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ABSTRACT 

Sum of minterms is a canonical form for representing logic functions. There are classical methods such 

as Karnaugh map or Quine–McCluskey tabulation for minimizing a sum of products. This minimization 

reduces the minterms to smaller products called implicants. If minterms are represented by bit strings, 

the bit strings shrink through the minimization process. This can be considered as a kind of data 

compression provided that there is a way for retrieving the original bit strings from the compressed 

strings. This paper proposes implements and evaluates an image compression method called YALMIC 

(Yet Another Logic Minimization Based Image Compression) which depends on logic function 

minimization. This method considers adjacent pixels of the image as disjointed minterms constructing a 

logic function and compresses the 24-bit color images through minimizing the function. We compare the 

compression ratio of the proposed method to those of existing methods and show that YALMIC improves 

the compression ratio by about 25% on average. 
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1. INTRODUCTION AND BASIC CONCEPTS 

     Many research works has focused on developing various data compression (especially image 

compression) techniques in recent years [1, 3, 4 and 7-10]. Among other approaches, many 

proposed techniques depend on logic function minimization [11, 12, 19, and 25]. Some of these 

approaches are lossy [24, 25] and some of them directly depend on lossless schemas like 

Huffman coding [11, 25]. Such techniques treat bit sequences as logic terms and try to simplify 

the logic expressions constructed of these terms. Simplification of logic expressions causes 

some terms and variables to be discarded from the expression and this can compress the input 

data by discarding the corresponding bits or bit sequences. For example consider the bit stream 

S=1110111111011100. This stream can be divided into four bit sequences each of which 

consists of four bits (called quartets). The first quartet (1110) represents a 4-variable minterm 

such as wxyz . Similarly, the next three quartets represent xyzw , wzxy and wzxy  

respectively. Thus, we can model the whole bit stream by a disjunctive logic expression as 

follows. 

wzxywzxyxyzwwxyzS +++=  

Equation (1) 
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The above logic experiment be simplified to xyS s = or equivalently 11=sS using 

Karnaugh map or the Quine–McCluskey method. If it was possible to regenerate S from
sS , 

we had come to a compressed form for S . But due to the following two reasons, S cannot be 

fully regenerated from its simplified form
sS : 

First: 11=sS only characterizes a 2-variable minterm.  But it contains no information 

concerning the positions of its constructing variables in the original 4-variable minterms. For 

example, it can represent xz or yw .  If it is assumed to represent xz then it will be 

considered as the simplified form of xyzwwxyzzwyxwzyxE +++=1
. But if it 

is considered as yw , it will be the simplified form 

of xyzwwzxyyzwxwzyxE +++=2
. In fact 

s
S cannot distinguish 

1E from
2E . 

Second:  
sS  does not convey anything regarding the order of the 4-variable minterms 

(quartets) in the original image. For example, suppose that we know xyS s = . In this case, 

the following 4-variable minterms will be generated by
sS : wzxy , wzxy , wxyz and 

xyzw which are equivalent to the quartets 1100 , 1101 , 1110 and 

1111 respectively. Now since the order of the minterms in the original image is not known, 

we can regenerate S as 1100110111101111 or 1111110011011110. 

For the two reasons mentioned above, we have to add some extra bits to 11=sS which make 

it possible to exactly regenerate S . YALMIC (Yet Another Logic Minimization Based Image 

Compressor) is a novel lossless image compression algorithm based on logic minimization. In 

this algorithm, segments of the image are first converted to hypothetical logic expressions and 

the expressions are simplified using standard methods (Simplifying logic function has been the 

topic for a lot of research in recent years [2, 6]. There are many methods in the literature which 

have been proposed for this purpose. Each of these methods can be used here). Then the 

simplified forms of the expressions are stored in the target compressed file along with some 

extra bits which allow the primary segment to be fully regenerated from its simplified form. 

YALMIC has been written in C#. Its screenshot is shown in figure 1. YALMIC computes the 

size of the compressed image and uses the following equation to calculate the compression 

ratio. 

 

 

U

C

U

CU
CR −=

−
= 1  

Equation (2) 
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Figure 1.  The screenshot of the software 

implementing YALMIC 

In the above equation, U is the size of the original uncompressed file and C is that of the 

compressed file. The ration 
U

C is referred to as the compression factor in this paper. 

The rest of this paper is organized as follows. Section 2 is discusses previous related works. 

Section 3 introduces the proposed compression algorithm. Section 4 explains the decompression 

algorithm. Section 5 evaluates the compression ratio of the algorithm through analytical 

modelling and experimental results. This section compares the compression ratio of the 

proposed algorithm to that of previous algorithms. Section 6 concludes the paper and suggests 

further works. 

 

A brief version of this paper has been published in proceedings of 2010 IEEE international 

conference on computer engineering and technology [3]. 

 

2. RELATED WORKS 

     There have been a lot of research works in the recent years [1, 3, 4, and 5] which are based 

on considering information contained by logic functions and using the properties of these 

functions for compressing different kinds of data. But the most relevant works to our proposed 

method are discussed below.   

     Kumar, et al. [4] proposed a logic minimization based approach to lossless compression of 

gray-scale images which uses a 2-dimentional differencing operation based on logical XOR in 

order to increase the compression ratio. This operation is performed on adjacent bit planes 

extracted from rectangular blocks of the image. This approach uses the Quine-McCluskey 

algorithm for minimizing the logic functions obtained from the image in cubical form. They 

compared the compression ratio of their approach to that of LOCO-1 and WinZip using five test 

images: Airplane, Boat, Moon, Couple and Man. They showed that their approach performs 

better than the two others for three out of the five images. They mentioned that their approach 

attains higher compression ratios for images with smaller numbers of different intensity levels. 

     Qawasmeh, et al. [5] proposed a method for data compressing data streams using logic 

function minimization in the form of sum of products. Their method depends on a frequency  
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table which is used by Huffman coding. This table keeps frequencies of prime implicants which 

have been counted during a preprocess phase. Their method converts blocks of the data stream 

to logic functions represented by sum of products. Prime implicants are extracted from the 

functions using Quine-McCluskey tabulation method. These prime implicants are searched in 

the frequency table and compressed using Huffman coding. They showed that the number of 

prime implicants in a 16-bit block obeys a nearly normal distribution with the mode equal to 4 

prime implicants per block. They demonstrated that the proposed method exhibits the best 

compression ratio for data streams in which about %60 of bits are equal to one. They also 

showed that the compression ratio of their method is almost not affected by the size of the file to 

be compressed. Their method shows better compression ratios for smaller block sizes. 

     Reaz, et al. [14] implemented boolean function classification schemes on Altera FLEXIOK 

FPGA and used these classifications along with Huffman coding in order to compress input data 

streams in a lossless way. They gained average compression ratio between 25% and 37.5% for 

various text strings. They argued that using FPGA for this purpose causes speed up in hardware 

realization. They used various classical and novel boolean function classification schemes. They 

used VHDL to verify their algorithm and create the netlist of required digital cells. They 

showed that their method can exhibit a maximum compression ratio of 87.5% when the input 

characters are all encoded to all-1 patterns. They performed their algorithm on the FPGA board 

with a minimum resource usage of 63.5% and a maximum frequency of 27.9MHz. 

     Falkowski [13, 15, and 20] presented a lossless method based on representations of logic 

functions for compressing gray-scale images. The first phase of this method performs an 

intensity coding after file extraction to prepare the image for compression. Then a prediction 

process is run and the residuals of the predictions are mapped and split into bit-planes. The 

compression is the last phase which is performed on the bit-planes using compact coding. File 

extraction involves extracting image pixels and converting each of the image dimensions to the 

next higher multiple of eight. Within the intensity level coding, the pixel values are rearranged 

in continuous ascending order. Some minor bit overhead is posed to the image here. The 

prediction process is performed in order to reduce the correlation which exists between adjacent 

pixels of the image. Three different prediction methods are used here. The mapping process 

converts negative and positive prediction residuals to positive numbers. The bit-plane splitting 

selects corresponding bits of pixels and converts an M*N image consisting of k-bit pixels to k 

bit-planes each M*N bits long. This technique helps improve compression ratio by taking 

advantage of large uniform areas existing in bit planes. In the coding phase, the horizontal and 

vertical transition counts are computed for each of the bit-planes. Then the result of the 

comparison between the average transition count and some predetermined thresholds is 

considered as the basis for selecting among a number of different coding schemes. They 

compared the compression ratio of their method with those of WinZip, BTPC, S+P and LOCO-

L. 

     Agaian, et al. [15,16] explained that the dominating lossless image compression algorithms 

such as Huffman coding, LZW, Arithmetic coding and run length coding do not use transforms 

unlike the dominating lossy algorithms such as JPEG. They considered the application of 

logical transforms to lossless image compression. They designed a series of logical transforms 

for the purpose of boolean minimization. These transforms does not require to be multiplied in 

the bit planes of the image unlike the case of lossy compression. They argued that Karnaugh 

map as a logic simplification tool has some inefficiencies in the domain of lossless compression.  
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The first is that the time complexity of Karnaugh map rapidly grows with the size of the truth 

table. The second is that there exists no fast implementation for Karnaugh map and this slows 

down the compression process. They enumerated several advantages for their method: unlimited 

size of boolean functions, existence of fast implementations, higher compression ratios, having 

no need for time-consuming multiplication operations, amenability for hardware 

implementation and the potential for being applied to other types of data (e.g. text). Their 

method runs a preprocessing consisting linear prediction. They showed that the compression can 

attain better compression ratio in contrast with LZW, RLE, arithmetic coding and WinZip for 

Lena and Girl.  

     Villarroya, et al. [19] argued that logic function simplification in algebraic forms suffers high 

time complexity. They presented the logic functions obtained from images in the form of 

OBDDs (Ordered Binary Decision Diagrams) in order to reduce this complexity. They added 

arithmetic coding to logic simplification to further reduce the redundancy of the decision trees. 

They modified the method proposed by Starkey, et al. [22] in order to simplify the OBDDs. 

This modified method (named SF-OBDD) represents the image in the form of sequential 

functions. They showed that this method improves compression ratio in addition to reducing 

compression time. They used CCITT gray scale test images (ptt1,…, ptt8) to evaluate their 

method and compare it with two previous methods. The first of these methods (CF-AE) presents 

the image in the form of Combinational Function and simplifies the logic functions in the form 

of Algebraic Expressions. The second (CF-OBDD) presents the Combinational Functions in the 

form of OBDDs. These two methods were evaluated and compared in their previous work [26]. 

They gained an average compression ratio of 18.40% which is better than those of CF-AE 

(11.89%) and CF-OBDD (14.68). 

     Pramanik, et al. [23] presented an adaptive lossless image compression method based on 

logic coding and auto-adaptive block coding as well as Huffman coding with a compression 

ratio comparable to that of JPEG. The main advantage of this method is that automatically tunes 

itself to reach the highest possible compression ratio. Adaptive block coding is a modified 

variant of block coding [30] that decomposes bit-planes into fixed-length 2*2 pixels blocks of 

three different types: all-white, all-black and mixed. They argued that avoiding variable-length 

blocks prevents the Huffman coding tree from getting to large. They also presented an approach 

for including a large proportion of variable-length mixed blocks (8*8, 8*4, 4*4, and 2*2) 

without significant increase in the size of the Huffman tree. They applied the minterm coding to 

the variable-length blocks but excluded the 2*2 blocks from the minterm coding. They 

classified the blocks (other than 2*2 blocks) into four separate classes: completely black, 

completely white, compressible with minterm coding and incompressible. They proposed 

metrics for selecting between two different coding schemes for different kinds of blocks. They 

applied their method to Lena, boats, girl and baboon. The average compression ratio was 

29.25%.  They compared their method with Lossless mode of PVRG-JPEG which gives an 

average compression ratio of 21.25% to 28.5 for the four mentioned images. They also 

compared compression and decompression times of their method to those of PVRG-JPEG. 

     Damodare, et al. [24] proposed a pair of methods for compressing monochrome images. One 

of these methods is lossy and the other is lossless. Their methods rely on simplifying two-level 

logic functions in cubical form using ESPRESSO [25]. Their methods partition the image into 

bit planes which are divided into variable-size blocks in turn. These blocks are minimized as 

cubical logic functions. The lossless method runs a preprocess on the image which performs a  
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linear prediction. They showed that the lossless compression method can outperform JPEG from 

compression ratio point of view. They also demonstrated that the lossy method exhibits a better 

compression ratio than that of JPG for identical mean square errors. This compression ratio is 

achieved without distinguishable changes in visual properties of the original image. Their 

experiments demonstrate that the compression phase of their methods performs a little slower 

than JPEG while the decompression time is comparable to that of JPEG. 

     Yang, et al. [12] proposed a lossless data compression method based on multilevel logic 

function minimization. They argued that multilevel minimization is a better choice for circuit 

design as well as lossless data compression. Their method uses two tools: binary to Boolean 

converter and boolean minimizer. The former tool converts to blocks representing multilevel 

logic functions and the latter minimizes each function using ESPRESSO [29]. They have 

considered a preprocessing phase in their method which stores differences between consecutive 

data symbols instead of the symbols themselves. The converter tool partitions the data stream 

into octets of bits and assigns each bit of the octet to the value of a line in a truth table 

representing a 3-variable function. This allows multilevel minimization of the hypothetic 

function using ESPRESSO. The minimizer uses ESPRESSO in ON mode for two level 

minimization and Berkeley SIS in BLIF [27] mode for multilevel minimization. 

     Falkowski, et al. [18, 21] considered using Kleene Algebra, Multiple-valued functions and 

spectral analysis for lossless compression of gray scale images [19]. Their method consists of 

preprocessing, prediction, splitting of bit planes and variable block-size segmentation and 

coding .They applied similar ideas to gray scale and color biomedical images [22]. They used 

Walsh and Reed-Muller transforms for the spectral analysis. 

    The method proposed in this paper differs in the following points from the methods 

introduced above. This method is lossless. It does not depend on Huffman coding, arithmetic 

coding, prediction, differencing, logic transforms or OBDDs. It has not been specifically 

designed for text or gray scale images and it does not treat blocks of data as truth tables. 

 

3. THE COMPRESSION ALGORITHM 

     The compression algorithm consists of two phases; the first phase is called the minimization 

phase and the second is referred to as the block construction phase.  

In the minimization phase, the original image file is first divided into 8-bit sequences called 

octets. Each octet is then considered as a minterm of 8 variables which are called
0b , 

1b , 

2b , 
3b , 

4b , 
5b , 

6b and
7b with respect to their positions in the minterm. For example, 

the octet 10110010 is considered as
01234567 bbbbbbbb . In the next step, a hypothetical ‘+’ 

operator is inserted between each pair of consecutive minterms. The ‘+’ operator represents the 

logic OR operation.  In this step, the image is converted to a disjunctive logic expression 

represented as a sum of minterms. This sum is then scanned for sets of successive identical 

minterms or successive minterms which can construct implicants. Each of these sets is called a 

segment. Each segment should consist of 1, 2, 4 or 8 successive minterms. An 8-minterm 

segment is preferable to two 4-minterm segments and so on.  The block construction phase 

stores an individual block in the compressed file for each segment detected in this phase. Each 

block contains a simplified form of the corresponding segment along with some extra bits. 

Segments containing identical minterms are called repetitive segments. The simplified form of  
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such a segment is simply one of the identical minterms. For example, the sequence 

P=1011011010110110 is converted to the following expression. 

 

0123456701234567 bbbbbbbbbbbbbbbbP +=  

01234567 bbbbbbbb=  
Equation (3) 

The simplified form of the above expression in the corresponding block will be 10110110. If a 

segment can be simplified to an implicant, the implicant will be the simplified form of the 

segment. Such a segment is called an implicant segment. As an example, 

Q=10110110101101111011010110110100 is converted to the following experiment. 

 

0123456701234567 bbbbbbbbbbbbbbbbQ +=  

0123456701234567 bbbbbbbbbbbbbbbb ++  

234567 bbbbbb=  Equation (4) 

As equation (2) shows, two variables 
0b and 

1b have been discarded and the implicant 

234567 bbbbbb has been formed. The simplified form of the above experiment will be 101101 

which will be stored in the corresponding block.  

In the block construction phase, simplified forms of sequences are stored in blocks. We refer to 

these blocks as compressed blocks. The structure of a compressed block is shown in figure 2. 

The F0 field is a one-bit flag which distinguishes implicant segments from repetitive segments. 

This flag will be 0 for blocks corresponding to implicant segments (implicant blocks) and 1 for 

blocks corresponding to repetitive segments (repetitive blocks). 

The F1 field shows the number of discarded variables for implicant segments. In other words, 

this field is equal to n2log for an implicant segment of n minterms. n can be equal to  1, 

2, 4 or 8 ( 1=n represents  a block consisting of a single minterm which cannot be part of any 

repetitive or implicant segment. Such blocks are called single blocks). Thus, the possible values 

for this field are 0, 1, 2 and 3. This field is 2 bits long. F1 is also equal to the logarithm of the 

number of identical minterms to the base 2 for repetitive segments. 

F2 does not exist in repetitive blocks or single blocks in which F 1= 00. This field shows the 

combination of discarded variables in implicant blocks. If F1 is equal to 01, F2 should indicate 

one of 8 variables ({ }]7,0[| ∈ib i
). Thus, the length of this field will be equal 

to   38log 2 = bits.  

If F1 is 10, F2 should determine one of 
28

2

8
=







 combinations which may have been 

discarded.  

 

Figure 2.  The structure of a compressed block. 

In this case, the length of F2 will be equal to   528log 2 = . If     F 1= 11, F2 will be equal 

to 6
3

8
log 2 =















 bits.  
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The field F3 indicates the order of the simplified minterms in the original file. This field does 

not exist in repetitive blocks or single blocks. If F1=01, F3 should determine one of 

2!2 = possible orders. In this case, the length of this field will be equal to 

  12log 2 = bit. If F1=01, F3 should indicate one of 24!4 = possible orders for 4 

minterms. In this case, the length of F3 will be equal to   524log 2 = bits. If F1 is 11, the 

length of F3 will be equal to   16)!8(log 2 = bits.  

The field F4 in each block contains the simplified form of the corresponding segment. The 

length of this field will be equal to 8 bits for every repetitive block or every single block. This 

field will have 7 bits in 2-implicant blocks, 6 bits in 4-implicant blocks and 5bits in 8-implicant 

blocks. 

According to the above discussions the compression algorithm will be as follows: 

 

I=1 

While Not EOF (OriginalFile) { 

Allocate a new block 

If minterm I is identical to minterms i+1 to i+7 then 

       { 

 

Set F0=1, F1=11 

Consider no F2 and no F3 

Put the minterm I in F4 in 8 bits 

Store the constructed block in CompressedFile 

Set i=i+8 

} 

Else If minterm I is identical to minterms i+1 to i+3 then 

       { 

 

Set F0=1, F1=10 

Consider no F2 and no F3 

Put the minterm I in F4 

Store the constructed block in CompressedFile 

Set i=i+4 

} 

 

Else If minterm I is equal to minterm i+1  

       { 

 

Set F0=1, F1=01 

Consider no F2 and no F3 

Put the minterm I in F4 in 8 bits 

Store the constructed block in CompressedFile 

Set i=i+2 

} 

Else If minterm I can be disjointed to minterms i+1 to i+7 

       { 

 
Set F0=0, F1=11 

Put the combination of the discarded variables in the array C 
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Find the ID of the combination using the CombinationToID algorithm and assign the ID to 

F2 

Put the minterms I to i+7 in the array nums with respect to their positions in OriginalFile 

Find the ID of the permutation using the permutation algorithm and assign the ID to F3 in 

16 bits 

Assign the simplified form of the 8 minterms I to i+7 to F4 in 5 bits 

Store the constructed block in CompressedFile 

Set i=i+8 

} 

Else If minterm I can be disjointed to minterms i+1 to i+3 

        { 

 

Set F0=0, F1=10 

Put the combination of the discarded variables in the array C 

Find the ID of the combination using the CombinationToID algorithm and assign the ID to 

F2 in 5 bits 

Put the minterms I to i+3 in the array nums with respect to their positions in OriginalFile 

Find the ID of the permutation using the permutation algorithm and assign the ID to F3 in 

5 bits 

Assign the simplified form of the 4 minterms I to i+3 to F4 in 6 bits 

Store the constructed block in CompressedFile 

Set i=i+4 

} 

Else If minterm I can be disjointed to minterm i+1  

       { 

 

Set F0=0, F1=01 

Put the j in 3 bits in F2 in 3 bits if 
jb has been discarded 

Set F3=0 if the smaller minterm proceeds the larger minterm in OriginalFile, Set F3=1 

otherwise 

Assign the simplified form of the 8 minterms I to i+3 to F4 in 7 bits 

Store the constructed block in CompressedFile 

Set i=i+2 

} 

Else  

       { 

 Optionally Set F0=0, F0=1 

Set F1=00 

Consider no F2 and no F3 

Assign the minterm I to F4 in 8 bits 

Store the constructed block in CompressedFile 

Set i=i+1 

} 

  }   
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The algorithm CombinationToID is a simple recursive algorithm that takes a combination of 

variables as the input and gives a numerical ID that uniquely represents the input combination. 

PermutationToID is also another simple algorithm that takes a permutation of numbers and 

gives a unique numerical ID for that permutation. 

 

4. THE DECOMPRESSION ALGORITHM 

The decompression algorithm makes use of F0, F1, F2 and F3 fields of each block in the 

compressed file in order to convert the F4 field to the corresponding segment and store the 

segment in the decompressed file. This algorithm works as follows. 

 

i=1 

While not EOF (CompressedFile) { 

Read bit i as F0 and bits i+1 and i+2 as F2 

i=i+3 

If F1=00 then  

{ 

 

 Read the next 8 bits as F4 and store it in DecompressedFile. 

i=i+8 

} 

If F0=1 and F1=01 then  

{ 

 

 Read the next 8 bits as F4 and store it twice in DecompressedFile. 

i=i+8 

} 

If F0=1 and F1=10 then 

{ 

 

 Read the next 8 bits as F4 and store it four times in DecompressedFile. 

i=i+8 

} 

If F0=1 and F1=11 then  

{ 

 

 Read the next 8 bits as F4 and store it eight times in DecompressedFile. 

i=i+8 

} 

If F0=0 and F1=01 then 

{ 

 

 Read the next 3 bits as F2, i=i+3 

Read the next bit as F3, i=i+1 

Read the next 7 bits as F4, i=i+7 

Put once 0 and once 1 in F4 in the position shown by F2 and construct two octets.  

If F3=0 first store the octet containing 0 in DecompressedFile and next store the octet 

containing 1. 

Otherwise, first store the octet containing 1 in DecompressedFile and next store the octet 

containing 0. 
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If F0=0 and F1=10 then  

{ 

 

 Read the next 5 bits as F2, i=i+5 

Read the next 5 bits as F3, i=i+5 

Read the next 6 bits as F4, i=i+6 

Pass F2 as an integer number to the algorithm IDToCombination and determine the two 

discarded variables. 

Put once 0 and once 1 for each of the two discarded variables in F4 and construct four 

octets. 

Sort the four octets in ascending order in the array C and pass C with F3 (as an integer 

number) to the IDToPermutation algorithm to determine the order of the octets. 

Store the octets in DecompressedFile in the determined order. 

} 

If F0=0 and F1=11 then 

{ 

 

 Read the next 6 bits as F2, i=i+6 

Read the next 16 bits as F3, i=i+16 

Read the next 5 bits as F4, i=i+5 

Pass F2 as an integer number to the algorithm IDToCombination and determine the three 

discarded variables. 

Put once 0 and once 1 for each of the three discarded variables in F4 and construct eight 

octets. 

Sort the eight octets in ascending order in the array C and pass C with F3 (as an integer 

number) to the IDToPermutation algorithm to determine the order of the octets. 

Store the octets in DecompressedFile in the determined order. 

} 

 

The algorithm IDToCombination is the reverse of CombinationToID. It is a simple recursive 

algorithm that takes the ID of a combination of variables and constructs the combination.  

IDToPermutaion is also the reverse of PermutatioToID.  It takes the ID of a permutation and 

constructs the permutation. 

 

5. PERFORMANCE EVALUATIONS 

The probability that 8 consecutive minterms in the original file are the same can be obtained 

from the following equation. 
7

8
256

1








=

− rep
P

 
Equation(5) 

In this case, the block length in the compressed file is equal to 11. Thus, the compression factor 

in this case can be calculated as follows. 

64

11

8*8

11
8 ==

− repC  
Equation(6) 

eqP −4
, 

eqC −4
, 

eqP −2
 and 

eqC −2
can be obtained from the following equations. 

 

 



The International Journal of Multimedia & Its Applications (IJMA) Vol.3, No.2, May 2011 

56 

 
3

4
256

1








=

− eq
P  

Equation(7) 

32

11

8*4

11
4 ==− eqC  

Equation(8) 

256

1
2 =

− eqP  
Equation(9) 

16

11

8*2

11
2 ==

− eqC  
Equation(10) 

 

If each minterm has n variables, the number of implicants constructed from m2 minterms 

(considering the order of minterms) can be calculated from the following equation. 

)!2.(2. mmnn

m
m

n
N −









=  

Equation(11) 
 

In the above equation, 









m

n shows that m variables should be discarded. mn −2 shows that the 

rest of variables can each be 0 or 1. )!2( m demonstrates all possible orders of m2 minterms. 

According to the above equation, the probability that a minterm in the original file can be 

disjointed to its 7 next minterms and construct an 8-implicant can be calculated as follows.  

( )

( )8

35

8
256

!2.2.
3

8









=− impP
 

Equation(12) 
 

The block length in the compressed file is equal to 30 bits in this case. Thus the compression 

factor will be calculated as follows. 

64

30

8*8

30
8 ==− impC  

Equation(13) 

impP −4
, 

impC −4
, 

impP −2
and 

impC −2
are obtained from the following equations. 
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




=− impP
 

Equation(14) 
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19
4 ==− impC  

Equation(15) 
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− 8
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256

!2.2.
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8
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Equation(16) 

16

14

8*2

14
2 ==

− impC
 

Equation(17) 

 

Now let us calculate the number of ways to divide a set of 8 consecutive 8-variable minterms 

into segments of 1, 2, 4 and 8 minterms. To do this, we should first solve the following 

equation. 

8842 =+++ qpnm  

]8,0[,,, ∈qpnm  Equation(18) 

In the above equation, m, n, p and q represent the numbers of 1-segments, 2-segments, 4-

segments and 8-segments respectively. The above equation has 10 sets of answers. There are a 

number of permutations for each set of answers. Table 1 shows all each of the 10 sets of  
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answers with the number of permutations corresponding to each of the sets. The table also 

shows the probability that the 8 consecutive minterms is divided in each way. 

 

Table 1.Sets of Answers and their Probabilities 

Set of 

answers 
Number of 

permutations 
Probability 

m n p q 

0 0 2 0 1
!2

!2
=  

66

1  

0 0 0 1 1
!1

!1
=

 
66

1  

0 2 1 0 3
!1!*2

!3
=

 
66

3  

0 4 0 0 1
!4

!4
=  

66

1  

2 3 0 0 10
!2!*3

!5
=  

66

10  

2 1 1 0 12
!1!*1!*2

!4
=

 
66

12  

4 0 1 0 5
!1!*4

!5
=  

66

5  

4 2 0 0 15
!2!*4

!6
=

 
66

15  

6 1 0 0 7
!1!*6

!7
=  

66

7  

8 0 0 0 1
!8

!8
=  

66

1  

 

There are 2562 8
= possible 1, 2, 4 or 8-repetitive segments. The total number of possible 2-

repetitive segments is equal to ( ) 2048!2.2.
1

8
17

=






 . A 2-repetitive segment has compression 

factor of
66

11 . Every 2-implicant segment has a compression factor of
66

14 . Thus, the average 

compression factor of a 2-segment is calculated as follows. 
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Equation(19) 

 

We can calculate the compression factors of 4 and also 8-segments in a similar way. 
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The compression factor for a 1-segment is equal to 19.1
66

19
≈ which is larger than unity. 

Now we can calculate the average compression factor for each of the 10 states in table 1. These 

factors will be equal to 0.6, 0.47, 0.66, 0.85, 0.93, 0.81, 0.89, 1.0, 1.10 and 1.19 respectively. 

 

Table 2.Experimental Results 

Color Image 
Original 

Size 

Compres

sed Size 

Compression 

Ratio 

 

Lena 6291456 4731162 25% 

Baboon 5760000 5347825 7.2% 

Pepper 6291456 4654743 26% 

Gold hill 9953280 7355764 26% 

Dreamnight 6291456 1157792 82% 

Sailboat 6291456 5450349 13% 

Splash 6291456 4222848 33% 

Greyscale 

Image 

Original 

Size 

Compres

sed Size 

Compression 

Ratio 

 

Lena 2097152 1533440 27% 

Baboon 1920000 1821017 5.2% 

Pepper 2097152 1514595 28% 

Gold hill 9953280 2381777 28% 

Dreamnight 6291456 1100866 48% 

Sailboat 2097152 1632913 22% 

Splash 2097152 1336786 36% 

 Average 29% 

 

We can calculate the average compression factor of YALMIC algorithm by multiplying the 

compression factor of each state by its probability and adding the products to each other.  

The sum of the mentioned products is 8.0≈tC . Thus, the compression factor of YALMIC is 

equal to 0.8 and its compression ratio will be equal to %202.08.01 ==−≈tCR . 

 An important point to consider here is that the average compression ratio can be greater than 

20% for normal images. The reason is that we have made no extra assumptions regarding 

dependencies among the pixels or bytes of the image while in real images, there is often a lot of 

dependency between the pixels and bytes. The experimental results verify this point. These 

results are shown in table 2. 

Table 2 consists of two parts. The upper part shows the results obtained from color images and 

the lower part shows the same results for gray scale images. Each row in this table contains the 

name, the original size, the compressed size and the compression ratio for one of the images 

which have been compressed using YALMIC. All the images are standard except for one of 

them which is named Dreamnight.  Dreamnight is a painted image drawn with the MS paint. 

This image is shown in figure 3. 
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Figure 3.  The Dreamnight Test Image 

     TABLE 3. RESULTS REPORTED BY AUGUSTINE, ET AL. IN [28] 

Image Method 
Compression 

Ratio 

Girl 
Logic coding 39.9 

PVRG-JPEG 30.7-38.1 

Mandrill 
Logic coding 11.6 

PVRG-JPEG 6.7-13.7 

Boats 
Logic coding 27.9 

PVRG-JPEG 24.9-33.1 

TABLE  4.         RESULTS REPORTED BY VILLARROYA, ET AL.IN [19] 

Method 

Average 

Compression 

Ratio 

CF-AE 11.89 

CF-OBDD 14.68 

SF-OBDD 18.4 

 

As shown in table 2, the compression ratio is larger than 25% for all images except for Baboon. 

The average compression ratio is about 25% which is quite comparable to the results reported in 

previous works such as those reported by Augustine, et al. in [28],  or those obtained by 

Villarroya, et al. in [19].  

Table 3 shows the results obtained by Augustine, et al. [28]. As shown in this table, the average 

compression ratio of their method (called Logic Coding) is almost 26.5. Table 4 shows the 

results reported in [7]. The latter results have been obtained through applying three different 

methods to CCITT fax images.  These methods are called CF-AE, CF-OBDD and SF-OBDD. 

As demonstrated by table 4, the compression ratios of the used methods are 11.89, 14.68 and 

18.4 respectively. 
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6. CONCLUSIONS AND FURTHER WORKS 

In this paper an image compression method called YALMIC was introduced. This algorithm 

divides the image into segments of 1, 2, 4 or 8 octets of bits. The segments are then considered 

as logic expressions in the form of sum of products. YALMIC distinguishes two types of 

segments. The first type consists of duplicated octets and the second consists of octets which 

can construct prime implicants using the Quine–McCluskey minimization technique. The 

simplified forms of logic expressions are stored in the compressed file along with some extra 

bits which are required to fully regenerate the original segments. Analytical modelling shows 

that the average compression ratio of the algorithm will be greater than 20%. Experimental 

results show that the average compression ratio is almost 25%. The method proposed in this 

paper is lossless. It does not depend on Huffman coding, arithmetic coding, prediction, 

differencing, logic transforms or OBDDs. It has not been specifically designed for text or gray 

scale images and it does not treat blocks of data as truth tables. This work can be continued by 

enlarging the size of the segments, dividing the image into rectangular windows instead of 

linear segments or applying the algorithm to text, audio and other kinds of data. 
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