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ABSTRACT 
 

Social Media Posts On Platforms Such As Twitter Or Instagram Use Hashtags, Which Are Author-Created 

Labels Representing Topics Or Themes, Toassist In Categorization Of Posts And Searches For Posts Of 

Interest. The Structural Analysis Of Hashtags Is Necessary As Precursor To Understandingtheir Meanings. 

This Paper Describes Our Work On Segmenting Nondelimited Strings Of Hashtag-Type English Text. We 

Adapt And Extend Methods Used Mostly In Non-English Context For Word Segmentation, To Handle 

Hashtags In English, Obtaining Effective Results. 
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1. INTRODUCTION 

 

Social media sites such as Twitter use hashtags, which are key phrases preceded by the pound (#) 

symbol to mark posts with similar themes. A hashtag can be placed anywhere within a tweet, and 

it is usually used to highlight the tweet’s keywords or main subject matter. Popular hashtags are 

presented on Twitter as trending topics. The discussion of celebrities, TV shows and movies, 

natural disasters like fires and earthquakes, and political hot topics all use hashtags so that, when 

searching a site like Twitter, posts on the topic of interest can be easily found. From these 

hashtags, Twitter also compiles lists of the most noteworthy topics of the day, month, year. 

 

On Twitter, a post may contain none, one, or as many hashtags as the user may desire (or may fit 

within the 140 character limit). Research has shown that tweets with hashtags receive two times 

the engagement than those without, and that tweets with one or two hashtags have 21% higher 

engagement than those with three or more1. In addition to Twitter, hashtags are used copiously in 

other social media sites such as Instagram, Pinterest, Google+, Tumblr and Orkut. Starting in 

2013, the social media giant, Facebook, has supported Twitter-like hashtags2. Consulting about 

how to use hashtags properly as a marketing tool, and analysis of hashtags to track and measure 

hashtag engagement and influence have spawned many businesses, including websites such as 

hashtags.org.  

 

A hashtag is simply a key phrase, composed of one or more tokens, written without whitespace. 

Although the tokens are frequently words of a language like English, they do not have to be. One 

can use abbreviations, wrongly spelled words, made-up words containing arbitrary character 

sequences, numeric digits, names of people, places or events; in short, anything possible on an 

everyday keyboard. One needs to be mindful about keeping a hashtag short, for both readability 

and for actual length limitations imposed by previously mentioned sites. In Table 1 we see some 

“English” hashtags that are composed of English or English-like tokens. Of course, it is possible 

to mix languages, such as English and Spanish, or English and German in the same hashtag. 
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Table 1: A few hashtags, showing examples of ambiguous tokenizations, along with preferred 

tokenizations. 

 

Word segmentation is an important first step in natural language processing. It is difficult to 

derive meaning from a piece of text without first having a good understanding of the words that it 

comprises. We believe that hashtag tokenization should be the first step in automatic 

understanding, clustering or classification not only of individual hashtags, but of social media 

posts containing them. In this paper, we discuss methods for, experiments in, and results of 

automatic hashtag segmentation. 

 

2. PROBLEM DEFINITION 

 

Formally, the problem is as follows: Given a string a1a2:::ak, where each ai is a meaningful 

substring (i.e., a word, name, abbreviation, etc.), determine where the boundaries lie between 

each ai and ai+1. For example, given a string such as “randompicoftheday” return “random pic of 

the day”. Initially it may seem like a simple problem. Simply loop through all substrings of the 

input, looking for matches in a dictionary.  Once all matches have been found, segment the string 

accordingly.  

 

The real problem, however, lies in the phrase “then segment accordingly.” “The key to accurate 

automatic word identification...lies in the successful resolution of these ambiguities and a proper 

way to handle out of- vocabulary words” [1]. Although referring to the segmentation of Chinese 

characters, the sentiment is still very much appropriate. In our case, ambiguities occur when a 

string has more than one meaningful segmentation, or has out-of-vocabulary words when our 

dictionary fails us. Both scenarios occur frequently, and the success of our methods depends on 

the handling of such situations.  

 

Consider, for example, the string “brainstorm”. Using a table lookup, a machine could read this as 

either “bra in storm”, “brain storm”, or the correct, untouched “brainstorm”. Following Webster 

and Kit [2], we will refer to this as conjunctive ambiguity, i.e., when a meaningful string can be 

broken up into n meaningful substrings. The natural solution of course is to take the segmentation 

with the largest matched word. This maximum matching approach handles conjuctive ambiguity 

very well, for it is unlikely that a syntactically sound clause happens to merge into a larger word, 

yet it is quite common for a larger word to break up into dictionary- match able pieces. 

 

Maximum matching fails, however, in cases of disjunctive ambiguity—the situation when a 

string “ABC” can be broken up meaningfully as either “AB C” or “A BC”. “doubledown”, for 

example, could be interpreted as either “doubled own” or the correct “double down” (or even “do 

u bled own” which exhibits both conjunctive and disjunctive ambiguity). Taking the maximum 

matching here would result in the incorrect segmentation “doubled own”. Disjunctive ambiguity, 

it appears, requires a bit more syntactic knowledge to resolve.  
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The other main issue is the handling of strings outside of out dictionary. The string “votedems”, 

for instance, should be returned as “vote dems” and not “voted ems”, while our dictionary may 

only contain the abbreviation “ems” and not “dems”. With typos, abbreviations, online slang, and 

just a general abundance of linguistic rule-breaking in hashtags, these situations are bound to 

occur, and occur frequently. For our effort to succeed, such unknowns must be recognized and 

handled appropriately. 

 

3. RELATED WORK 

 

Twitter posts are voluminous in number, publicly available and easily accessed, and as a result, 

they have become a prime source of “modern” Internet-mediated language for studies of all 

stripes, with hundreds of papers published, including a recent survey [3]. For example, studies 

have attempted to normalize the informality present in such language [4, 5, 6], tag parts-of-speech 

[7, 8], summarize a collection of posts [9, 10, 11], identify topics [12, 13] and detect expressed 

sentiments [14, 15]. To the best of our knowledge, however, most of these studies simply ignore 

hashtags, which are crucial for indexing and categorizing tweets.  

 

In languages such as German and Chinese, due to frequent use of large compounds and lack of 

delimitation, respectively, effective segmentation is important. Nie et al. [16] segment Chinese 

text heuristically, analyze unknown strings statistically for likelihood of being real words. Xue et 

al. [1] segment Chinese words by tagging them with a MaxEnt model trained using features 

involving neighboring characters. Peng et al. [17] use Conditional Random Fields (CRFs) to tag 

characters as either START or NONSTART, using POS tags and neighboring characters as 

features, as well as an N-best system to process and accept probable unknown words. Koehn and 

Knight [18] learn splitting rules for German compounds and choose most likely segmentations 

based on how frequently the segmented tokens appear in a corpus, as well as whether or not the 

translation of a segmentation contains the same words as the translation of the original string. 

Part-of-speech (POS) tags are also used to help avoid splitting off suffixes and prefixes from root 

lemmas. 

 

There is not much prior work in hashtag segmentation. Berardi et al. [19], who took part in TREC 

Microblog Track 2011 [20] for searching a set of 16 million tweets for relevant tweets at a certain 

time, discuss approaching hashtag segmentation using a Viterbi-type algorithm [21] to improve 

search performance, although they do not provide any results. Srinivasan et al. [22] discuss 

several approaches primarily devoted to segmentation of web domain names, although they 

discuss the segmentation of hashtags briefly. Their contention is that domain names and hashtags 

share certain similar properties in how they are constructed and therefore, similar approaches can 

be used. They start with several corpora, and develop scoring formulas for segmentation using 

unigrams and bigrams found in the corpora and segmentation length. Models obtained are then 

weighed using a maximum margin learning problem solved using the SVM- struct framework 

[23]. They do not provide any direct results for hashtag segmentation, but do show that it can 

improve recall in Twitter searches. Bansal et al. [24] show that hashtag segmentation can improve 

linking of entities extracted from tweets. They assume that an unknown or OOV segment inside a 

hashtag is surrounded by known segments on its two sides. If there are ambiguities, they 

hypothesize various lengths for the intervening segment, scoring the alternatives using unigram 

based features and probable lengths of the unknown segment. Probable lengths are determined 

assuming its length follows the distribution of lengths of known tokens found in tweets.  

 

Segmentation of a hashtag involves several steps, as we will soon see. The current wisdom is that 

when there is a pipeline involving several steps of processing in an NLP task, the results can 

often be improved by dispensing with pipelining and performing the steps jointly. For example, 
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Zhang et al. [25] improve performance of a greedy algorithm that jointly predicts segmentation, 

POS tags and dependency parses, improving all of them iteratively, using hill-climbing. The 

contention is that in a pipeline architecture, the errors cascade from one step to the next, but joint 

prediction reduces error propagation. Joint prediction [26, 27, 28] has performed better compared 

to pipeline architectures, especially for morphologically rich languages like Arabic and Chinese. 

 

4. OUR APPROACH 

 

In the rest of the paper, we describe the several approaches we take to hashtag segmentation and 

present our results. We first present the methods we use to generate and assign scores to possible 

segmentations for a given input. We then present the more general algorithm we use to select the 

best answer from the generated set of possibilities. After implementing the algorithm’s steps in 

pipeline, we also describe a hill-climbing version of the algorithm, because we want to 

investigate if joint prediction performs better for the hashtag segmentation task, as claimed by 

several recent papers in similar tasks. We finally present segmentation results produced by our 

approaches, compare them, and identify the best performer. 

 

5. SEGMENTATION SCORING METHODS 

 

Each of the following methods defines a scoring function whose aim is to assign top scores to 

correct segmentations, thus turning the process of segmentation into a search for the highest 

score. We have developed these scoring functions based on our understanding of what ideal 

segmentations should look like. The goal is to give high scores to good segmentations and low 

scores to bad ones. 

 

5.1 Maximum Known Matching (MKM) 

 
To begin, we try a simple maximum matching approach, i.e., given a string s, get all possible 

segmentations of s into dictionary words, then return the “longest” segmentation. The question 

then becomes how to define the length of a segmentation. Should we prefer the segmentation 

containing the longest words? That which has the largest average word length? We want to 

consider both. We first want to consider just the segmentations with the largest average word 

length, then take that which contains the longest word (if the longest words are equal then 

compare the second longest, third, etc). In other words we need a function f that fulfills the 

following two conditions: 

 

1. size(s1) > size(s2) =) f(s1) < f(s2) 

2. size(s1) = size(s2) ^ s1 > s2 =) f(s1) > f(s2) 

 

where s1 and s2 are segmentations, size a function that returns the number of words in a 

segmentation, and s1 > s2 meaning s1 contains longer words than s2. Note that average word 

length is inversely proportional to the number of words in a segmentation. We could of course 

write out the logic above, i.e. define a function that takes the segmentation of shortest length 

containing the largest individual words, but it may be useful later on to be able to assign a 

numeric score which models the same choice. Thus, we define the length score of a segmentation 

as follows: 
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where len(w) returns the length of a word w, and s is a segmentation into i words. 
 

 
 

5.2 Maximum Unknown Matching (MUM) 
 

The problem with the previous aptly named approach, however, is that it accepts no unknown 

words. To amend this, we expand our algorithm in the following way: Given a string s, rather 

than looking at all segmentations into known words, consider all segmentations of s where each 

division point borders at least one known word. Then return the segmentation with the highest 

length score.  

 

But now we must amend our definition of length score, for as it stands it will simply return s 

itself (or, if we exclude s, a segmentation with a very large unknown word). The previous 

definition of length score has no way of weighing known versus unknown words, and places high 

value on the average word length of a segmentation. To adjust we redefine the score as follows: 

 

 
where s is a segmentation into i  known words and  j unknown words. 

 

5.3 Two grams (2GM) 
 

These simple methods produce fairly effective results (see evaluation section), but, as discussed 

earlier, successful disambiguation cannot rely merely on length—some syntactic data must be 

incorporated. Using a database of 2-gram occurrences in a corpus, we define the 2-gram score of 

a segmentation s, simply as the number of recognized 2-grams in s, divided by the total number 

of 2-grams in s. A segmentation of length 1, thus containing no possible 2-grams, receives a score 

of -1. The final scores are then normalized to fall between 0 and 1, and a score of -1 is set by 

default to 0.5.  

 

We ignore the actual occurence count of the recognized 2-grams in order to avoid over-

segmentation. The string “d at a mining”, for example, would return a much higher score than the 

correct “data mining”, due to the frequency of the 2-gram “at a”, were occurence count taken into 

consideration. Without it, the latter outscores the former.  

 

To account for numbers and ordinals, which are not included in our 2-gram datasets, as well as 

acronyms and contractions, we translate each unrecognized word into a set of possible words, via 

either a translation dictionary—the contents of which are detailed below—or, in the case of 

numbers and ordinals, a predefined ruleset. Out of these possibile translations, that with the 

highest 2-gram score is assumed to be correct. 
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5.4 POS tagging 

 

2GM is flawed, however, in the same way that MKM is flawed; it lacks strength in handling 

unknown words. 2-grams which lie outside of the database return a count of 0.  

 

As an attempt to correct this, we approach the problem as a POS tagging problem. I.e. given a 

segmentation, tag each word with the appropriate POS, then assign it a score based on the 

probability of a given sequence of POS tags.  

 

This approach poses two new problems: a) Tag appropriately, and b) Score tag sequences. And 

for each we pose two solutions, one using the ARK POS tagger for Twitter [8], and one using 

Hidden Markov Models (HMM) implemented with the MALLET toolkit [29]. Using ARK, we 

can tag segmenations by POS, then, using their POS n-gram data, repeat 2GM using POS tags 

rather than words themselves. Similarly, with a trained HMM, we can tag segmentations by POS, 

then score a tag sequence by taking its average edge weight in the model. This leads us to four 

new possible strategies: 

 

1. Tag with ARK, assign probabilities with ARK (AA), 

2. Tag with ARK, assign probabilities with HMM (AH), 

3. Tag with HMM, assign probabilities with ARK (HA), and 

4. Tag with HMM, assign probabilities with HMM (HH). 

 

6.  ALGORITHMS 
 

We now have seven scoring methods for disambiguation—MKM, MUM, 2GM, plus the four 

listed above. When used in overall segmentation algorithms, these scores are normalized on each 

new input to fall between 0 and 1, based on the highest scoring segmentation for the current 

input. 

 

6.1 Pipeline 
 

These scores, plus some simple heuristics, leave us with the pipeline-based segmentation 

algorithm as detailed in Algorithm 1. 

 

 
 

In the pipeline algorithm, highest Scoring Seg () searches by brute force using a scoring function 

that is some convex combination of previously mentioned scoring functions (MUM, 2GM, AH, 

etc.); prune() heuristically filters out unlikely segmentations; all Possible Segmentations () 

returns every possible segmentation of s—unless s exceeds a length threshold, in which case at 

least one of the k-longest words in s is made to be present in every segmentation (to limit search 
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space size); and segment By Delimeters () segments based on punctuation and capitalization, 

returning, for example “Club Rio - June 19 th - 8 - 12 am” when given “ClubRio-June19th-8-

12am”. Note that this will fail on confusing inputs. “LadiesoftheDMV”, for example, looks 

delimited but is in fact only partially, and would thus be under-segmented. Only those rule-based 

segmentations which meet a certain length score threshold, or are composed entirely of known 

words, therefore, are returned. The rest have their unknown sections fed back into the segmenter 

to be treated by the normal algorithm. 

 

6.2 Hill-climbing 
 

Based on the work of Zhang et al. [25], we also consider a greedy hill-climbing algorithm. I.e., 

rather than pruning down to a set of probable segmentations and then searching by brute force, 

start with a random segmentation, calculate the scores of all “nearby” segmentations, then climb 

to the one with the highest score and recurse. The algorithm terminates once no further upward 

steps are possible. k random restarts are allowed to minimize the chance of getting stuck in local 

maxima. In our implementation, segmentations of a string of length n string are considered as 

binary strings of length n -1, where a “1” indicates that the corresponding character in the original 

string is followed by a splitting point. “Nearby” segmentations are then simply defined as the set 

of binary strings obtained by flipping a bit in the original, i.e. either adding or removing a 

splitting point.  

 

In its initial implementations, hill-climbing, although more elegant than the pipeline approach, 

proved to be slightly less successful (at best yielding an f-score of 76.5%, whereas, at the time, 

the pipeline approach peaked at 82.2%). Likely, the definition of nearby segmentations was too 

narrow, creating too many local maxima to avoid. 

 

7. UNKNOWN HANDLING 
 

Nie et al. [16] define the following process for unknown handling: 
 

1. Perform a maximum matching. 

2. Gather remaining unknowns. 

3. Remove unlikely candidates based on a predefined ruleset. 

4. Add those which occur most frequently to the dictionary and repeat. 

 

This method enables the segmenter to improve with repeated applications, and it is, generally, the 

method we use to accomodate unknown words. Rather than defining a ruleset for how words 

should look, however, we train a Markov chain on a list of English words. The states of the chain 

correspond to letters of the 

 

 
 

Table 2: POS tags used 
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alphabet, and transitions between states model letter sequence probabilities. The average 

transition probability of a given string should, then, theoretically mirror its likelihood of being a 

real word. The removal of unlikely candidates then comes down to choosing a threshold value. 

As with Nie’s method, the frequency of a given unknown is also factored into its estimated 

probability of being a real word. Because of this, the size of the test set will directly affect the 

appropriate threshold value.  

 

In addition to this algorithm, unknown handling has also been attempted via the use of spell-

checking resources. Spelling errors, intentional or unintentional, are the root cause of many 

unknowns, and handling them effectively would have significant effects on performance. Several 

strategies were tested—treating unknown words within some edit distance threshold of known 

words as known words themselves; treating such words as “semi-known” words, and adjusting 

the length score function to handle them; including spell-check suggestions as translations for 

2GM scoring—but each led to disjunctive ambiguity errors; words would be segmented with 

extra letters when they shouldn’t have. Rules were devised as an attempt to exclude such 

occurrences, but still without improving results. The one method which did prove to be useful 

was the inclusion of common misspellings and their root words in our translation dictionary. As 

with numbers, ordinals, acronyms, and contractions, common spelling corrections have thus been 

included in translations for 2GM scoring. 

 

8. RESOURCES USED 
 

 

 

9. EVALUATION AND RESULTS 
 

Performance is rated in terms of precision, recall, and f-score. For a single segmentation, 

precision is defined as the number of correctly segmented words divided by the total number of 

words in the proposed 
 

 
 

Table 3: Performance evaluation in terms of accuracy 
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Table 4: Performance evaluation in terms of speed 

 

 
 
Correct segmentations are based on a manually segmented list of 1129 hashtags. In the list, each 

hashtag corresponds to a set of all valid segmentations (typically just one, but in some cases 

alternate segmentations exist which are equally acceptable). During calculation of evaluation 

metrics on a proposed segmentation, scores are calculated for each possible answer and the 

highest results are returned.  

 

Tables 3 and 4 list the results of methods that have been tested with the current dictionaries and 

heuristics, as tested on our manually curated answer set. AH outscored the other three POS-based 

methods. This makes sense, as ARK’s successful POS tagger should easily trump our HMMs in 

terms of tagging accuracy, whereas the edge weights of the HMM should provide comparable or 

better transition probabilities. As such, AH was the first of the four to be tested with the updated 

heuristics and newly introduced translation scheme. AH was followed by HH for the latter’s far 

superior speed. 

 

For efficiency, possible segmentations had to be pruned twice before actually taking AH score 

into consideration. First, heuristically. Second, by a combination of length and 2GM score. This 

second pruning was based on an optimal convex combination of length and 2GM scores, the 

values of which are depicted in Figure 1. The remaining segmentations were then disambiguated 

by a convex combination of all three scores, length, 2-gram, and AH. Figure 2 displays the 

relationship between possible combinations of the three and their effects on f-score. Although the 

success of the AH method is largely due to the success of the pipeline system, Figure 2 shows 

that it can perform as well as the 2GM method in disambiguation.  

 

The same pruning system was used for the HH method, though with a slightly larger pruning set 

size. Figure 3 mirrors the form of Figure 2, with HH score substitued for AH score. Though faster 

than AH, HH has been less successful in disambiguation. In Figure 1, L refers to the weight 

assigned to the length score, and T, the weight assigned to the 2GM score, can be simply 

calculated as 1-L. Similarly, in Figures 2 and 3, L represents the weight of the length score, and T 

is left to be calculated as 1-(L+A) or 1-(L+H), respectively, where A represents the weight of the 

AH score and H the HH score. Performance evaluation in Figures 2 and 3 is based on the 

segmentation of 232 hashtags chosen such that they could not be handled by simple heuristics. 

They were chosen by running a heuristic segmenter on the manually curated collection and 

gathering those on which the machine failed. Performance in Figure 1 is evaluated based on the 

full answer set. 
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Figure 1: A range of combinations of length score and 2GM score with resulting performance measures 

 

 
Figure 2: A range of combinations of length score, 2GM score, and AH score with resulting performance 

measures 
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9.1 Comparison with Prior Approaches 
 

Srinivasan et al. [22] do not provide direct results for hashtag segmentation, but state that recall in 

search for tweets can improve by 5% or more when they segment the hashtags and use the tokens 

obtained in search. They developed various models for segmentation of domain names, and 

obtained average accuracies of 87.07, 87.98, 88.68 and 89.74% for the four bigram-based 

methods (these numbers were obtained by adding up the values in the bottom part of Table 3 in 

their paper and averaging). Our methods perform better compared to their average results, though 

their numbers are for domain splitting and ours for hashtag splitting. The work that comes closest 

to ours is by Bansal et al. [24], who segment Twitter hashtags with the goal of improving 

extraction of links or relations among entities mentioned in tweets. They provide 

 
Table 5: Performance evaluation in terms of accuracy for Brazilian Portuguese 

 

a P@1 or accuracy value (which is the precision value we report) as 0.914. This is quite 

comparable to the results we provide, but they do not provide any recall and F-score values. 

Hence, it is difficult to fully compare their method to ours. 

 

10. EXPERIMENTS WITH BRAZILIAN PORTUGUESE 

 

We wanted to experiment with hashatags in at least one more language and we chose it to be 

Brazilian Portuguese. Although often entirely English, tweets in Brazilian Portuguese range from 

being entirely English to entirely Portuguese, sometimes combining both. Of course, working 

with both languages brings in more difficulties, mainly more ambiguities.  

 

Since these two languages are not very dissimilar, we hypothesized that many ambiguities could 

be handled by methods previously described for English. We kept the original English dictionary 

with approximately 150,000 words, but added to it a dictionary of approximately 100,000 

Portuguese words obtained from free online resources. We added abbreviations, corporations, 

first and last names to the Portuguese dictionary, just as we did for English. We also added the 

50,000 most common 2-grams in Portuguese taken from Corpus do Portuguˆes, and downloaded 

~100,000 hashtags in Brazilian Portuguese from Twitter using the Twitter API. 

 

Although formal Brazilian Portuguese uses accents liberally, accents are often omitted in tweets 

due to typing ease on mobile devices. To simplify matters, we removed all accents from our 

datasets. For experiments reported here, we added Portuguese 2-gram data to our English 2-gram 

data, although we acknowledge that this misses the possibility of mixed English and Portuguese 

2-grams.  

 

Correct segmentations are based on randomly chosen 1000 manually segmented hashtags. Results 

from Brazilian Portuguese with MKM, MUM and 2GM methods are given in Table 5. Additional 

experiments were not performed for Portuguese. We believe that the combination of two 

languages and lack of as many resources as in English has for ready use, caused the results in 

Brazilian Portuguese to be poorer. 
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11. POSSIBLE IMPROVEMENTS AND CONCLUSION 
 

With the right tagset and enough supervised learning data, there is still hope for the success of the 

HH method. Alternatively, CRFs, as shown in [17], have been used successfully as segmentation 

tools, and moving from HMMs to CRFs, thus allowing arbitrary feature inclusion, could be a 

more effective option. Larger n-gram data has not yet been tried to extend 2GM, and neither have 

alternative lexical normalization strategies. With different definitions of distance, the hill-

climbing algorithm could also prove superior to the pipeline approach.  

 

Much work is also left to be done in the task of unknown handling. Different training sets could 

be explored, as well as sophisticated methods for learning threshold values. As far as spelling 

correction goes, our solution is far from perfect. A distance measure that balances spelling error 

correction against the creation of erroneous disjunctive ambiguities would likely improve 

performance greatly. Physical keyboard proximity may even be useful to consider.  

 

Hashtags typify a significant chunk of conversational language online. They have spread beyond 

Twitter and into most popular social media sites. Some Twitter posts contain two, three or more 

hashtags. Instagram posts can contain ten or more hashtags. Thus, ignoring hashtags in analyzing 

texts in social media posts can make for impoverished understanding. One extension could be to 

create a graph of relationships among 

 

 
Figure 3: A range of combinations of length score, 2GM score, and HH score with resulting performance 

measures 

hashtags, allowing machines to first process a hashtag, then not only explore related topics within 

that tag, but other topics within related tags. 
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