K (or M which represents 

the number attributes in each subspace) can be selected to be a moderate value according to the 

size of the feature set E. Since the good performance of an ensemble method largely depends on 

the instability of the used base learning algorithm [26], the base classifier can be therefore 

generally chosen to be either a decision tree or an artificial neural network [27] which is instable 

in the sense that small variations in its training data can lead to large changes in the constructed 

decision boundary. Here, we utilized decision trees as the individual base classifiers of the final 

constructed RotBoost ensemble predictor.   

  

2.3. Gene Selection 

As it was already pointed out, generalisation ability of the RotBoost ensemble model can be 

highly affected by the presence of thousands of genes many of which are unnecessary from the 

classification point of view. Thus, if RotBoost applied to classify a typical microarray dataset, a 

rotation matrix with thousands of dimensions is required for each tree, which this in turn 

requires a very high computational complexity. As only a small subset of genes are of interest in 

practice, therefore, a key issue of microarray data classification based on RotBoost ensemble 

model is to accomplish an efficient dimension reduction process to identify the smallest possible 

set of genes that can achieve good predictive accuracy. 

   Two broad categories of optimal feature subset selection have been proposed: filter and 

wrapper. In filter approaches, features are scored and ranked based on certain statistical criteria 

and the features with highest ranking values are selected. Frequently used filter methods include 

t-test, chi-square test, mutual information, Pearson correlation coefficients and PCA [28].  

   In contrast, in wrapper approaches, feature selection is “wrapped” in a learning algorithm. The 

learning algorithm is applied to subsets of features and tested on a hold-out set, and prediction 

accuracy is used to determine the feature set quality. Since exhaustive search is not 
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computationally feasible, wrapper methods must employ a search algorithm to search for an 

optimal subset of features. 

    In this work, we consider fast correlation-based filter (FCBF) method which has been 

successfully used for gene selection and demonstrated to attain promising performance [29]. 

FCBF, is a fast correlation-based filter method which begins by selecting a subset of relevant 

features whose C-correlation are larger than a given threshold γ, and then sorts the relevant 

features in descending order in terms of C-correlation. Using the sorted feature list, redundant 

features are eliminated one-by-one in a descending order. A feature is redundant only if it has an 

approximate Markov blanket [4]. The remaining feature subset thus contains the predominant 

features with zero redundant features in terms of C-correlation. 

 

3. EXPERIMENTAL RESULTS 

We apply the RotBoost method to eight well-known cancer datasets described in section 2.1. 

The corresponding classification task is to classify the normal and tumor samples. The datasets 

are first pre-processed and then to reduce the computational complexity and select the most 

informative genes, FCBF is applied separately to these datasets. Table 2 summarized the 

identification numbers (IDs) of those genes selected by FCBF method. 

   Table 3 shows the number of genes which are selected by FCBF for each individual 

microarray gene datasets. As it can be seen, the number of selected genes is different and 

depends on the processed gene dataset.  

 

 

 

Table 2.  The IDs of the genes selected by FCBF method. 

Data Set IDs of selected genes with FCBF  Method 
Colon Tumor 1671,765,625,1423,1772,1042,1153,1635,1900,279,576,682,1328,1560 

CNS 
2474,7016,5507,2996,5528,612,2032,400,1971,2735,1320,6810,2089,2404,11,2142,3113,4509,18,844,36
0,3420,6485,4484,2695,3185,2426,2202 

Leukaemia 
1834,4847,1882,3252,2288,6855,1685,6376,2354,4373,4366,758,1829,2128,2020,1779,1926,1674,2111,

538,2497,5501,1630,7119,4951,2441,1239,1904,4438,1087,683,4190,4664,6277,3172,3482,1120,4232,2
517,6169,5376,2733,4898,5984,4342,4593,620,6184,2626,412,1924 

Breast Cancer 

3463,377,8782,1889,8910,7448,10889,17595,15102,15906,2663,19856,16616,10643,275,18109,9445,12

553,12429,11536,5861,1505,21304,21545,20866,7814,13800,2882,12520,20341,18820,6757,20317,1126

,571,7081,7509,14532,3524,20342,1229,23161,1355,4248,644,2713,14374,15635,3697,15387,1007,5393

,23207,10876,462,5280,4583,24107,21818,14991,719,18767,6592,15813,11853,18539,2583,12259,1118

2,7295,4351,216,5052,10997,56,14447,22612,5984,7790,20891,3190,8074,7655,17787,4618,16894,590,

12572,24298,407 

Lung Cancer 

3191,9038,10188,10891,10175,5533,7568,8890,12052,1682,4983,9770,10138,9093,11300,3120,5292,28

70,3875,11942,8294,4282,8457,9609,2383,9470,9311,8745,7361,7298,9170,10426,6422,9134,4115,1146

8,9937,4525,8683,12021,6949,4733,6174,12375,8199,8786,6897,9897,6513,8429,6796,10787,8762,3692

,5108,10128,6620,9989,6185,7087,4321,6814,9910,5407,10862,7124,192,11646,6944,4473,3776,4397,1

776,4772,4943,6319,5561,4778,2919,7905,7328,7721,6784,4879,6304,7162,1591,3104,10847,8533,1037

6,5600,9357,11841,12283,3321,4061,5619,4693,8157 

Ovarian Cancer 
1679,2237,1684,1736,1677,6782,545,2528,182,1733,1823,2666,5534,1702,187,2306,13170,8840,7508,1

3978,1494,6499,7781,13261,360,14,63,2199,2233,10408  

MLL 

2592,11297,5370,7666,6067,8428,9741,10457,7136,8165,11366,8423,3882,4602,5460,5801,10797,7232,

7716,9668,6718,3399,9845,6416,5083,9478,9929,4745,10454,7961,4804,8370,3675,6413,6337,6294,117
6,4660,7930,10274,8455,11282,7155,7070,7946,10530,5772,8050,8281,12174,6615,3804,1259,11044,68

30,9085,4347,7131,317,9716,8769,4431,3361,4050,8711,445,5591,4892,12355,7007,11884,8725,7489,3

869,4276,9153,5961,338,1587,3712,6809,10496,3806,4346,9870,9952,11635,10363,1876,5549,8919,330
6,12031,11851,659,3330,3793  

SRBCT 

1601,742,1003,1389,509,1708,2050,1645,2162,1613,153,1194,1980,417,1884,256,1434,380,1662,2198,1

700,251,2303,1536,1795,1207,867,1655,1158,1159,1673,2168,368,667,365,2199,1112,326,2230,1489,21
59,1105,819,558,1888,799,1208,607,1768,188,2186,373,2301,1479,774,454,156,733,2235,2049,1760,12

10,1942,1634,67,672,490,979,823,1924,3,1120,437,2000,117,1775,314,1829,1962,159,1464,746 
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Table 3. Number of genes selected for each dataset by FCBF gene selection method. 

FCBF 

Selected Numbers 

Initial Gene 

Numbers 
Datasets 

14 2000 Colon 

28 7129 CNS 

51 7129 Leukaemia 

90 24481 Breast 

100 12553 Lung 

30 15154 Ovarian 

97 12582 MLL 

82 2308 SRBCT 

 

The experimental settings are as follows. In all the ensemble methods, a classification tree [30] 

is always adopted as the base learning algorithm because it is sensitive to the changes in its 

training data and can still be very accurate. The parameters included in classification tree 

algorithm, such as the number of training instances that impure nodes to be split must have, are 

all set to be the default values of the Weka Toolbox. In order to provide a fair comparison, for 

all other utilized techniques such as Rotation Forest, AdaBoost and Bagging, 100 trees are 

trained to constitute the corresponding ensemble classifiers. With respect to RotBoost, the 

number of iterations done for Rotation Forest and AdaBoost are both chosen to be S = T = 10 (to 

balance the trade-off between these two algorithms) so that an ensemble classifier created by it 

also consists of 100 trees. As for the parameter M (namely, the number of attributes contained in 

each attribute subset) included in RotForest and RotBoost, the optimum value is experimentally 

found to be 3. 

   In many earlier works, researchers typically split the original dataset into two parts i.e. a 

training set and a test set in a random fashion. Gene selection is then performed on the training 

set and the goodness of selected genes is assessed from the unseen test set [4]. However, due to 

the small number of instances in gene microarray datasets, such an approach is now recognized 

by the community as unreliable. Instead, Ambroise and McLachlan [31] suggested splitting the 

data using 10-fold cross validation or 0.632+bootstrap. Indeed, a comparative study of several 

different error estimation techniques on microarray classification [32] also suggests that 0.632+ 

bootstrap may be more appropriate than other estimators including re-substitution estimator, 

cross-validation, and leave-one-out estimation. 

   Thus, in this work we employed a balanced 0.632+bootstrap technique to evaluate the 

performance of the gene selection algorithm considered in this study. The .632+bootstrap 

requires sampling a training set with a replacement manner from the original dataset. The test 

set is then made by those samples excluded from the training dataset. Finally, the 

0.632+bootstrap is repeated n times and the final bootstrap error is estimated as follows:  

 

( )
1

1 0.368 0.632
n

i i

i

E
n

α β
=

= +∑                                                                                      (3) 

 
   where αi and βi are the training error and test error on the ith resampling stage. Following the 

work in [19], Here, the bootstrap samples are experimentally formed with n = 15 replicates. 

Therefore, each sample in the original dataset is made to appear exactly 15 times in the balanced 

bootstrap training samples. It is worth to note that, the feature selection is then performed using 
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only the training samples. Finally, the test error (classification accuracy) is estimated on the 

unseen test samples using Equation (3). 

   Table 3 shows the means of classification accuracy for each classification method on the 

considered datasets, where the values following ‘‘±” are their respective standard deviations. In 

order to see whether RotBoost is significantly better or worse than other ensemble/non-

ensemble methods including single tree, Rotation Forest, AdaBoost and Bagging from the 

statistical viewpoint, a one-tailed paired t-test was performed with significance level α = 0.05 

and the results for which a significant difference with RotBoost was found are marked with a 

bullet or an open circle next to them. A bullet next to a result indicates that RotBoost is 

significantly better than the corresponding method. An open circle next to a result denotes that 

RotBoost performs significantly worse than the corresponding method. In the triplet labeled 

‘‘Win–Tie–Loss” in the last row of Table 3, the first value is the number of data sets on which 

RotBoost performs significantly better than the corresponding algorithm; the second one is the 

number of data sets on which the difference between the performance of RotBoost and that of 

the corresponding algorithm is not significant; and the third one denotes the number of data sets 

on which RotBoost behaves significantly worse than the compared algorithm. 

 

Table 4. Means of classification accuracy for each classification method against 8 different gene 

microarray datasets. ‘‘•”specifys that RotBoost is significantly better and ‘‘
о
” points out that 

RotBoost is notably worse at the significance level α = 0.05.  
 

Dataset RotBoost Single Tree Rotation Forest AdaBoost Bagging 

Colon 95.48±0.61 93.80±0.82• 95.21±0.43 94.97±0.63• 94.92±0.50• 

CNS 94.80±0.59 89.92±0.61• 92.37±0.83• 95.09±0.64 93.50±0.79• 

Leukemia 98.75±0.31 96.60±00.46• 97.97±0.38• 98.22±0.55• 97.47±0.51• 

Breast 94.39±0.49 88.50±0.72• 92.60±0.63• 94.89±0.47
о
 92.74±0.45• 

Lung 98.11±0.17 94.36±0.42• 97.56±0.23• 98.08±0.39 97.08±0.37• 

Ovarian 99.82±0.08 99.37±0.12• 99.77±0.07• 99.57±0.11• 99.36±0.08• 

MLL 98.86±0.23 96.03±0.59• 97.61±0.31• 97.63±0.45• 97.08±0.55• 

SRBCT 99.50±0.31 93.96±0.59• 97.44±0.41• 98.16±0.39• 96.46±0.58• 

Win tie loss   8/0/0 7/1/0 5/2/1 8/0/0 

 

 

As can be seen from Table 4, RotBoost performs significantly better than both Single Tree and 

Bagging algorithms. When compared with Rotation Forest, the statistically significant 

difference is favorable in 7 datasets, and tie has been occurred against colon dataset. Indeed, 

RotBoost is seen to outperform AdaBoost in most cases although the advantage of RotBoost is 

not significant in 1 set and tie is occurred for the remaining 2 datasets.   

 

4. CONCLUSIONS 

In this paper, we applied RotBoost ensemble technique to tackle the microarray data 

classification problem. This ensemble classifier generation method  is a combination of 

Rotation Forest and AdaBoost techniques which in turn preserve both desirable features 

of an ensemble architecture i.e. diversity and accuracy. Here, we utilized decision tree 
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classifiers as our base learners. To cope with curse of dimensionality of gene microarray 

datasets, FCBF filter method is first employed to select a small subset of most 

informative genes. Then, the RotBoost was operated on the selected gene subsets.  

   To evaluate the effectiveness of RotBoost algorithm other ensemble/non-ensemble 

techniques including single tree, Rotation Forest, AdaBoost and Bagging were also 

considered and their performances compared against RotBoost. The experimental 

results show that Rotboost ensemble with several basis classifiers is a robust method for 

microarray classification, which achieved the highest accuracy for majority of the 

analysed benchmark datasets.   

   In fact, RotBoost is found to perform much better than the other examined counterparts. By 

the way, the improvement of generalization ability achieved by RotBoost is obtained with 

negligible increase in computational costs. Indeed, RotBoost provides a potential computational 

benefit over AdaBoost in that it can be executed in a parallel manner.  
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