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ABSTRACT 

Morphological segmentation is a fundamental task in language processing. Some languages, such as 

Arabic and Tigrinya, have words packed with very rich morphological information. Therefore, unpacking 

this information becomes a necessary task for many downstream natural language processing tasks. This 

paper presents the first morphological segmentation research for Tigrinya. We constructed a new 

morphologically segmented corpus with about 45,127 manually segmented tokens. Conditional random 

fields (CRF) and window-based long short-term memory (LSTM) neural networks were employed 

separately to develop our boundary detection models. We applied language-independent character and 

substring features for the CRF and character embeddings for the LSTM networks. Experiments were 

performed with four variants of the Begin-Inside-Outside (BIO) chunk annotation scheme. We achieved 

94.67% F1 score using bidirectional LSTMs with window approach to morpheme boundary detection. 
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1. INTRODUCTION 

Morphological processing at the word level is usually the initial step in the different stages of 

natural language processing (NLP). Morphemes constitute the minimal meaning-bearing units 

in a language [1]. In this paper, we focus on the task of detecting morphological boundaries, 

which is also referred to as morphological segmentation. This task involves the breaking down 

of words into their component morphemes. For example, the English word “reads” can be 

segmented into “read” and “s”, where “read” is the stem and “-s” is an inflectional morpheme, 

marking third person singular verb.  

Morphological segmentation is useful for several downstream NLP tasks, such as 

morphological analysis, POS tagging, stemming, and lemmatization. Segmentation is also 

applied as an important preprocessing phase in a number of systems including machine 

translation, information retrieval, and speech recognition. Segmentation is mainly performed 

using rule-based approaches or machine learning approaches. Rule-based approaches can be 

quite expensive and language-dependent because the morphemes and all the affixation rules 

need to be identified to disambiguate segmentation boundaries. Machine learning approach, on 

the other hand, is data-driven wherein the underlying structure is automatically extracted from 

the data. In this paper, we present supervised morphological segmentation based on CRFs [2] 

and LSTM neural networks [3]. Since morphemes are sequences of characters, we address the 

problem as a sequence tagging task and propose a fixed-size window approach for modeling 

contextual information of characters. CRFs are well-suited for this kind of sequence aware 

classification tasks. We also exploit the long-distance memory capabilities of LSTMs for 

modeling boundaries of morphemes. 

Our main contributions are the following. 

 

1. We constructed the first morphologically segmented corpus for Tigrinya. This corpus is 

annotated with boundaries that identify prefix, stem, and suffix morphemes.  
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2. We present the first supervised morphological segmentation research for Tigrinya. Extensive 

experiments were performed for different annotation schemes and learning approaches 

exploiting character embeddings as the sole features for LSTMs. We also compare our results 

with feature rich CRF-based segmentation employing language-agnostic character and substring 

features. 

3. Tigrinya is an understudied language. Therefore, through this fundamental research, we hope 

to contribute in bettering the understanding of the properties and language processing 

challenges of the language and encourage further research.  

This paper is organized as follows. In section 2, the Tigrinya morphology will be briefly 

introduced. In section 3, relevant previous works will be discussed. Section 4 describes the CRF 

and LSTM based methods employed in this research. In the sections that follow, the 

experimental settings will be explained and the results discussed. Finally, concluding remarks 

will be provided. 

 

2. TIGRINYA LANGUAGE 
2.1. Writing system 

Tigrinya is one of the few African languages that still use an indigenous writing system for 

education and daily communication. The writing system, known as the Ge‟ez script, is adopted 

from the ancient Ge‟ez language, which is currently used as a liturgical language. The Ge‟ez 

script is an abugida system in which each letter (alphabet) represents a consonant-vowel (CV) 

syllable. The Tigrinya alphabet chart, known as “Fidel”, comprises of about 275 symbols. 

Gemination is not explicit in the Ge‟ez script; however, this limitation does not seem to pose a 

problem for native speakers. In this paper, Tigrinya words are transliterated to Latin characters 

according to the SERA scheme with the addition of “I” for the explicit marking of the 

epenthetic vowel known as “SadIsI”. The SERA transliteration scheme is available at 

ftp://ftp.geez.org/pub/sera-docs/sera-faq.txt. We directly apply labeling to the Latin 

transliterations of Tigrinya words and not the Ge‟ez script. The Ge‟ez script is syllabic, and, in 

many cases, the boundary has fusional properties resulting in alterations of characters at the 

boundary. For example, the word “sebere” (He broke) would be segmented as “seber” + “e” 

because the morpheme “e” represents grammatical features. However, this morpheme cannot 

be isolated using the Ge‟ez script because the last characters “re” forms a single symbol in the 

Ge‟ez script, and segmenting “sebere” as “sebe” + “re” is not a correct analysis. 

 

2.2. Tigrinya morphology 

Tigrinya is a Semitic language spoken by over 7 million people in Eritrea and Ethiopia. The 

morphology of Semitic languages, known as “root-and-pattern” morphology, has distinct non-

concatenative properties that intercalate consonantal roots and vowel patterns [4]. For example, 

in Tigrinya, the words “sebere” (he broke) and “sebira” (she broke) share a common tri-

consonantal root or radical “s-b-r” but have different sequences of vowel patterns (“e-e-e” and 

“e-i-a”) that are inserted in-between the radicals. In addition to such a unique infixation, words 

are formed by affixing morphemes of prefix, suffix, as well as circumfix. These morphemes 

represent morphological features including gender, person, number, tense, aspect, mood, voice, 

and so on. Furthermore, there are clitics of mostly prepositions and conjunctions that can be 

affixed in other words. These components are arranged in the following manner; 

 

(proclitics)(prefix/circumfix)(root-with-infix)(circumfix/suffixes)(enclitics) 

 

Specifically, the order of morpheme slots is defined by [5] as follows. 
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(prep|conj)(rel)(neg)sbjSTEMsbj(obj)(neg)(conj) 

 

The slots “prep” and “conj” are affixes of prepositions or conjunctions attached before or after 

the word. The “rel” indicates a relativizer (the prefix “zI”) corresponding in function to the 

English demonstratives like that, which, and who. The “sbj” on either side of the STEM are 

prefix and/or suffix of the four verb types namely; perfective, imperfective, imperative, and 

gerundive. As shown in examples 1-4, the perfective and gerundive verbs conjugate only on 

suffixes (examples 1 and 4) while imperfective verbs undergo both the prefix and suffix 

inflections (example 2). The imperatives show the suffix only conjugations or change prefix as 

well (example 3). In addition to the verb type, these fusional morphemes convey gender, person, 

and number information. 

1. seber + u (they broke) 

2. yI + sebIr + u (they break) 

3. yI + sIber + u (break/let them break) 

4. sebir + omI (they broke)  

Moreover, Tigrinya independent pronouns have a pronominal suffix of gender, person, and 

number as shown in examples 5 and 6 (SUF). 

5. nIsu (he) → nIs + u/SUF 

6. nIsa (she) → nIs + a/SUF 

The word order typology is normally subject-object-verb (SOV), though there are cases in 

which this sequence may not apply strictly [6, 7]. Changes in “sbj” verb affixes, along with 

pronoun inflections, enforce subject-verb agreements. One aspect of the non-concatenative 

morphology in Tigrinya is the circumfixing of negation morpheme in the structure “ayI-STEM-

nI” [5]. Some conjunction enclitics such as “do; ke; Ke” can also be found in Tigrinya 

orthography as free or bound suffix morphemes. For example, 

KeyIdudo? → keyId + u + do (did he go?) 

nisuKe? → nis + u + Ke (what about him?) 

The pronominal object marker “obj” is always suffixed to the verb as shown in the following 

examples. According to [6], Tigrinya suffixes of object pronoun can be categorized into two 

constructs. The first is described in relation to verbs (examples 7, 8 and 9) and another indicates 

the semantic role of applicative cases by inflecting for prepositional enclitic “lI” + a pronominal 

suffix as in example 10. 

7. beliOI + wo/obj (he ate [something]) 

8. hibu + wo /obj (he gave [something] to him) 

9. hibu + ni /obj (he gave me [something]) 

10. beliOI + lu /obj (he ate for him/he ate using [it]) 

Tigrinya words are also produced by derivational morphology. There are up to eight 

derivational categories that can be generated from a single verb [8]. For example, the passive 

form of perfective (example 11) and gerundive verbs (example 12) is constructed by prefixing 

“te” to the main verb. Furthermore, adverbs can be derived from nouns by prefixing “bI-” 

which has similar functionality as the English “-ly” suffix (example 13). 

11. zekere (he remembered) → te + zekere (he was remembered) 

12. zekiru (he remembered) → te + zekiru (he was remembered) 
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13. bIHaqi (truly) → bI + Haqi 

In this work, we deal with boundaries of prefix, stem, and suffix morphemes. Inflections related 

to infixes (internal stem changes) are not feasible for this type of segmentation. 

In conclusion, all the morphological and derivational processes generate a large number of 

complex word forms. According to [8], Tigrinya verb inflections, derivations, and combinations 

of the slot order can produce more than 100,000 word forms from a single verb root. The 

ambiguity and difficulty in relation to segmentation is briefly discussed in the following section. 

 

2.3. Morphological ambiguity 
In segmentation, ambiguity may occur at the word-level or due to sentential context. In Tigrinya, 

a major source of ambiguity is when certain character sequences of morphemes are natively 

present as part of words. In this case, the characters do not represent grammatical features and 

hence segmentation should not be applied. Consider the words “bIrIhanI” (light) and “bIHayli” 

(by force). The same prefix “bI-” which is an inseparable part of the noun “bIrIhanI”, 

represents an adverb of manner (by) in the second word. Moreover, morphemes may also appear 

as constituents of other morphemes. For instance, the noun suffix “-netI” (example 16) contains 

the sub-morph “-etI” that can have the role of a suffix for conjugation of third person, feminine, 

singular attributes as in example 15. Note that “-netI” in example 14 is not a morpheme. 

 

14. genetI → genetI/NOUN_paradise 

15. wesenetI → wesen/STEM_decided + etI/SUF_she 

16. naxInetI → naxI/STEM_independence + netI/NOUN-SUF 

 

Moreover, the lack of gemination marking may introduce segmentation ambiguity. For example, 

the word “medere” can be interpreted as the noun “speech” or the phrase “he gave a speech” if 

the “de” in “medere” is geminated. A computational system must discern both cases such that 

the phrase is segmented while the noun is left intact. Resolving such cases may require more 

context or additional linguistic information such as part-of-speech. In this work, we would like 

to avoid resorting to any language-specific knowledge. Therefore, in the LSTM approach, we 

use character embeddings to capture contextual dependencies of characters.  

 

As explained earlier, Tigrinya words have multiple consecutive morpheme slots. This pattern 

causes under-segmentation confusion due to the numerous intermediate splits comprising 

atomic and composite morphemes. Table 1 lists some of the possible segmentations for the 

word token “InItezeyIHatetIkayomI” (if you did not ask them). 

 

Table 1. Examples of intermediate splits caused by under-segmentation. The italicized second 

row is the expected segmentation.  

InItezeyIHatetIkayomI  

InIte-zeyI-HatetI-ka-yomI 

InIte-zeyIHatetIkayomI 

InIte-zeyI-HatetIkayomI 

InIte-zeyI-HatetI-kayomI 

InItezeyIHatetIka-yomI  

InItezeyIHatetI-kayomI  

InItezeyI-HatetIkayomI  

 

Furthermore, in Tigrinya, compound words are often written attached. For example, “betI 

(house) megIbi (food)” collectively translates to “restaurant” in English. In the orthography, 

these words can be found either separate or attached. We queried for “betI-” starting words in a 
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text corpus containing about 5 million words extracted from the Haddas Ertra newspaper, which 

is published in Eritrea. The previous word, for instance, occurs delimited by a space in about 

95% of the response. Another compound word “betI SIHIfetI” (office) was found attached in 

about 24% of the response, which is not a small portion. Although the words are not 

grammatical morphemes, we believe segmenting (normalizing) these words would be useful for 

practical reasons such as mitigating data sparseness. 

 

3. RELATED WORKS 

The work of [1] introduced the unsupervised discovery of morphemes based on minimum 

description length (MDL) and likelihood optimization. This method lacks the handling of 

representing contextual dependencies, such as stem and affix orders. Although several other 

unsupervised segmentation approaches have been proposed, it was shown by [9] that minimally 

supervised approaches provided better performance compared to solely unsupervised methods 

applied on large unlabeled datasets. For example, unsupervised experiments for Estonian, that 

achieved 73.3% F1 score with 3.9 million words, was outperformed by a supervised CRF that 

attained 82.1% with just 1000 word forms. This work also showed that semi-supervised 

approaches that use both annotated and unannotated data can be leveraged to improve upon 

simply using completely unsupervised methods. In related works for Semitic languages of 

Hebrew and Arabic, [10] uses a probabilistic model where segmentation and morpheme 

alignments are inferred from the shared structure between both languages using parallel corpus 

with and without annotation. Recent works on neural models rely on the use of some form of 

embedding for extracting relevant features. [11] demonstrated a generic window-based neural 

architecture that is applied to several NLP tasks while avoiding explicit use of feature 

engineering. Their system trains on large unlabeled data to learn internal representations. We 

have also adopted a similar window-based approach although with the input of character 

sequence window instead of words as in [11]. In [12], state-of-the-art results were achieved with 

a neural model that learns POS related features only from character-level and sub-word 

embeddings. Other research, however, argue that enriching embeddings with additional 

morphological information boosts performance. [13] demonstrates this by using the results of a 

morphological analyzer to further improve candidate ranking in a morphological 

disambiguation task for Arabic. In a research for Burmese word segmentation, [14] address the 

problem by employing binary classification with classifiers such as CRFs. The tagset restriction 

to the binary was mainly due to data size. Our data is similarly small size corpus; however, we 

report experiments with several schemes to investigate the effect of using simple to more 

expressive tags in the Tigrinya morpheme segmentation. 

 

Amharic and Tigrinya are closely related languages. These languages share a number of 

grammatical features and vocabularies. [16] presented morphological rule learning and 

segmentation based on inductive logic programming where rules or affixes were learnt by 

exposing easy-to-complex examples incrementally to an intelligent teacher. Their system for 

affix segmentation achieved a performance of 0.94 precision and 0.97 recall measures. Tigrinya 

remains an under-studied and under-resourced language from the NLP perspective. However, as 

regards to morphological processing, [8] employed finite state transducers (FSTs) to develop, 

“HornMorpho”, a morphological analysis and generation system for Tigrinya, Amharic, and 

Oromo languages. The FST empowered by feature structures was effectively adopted to process 

the unusual non-concatenative root-and-pattern morphology. The Tigrinya module of 

HornMorph 2.5 performs the full analysis of Tigrinya verb classes [5]. The system was tested 

on randomly selected 400 word forms with 329 of them being non-ambiguous. The analysis 

revealed remarkably accurate results with a few errors due to unhandled FSTs, which can be 
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integrated. Our approach is different from HornMorph in at least two aspects. First, our task is 

limited to identifying morphological boundaries. The results amount to partially analyzed 

segments although these segments are not explicitly annotated for grammatical feature. The 

annotation could be pursued with further processing of the output or training on 

morphologically annotated data, which is currently missing for Tigrinya. Second, the use of the 

FSTs relies heavily on the linguistic knowledge of the language in question. This would require 

time consuming manual construction of language-specific rules, which is more challenging for 

root-and-pattern morphology. In contrast, we follow a data-driven (machine learning) approach 

to automatically extract features of the language from a relatively small boundary annotated 

data. Moreover, on the limitations of HornMorph, [5] noted that analysis incurs a “considerable 

time” to exhaust all options before the system responds. Besides HornMorph, there was an 

attempt to use affix based shallow segmentation in the pre-processing phase for improving word 

alignment in the English-Tigrinya statistical machine translation [16]. 

 

4. METHOD 

4.1. Morphologically segmented corpus  

There is no publicly available morphologically segmented resource for Tigrinya. Therefore, we 

based our studies on a new morphologically segmented corpus developed in-house. The first 

version of this corpus comprises over 45,000 tokens derived from randomly selected 2774 

sentences of the POS tagged Nagaoka Tigrinya Corpus (NTC) available at4 

http://eng.jnlp.org/yemane/ntigcorpus.  

 

For the purpose of boundary detection, we employed character-based BIO chunking scheme, 

which allows us to exploit character dependencies and alleviate out-of-vocabulary (OOV) 

problems by reducing the morpheme vocabulary to about 60 Latin characters that cover the 

transliteration mapping we adopted.  

4.2. Tagging schemes  

The popular IOB tagging scheme is used to annotate the Beginning (B), Inside (I), and outside 

(O) of chunks in tasks such as base phrase chunking and named entity recognition. Similarly, 

we address morpheme boundary detection by annotating every character in morpheme chunks 

with the appropriate IOB label. There are different variants of the IOB scheme including BIO, 

IOB, BIE, IOBES, and so on. There is no general consensus as to which variant performs best. 

[11] used the IOBES format as it encoded more information whereas extensive evaluations by 

[17] showed that the BIO has superior results compared to the IOB scheme. Furthermore, the 

BIES scheme gave better results for Japanese word segmentation [18].  

 

Table 2. Annotating with different tagging schemes  

Scheme 
tImali InItezeyIHatete 

(if he did not ask yesterday)  

Word  t I m a l i  I n I t e z e y I H a t e t e 

BIE B I I I I E B I I I E B I I E B I I I I E 

BIES B I I I I E B I I I E B I I E B I I I I S 

BIO O O O O O O B I I I I B I I I B I I I I I 

BIOES O O O O O O B I I I E B I I E B I I I E S 
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We experimented with four schemes, namely, BIE, BIES, BIO, and BIOES to explore the 

modeling of morpheme segmentation in a low-resource setting with morphologically rich 

language Tigrinya. In our case, the B, I, and E tags marks Begin, Inside, and End of multi-

character morphemes. The S tag annotates single character morpheme and the O tag assigns 

character sequences outside of morpheme chunks. An example of using these annotations is 

presented in Table 2.  

4.3. Character embeddings  

Morphological segmentation is primarily character-level analysis. For example, in Tigrinya the 

characters “zI” have a grammatical role when used as a relativizer that is prefixed only to the 

perfective (example 17) or imperfective verbs (example 18). Therefore, all other occurrences of 

“zI”, such as the noun “zInabI” (rain) should not be segmented. Consequently, recognizing the 

shape of relativized perfectives and imperfectives becomes crucial.  

 

17. zIsebere „that broke‟ → zI + sebere/PERFECTIVE 

18. zIsebIrI „that breaks‟ → zI + sebIrI/IMPERFECTIVE 

19. *zI + yIsIberI/IMPERATIVE – invalid 

20. zInabI „rain‟ → *zI + nabI - incorrect segmentation 

 

Character-level information must be extracted to learn such informative features useful for 

identifying boundaries. We generated past and future fixed-width character context for each 

character. The concatenated contextual characters form a single feature vector for the central 

target character. For example, the features of the word “selamI” (peace, hello) for each 

character are generated as depicted in Table 3. We also showed the corresponding label of the 

central character in the BIE scheme. The Boldface character represents the central character 

with its left (past) and right (future) context of width five characters. Characters are padded with 

underscores ( _ ) to complete the remaining slots depending on the window size.  

 

Table 3. An example of generated fixed window character sequences with assigned label 

Window Label 

_ _ _ _ _ s e L a m I B 

_ _ _ _ S e l A m I _ I 

_ _ _ s E l a M I _ _ I 

_ _ s e L a m I _ _ _ I 

_ S e l A m I _ _ _ _ I 

s E l a M I _ _ _ _ _ E 

 

We settled for a window size of five as increasing it beyond five did not result in significant 

improvements. Moreover, the dimension of optimal character embedding was decided by hyper-

parameter tuning experiments. We initialized the embedding layer from a lookup table for 

integer (index) representations of the fixed-width character vectors. The embedding is then fed 

to an LSTM after passing through a dropout layer.  

4.4. CRF 

CRFs are probabilistic approaches capable of modeling context-dependent sequence labeling [2]. 

In a morphological segmentation, the model is trained to predict a sequence of output tags (IOB 

labels)              from a sequence of feature characters             . The training 

task is to maximize the log probability              of the valid label sequence. The conditional 

probability is computed as:  
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∑              
  

 
(1) 

 

 

The equation for the scoring function score is given as:  

 

            ∑        
  ∑     

   

 

   

 

   

 

(2) 

 

 
        

 denotes the emission probability of the state change from label   to label   while      is 

the transition probability denoting the score of the     label of the     word.  

4.5. LSTM neural network 

Recurrent Neural Networks (RNNs) are feed forward neural networks with feedback cycles to 

capture time dynamics using back-propagation through time. This recurrent connection allows 

the network to employ the current inputs as well as previously encountered states. Given the 

input vector   , ( in our case, a window of five characters left and right of the target character), 

the hidden state    at each time step  , can be expressed by equation 4. 

  

   [                                   ] 

                           

(3) 

(4) 

 

where the   terms represent the weight matrices,   is a bias vector and   is the activation 

function. However, due to the gradient vanishing (very small weight changes) or exploding 

problems (very large weight changes), long distance dependencies are not properly propagated 

in RNNs. [3] introduced LSTMs to overcome this gradient updating problem. The neurons of 

LSTMs called memory blocks are composed of three gates (forget, input and output) that 

control the flow of information and a memory cell with self-recurrent connection. The formulae 

of these four components are given in equations 5 to 9. In these equations, the input, forget, 

output and cell activation vectors are denoted by       and   respectively;   and   represent 

sigmoid and tanh functions respectively;   operation is the Hadamard product;   stands for the 

weight matrices and   is the bias.  

                           
      (                  ) 

                          
                           
                           
                      

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

 

The LSTM architecture we propose to use is illustrated in Figure 1. Character-level features 

(embeddings) generated by the embedding layer are fed to the forward LSTM network. Dropout 

layers are adjusted before and after the LSTM layer to regularize the model and prevent 

overfitting. The output of the network is then processed by a fully connected (Dense) layer and 

finally tag probability distributions over all candidates are computed via the softmax classifier. 

Due to the capacity to work well with long distance dependencies, LSTMs have achieved state-

of-the-art performance in window based approaches as well as sequence labeling tasks including 

morphological segmentation [19], part-of-speech [20] and named entity recognition [21].  
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Figure 1: The LSTM network 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 2: The BiLSTM neural network 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.6. Bidirectional LSTM  

LSTMs encode the input representation in the forward pass. In Bidirectional LSTM network 

(BiLSTM), the input vector is processed in both forward and backward passes and presented 

separately to hidden states. The mechanism is useful in encoding past (forward) and future 

Embedding 

Dense 

Softmax  

_ _ s e l a m I _ _ _ 

B | I | O 

Embedding 

Backward LSTM  

Forward LSTM  

Dense  

Softmax  

_ _ s e l a m I _ _ _ 

B | I | O 
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(backward) information of the input vector. We illustrate the architecture of the BiLSTM we 

propose to use in Figure 2.  

Both the forward and backward layer outputs are calculated by using the standard LSTM 

updating equations 5 to 9. Accordingly, for every time step   the forward and backward 

networks take the layer input    and then output   . The cell takes the input state    and the cell 

output     as well as the previous cell output     for training and updating parameters. Like in 

LSTMs, the output of each network in BiLSTM can be expressed as:  

       (         )  (11) 

where   is the weight matrix,   is the bias vector of the output layer and    is the activation 

function of the output layer. Both the forward and backward networks operate on input state of 

   and generate the forward output   
⃗⃗  ⃗  and the backward output   

⃖⃗ ⃗⃗ . Then the final output, 

   from both networks is combined using operations such as multiplication, summation or 

simple concatenation as given in equation 12. In our case,   is a concatenating function.  

         
⃗⃗  ⃗   

⃖⃗ ⃗⃗    (12) 

This context-dependent representation from both networks is passed along to the fully-

connected hidden layer (Dense) which then propagates it to the output layer. 

5. EXPERIMENTS  

In this section, the used data and the experimental settings are reported. Initially, we set training 

epochs to hundred and configured early stopping if training continued without loss 

improvement for 15 consecutive epochs. We used Keras (https://www.keras.io/) to develop and 

Hyperas (https://github.com/maxpumperla/hyperas) to tune our deep neural networks. Hyperas, 

in turn, applies hyperopt for optimization. The algorithm used is Tree-structured Parzen 

Estimator approach (TPE) over five evaluation trails (https://papers.nips.cc/paper/4443-

algorithms-for-hyperparameter- optimization.pdf). 

 

5.1. Settings  

Datasets 

The text used in this research is extracted from the NTC corpus. The NTC consists of around 

72,000 POS tagged tokens collected from newspaper articles. Our corpus contains 45,127 

tokens, of which 13,336 tokens are unique words. Training is performed with ten-fold cross 

validation, where about 10% of the data in every training iteration is used for development. We 

further split the development data into two equal halves allotting one set for validation during 

training and the other half for testing the model‟s skill.  

 

Table 4. Training data splits as per the count of the fixed-width character windows (vectors) 

used as the actual input sequences 

 

Data size 

All Training Validation Test 

100% 90% 5% 5% 

289,158 260,242 14,458 14,458 
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The evaluation reports in this paper are based on the final test set results. For every target 

character in a word, a fixed-width character window is generated as shown in Table 3. The data 

statistics according to the generated character windows is presented in Table 4.  

 

Hyper-parameters 

CRF: We performed preliminary experiments for deciding the regularization algorithm (L1 or 

L2). Similarly, we compared C-parameter values of [0.5, 1, 1.5]. Consequently, L2 

regularization and C value of 1.5 were selected as these values gave better results. The character 

and substring features we considered spanned a window size of five. The full list of the 

character features is given as follows.  

 

a. Left context:   -5 to 0, -4 to 0, -3 to 0, -2 to 0, -1 to 0 

b. Right context:  0 to 5, 0 to 4, 0 to 3, 0 to 2, 0 to 1 
c. Left + Right context:  a + b 
d. N-grams:   bi-grams  

 

LSTM: In order to search for the parameters that yield optimal performance, we explored hyper 

parameters that include embedding size, batch size, dropouts, hidden layer neurons, and 

optimizers. The complete list of the selected parameters for LSTM is summarized in Table 5. 

We achieved similar results for the BIE and BIES tunings as shown in the table. However, the 

BIO and BIOES schemes showed difference in the tuning results and, therefore, these were used 

separately.  

Embeddings: We tested several embedding dimensions from the set {50, 60, 100, 150, 200, 

250}. Separate runs were made for all types of tag sets.  

 

Table 5. LSTM Hyperparameters selected by tuning 

Parameter BIE/BIES BIO BIOES 

Window 5 5 5 

Character embedding 150 150 250 

hidden layer size 32 128 128 

Batch size 32 256 256 

optimizer adam adam RMSProp 

 

Dropouts: Randomly selecting and dropping-out nodes have proven effective at mitigating 

overfitting and regularizing the model [22]. We applied dropout on the character embedding as 

well as on the inputs and outputs of the LSTM/BiLSTM layer. For example, the selected 

dropouts for the BIO-based tunings are 0.07 and 0.5 for the embedding and LSTM output layers 

respectively. The dropout probabilities are selected from a uniform distribution over the interval 

[0, 0.6].  

Batch size: We ran tuning for the batch size of the set {16, 32, 64, 128, 256}.  

Hidden layer size: We searched for the hidden layers size from the set {64, 128, 256}.  

Optimizers and learning rate: We investigated the stochastic gradient descent (SGD) with 

stepwise learning rate and other more sophisticated algorithms such as AdaDelta [23], Adam 

[24], and RMSProp [25]. The SGD learning rate was initialized to 0.1, momentum of 0.9 with 

rate updates for every 10 epochs at a drop rate of 0.5. However, the SGD setting did not result 

in significant gains compared to the automatic gradient update methods. 

5.2. Baseline 

The baseline considered in this study is the CRF model trained on only character features with a 

window size of five. The window size is kept the same with the neural LSTMs to compare the 
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models subject to the same information. The baseline experiments for the CRF achieved an F1 

score of around 60% and 63% using the BIOES and BIO tags respectively. As for the BIE tags, 

the performance reached about 75.7%. All the subsequent CRF-based experiments employed 

two auxiliary features, which were the contextual and n-gram characters listed in section 5.1. As 

depicted in Table 6, significant performance enhancements were achieved with the auxiliary 

features. However, compared to the LSTM based experiments, the window five based CRF 

results were still suboptimal. 

5.3. Evaluation  

We report boundary precision, boundary recall and boundary F1 scores as given by equation 13 

to 15. Precision evaluates the percentage of correctly predicted boundaries with respect to the 

predicted boundaries and recall measures the percentage of correctly predicted boundaries with 

respect to the true boundaries. F1 score is the harmonic mean of precision and recall and can be 

interpreted as their weighted average. The I or O classes are found more than double of the B 

classes. Therefore the results are presented using weighted macro average to account for any 

class imbalance. The correct predictions are the count of true positives while the actual (true) 

boundaries are these true positives added with the false negatives. Finally, the system proposed 

predictions can be found from the sum of the true positives and the false positives. 

 

           
                               

                    
   

        
                              

               
    

          
                    

                
  

 

(13) 

 

 

(14) 

 

 

(15) 

 

 

6. RESULTS 

We experimented and compared the performance of three models trained with four different 

tagging strategies as explained earlier. The results of ten-fold cross-validation are summarized 

in Table 6 with P, R, F1 representing precision, recall, and F1 score respectively.  

 

Table 6. Results of CRF, LSTM and BiLSTM experiments with four BIO schemes. 

Tagset CRF LSTM BiLSTM 

 P R F1 P R F1 P R F1 

BIE 92.62 92.62 92.62    94.38 94.37 94.37    94.68 94.68 94.67 

BIES 92.44 92.44 92.44    94.22 94.20 94.20    94.60 94.59 94.59 

BIO 84.88 84.88 84.88    90.91 89.96 89.96    90.16 90.11 90.11 

BIOES 83.60 83.60 83.60    88.26 88.21 88.21    88.45 88.39 88.39 

 

Generally, we observed the choice of segmentation schemes affecting the model performance. 

Overall, using the BIE scheme resulted in the best performance in all tests. Although the BIOES 

tagset is the most expressive, since the corpus is rather small, the simpler tagsets showed better 

generalization over the dataset. The BIE-CRF model achieved 92.62% in the F1 score while the 

performance of the BIO and BIOES-based CRF fell to about 84.88% and 83.6% respectively. 
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The CRF model using the BIO scheme outperformed the CRF model using the BIOES by 

1.28% absolute change. A majority of the errors are associated with under-segmentation and 

confusion between I (inside) and O (outside) tags. Masking these differences by dropping the O 

tag has proved useful in our experiments. As a result, the CRF model using the BIE scheme 

outperformed the BIO-based CRF by around 7.7 percentage point. We compared the regular 

LSTM with its bidirectional extension. The overall results showed that the BiLSTMs performed 

slightly better than the regular LSTMs sharing the same scheme. In the window-based approach, 

the past and future context is partly encoded in the feature vector. This window was fed to the 

regular LSTM at training time making the information available for both networks quite similar. 

This may be the reason for not seeing much variation between the two models. Nevertheless, the 

additional design in BiLSTMs to reverse-process the input sequence allows the network to learn 

more detailed structures. Therefore, we saw slightly improved results with the BiLSTM network 

over the regular LSTM. As with CRFs, a significant increase in the F1 score was achieved when 

changing from the BIOES to the BIE scheme. In both LSTM models, we observed a gain in 

performance of over 6 percentage point. Overall, in these low-resource experiments, the model 

generalized better when the data was tagged with the BIE scheme as this reduced the model 

complexity introduced by the O tags. The BiLSTM model using the BIE scheme performed 

superior to all others scoring 94.67% in the F1. This result was achieved by employing only 

character embeddings to extract morphological features. On the other hand, the CRF model 

which used a rich set of character + bi-gram + substring features scored around 92.62%. For a 

fair comparison, we used features of the CRF model that spanned the same window of 

characters as the LSTM models. In other words, we avoided heavy linguistic engineering on the 

CRF side. Although the features were not linguistically motivated, achieving an optimal result 

this way still requires many trials and better design of features. It is to be noted that additional 

hand-crafted features and wider windows for the CRF model may produce better results than 

what has been reported. However, from the LSTM results, we saw that forgoing feature 

engineering and extracting features using character embeddings could sufficiently encode the 

morphological information desired for high performance boundary detection. 

 

6.1. Error analysis 

The models using the BIE/BIES or the BIO/BIOES tagsets achieved comparable results. We 

analyzed the effect of the tagset choice by comparing the BiLSTM models of the BIE and BIO 

tagging schemes. For easier comparison, the confusion matrices (in percentage) of both 

experiments are presented jointly in Table 7. The values are paired in X/Y format where X is a 

value from the set {B, I, E} in the BIE scheme and Y is one of {B, I, O} in the BIO scheme. 

The number of I or O classes is about two-fold greater than the B class. Therefore, there is more 

confusion stemming from those tags. The B tag represents the morpheme segmentation 

boundaries; therefore, the under-segmentation and over-segmentation errors can be explained in 

relation to the B tags. Looking at the BIE figures, around 91% of the predictions for the B tags 

are correct. In other words, 9% of the true B tags were confused for the I and O tags, which 

together amounts to the under-segmentation errors. These types of errors are almost doubled 

with the use of the BIO scheme. On the other hand, the over-segmentation errors are about 5.9% 

and 7.4% in the BIE and BIO scheme respectively. Over-segmentation occurs when true I, O, or 

E tags are confused with the B tag. In this case, morpheme boundaries are predicted while the 

characters actually belong to the inside, outside, or end of the morpheme. These results show 

that the under-segmentation errors contribute more compared to the over-segmentation errors.  

 

In the BIE scheme results, we observe that the I and B tags are correctly predicted with 

relatively higher accuracies than with the BIO scheme. Specifically, the prediction accuracy of 

the B tag (boundaries) increased from 82.6% to 91.2% (8.6% absolute change). The main reason 

is the considerable reduction of errors introduced due to the confusions of tag I for O or vice-

versa in the BIO scheme. This comparison suggests that improved results can be achieved by 
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denoising the data from the O tag. Therefore, for a low resource scenario of boundary detection, 

starting with the BIE tags may be a better choice for improving model generalization compared 

to more complex schemes that are feasible for larger datasets.  

 

Table 7. BiLSTM Confusion matrix comparison for BIE (boldfaced) and BIO schemes in %. 

Rows and columns represent predicted and true values respectively. 

  Predicted 

  B/B I/I E/O 

T
ru

e 

B/B 91.20/82.60 4.54/9.94 4.26/7.46 

I/I 2.83/3.21 93.84/90.74 3.34/6.05 

E/O 3.09/4.19 9.65/10.83 87.26/84.98 

 

The following sample sentence extracted from the Bible is segmented with all four models. 

Note that the training corpus does not include text from the Bible. 

 

Tigrinya: “amIlaKI kea mIrIayu zEbIhIgI mIbIlaOu zITIOumI kWlu omI abI mIdIri abIqWele”  

English: “And out of the earth the Lord made every tree to come, delighting the eye and good 

for food”.  

The expected segmentation is given under the column labeled “reference”. We observe that the 

BIE model segmentation is the nearest to the reference segmentation. The other models showed 

the under-segmentation errors for the word “ZEbIhIgI” and “kWlu”. The verbal noun prefix 

“mI-” is correctly segmented by all models whereas the models failed to recognize the 

boundary of the causative prefix “a-” in the last word “abIqWele”.  

Table 8. Sample of segmentation result; the underscore character marks segmentation 

boundaries and the boldfaced characters denote segmentation errors. 

Sentence True BIE BIES BIO BIEOS 

amIlaKI amIlaKI amIlaKI amIlaKI amIlaKI amIlaKI 

Kea kea kea kea kea Kea 

mIrIayu mI_rIay_u mI_rIay_u mI_rIay_u mI_rIay_u mI_rIay_u 

zEbIhIgI zE_bIhIgI zE_bIhIgI zEbIhIgI zEbIhIgI zEbIhIgI 

mIbIlaOu mI_bIlaO_u mI_bIlaO_u mI_bIlaO_u mI_bIlaO_u mI_bIlaO_u 

zITIOumI zI_TIOumI zI_TIOumI zI_TIOumI zI_TIOumI zI_TIOumI 

kWlu kWl_u kWl_u kWlu kWlu kWlu 

omI omI omI omI omI omI 

abI abI abI abI abI abI 

mIdIri mIdIri mIdIri mIdIri mIdIri mIdIri 

abIqWele a_bIqWel_e abIqWel_e abIqWel_e abIqWel_e abIqWel_e 

 

7. CONCLUSION AND FUTURE WORK  

In this work, we presented the first morphological segmentation research for the 

morphologically rich Tigrinya language. The research was performed based on a new manually 

segmented corpus comprising over 45,000 words. Four variants of the BIO chunk annotation 

scheme were employed to train three different morphological segmentation models. The first 

model was based on CRFs with language-independent features of characters, n-grams, and 

substrings. The other two were based on LSTM and BiLSTM deep neural architectures 

leveraging character embeddings of a fixed-size window for extracting the morpheme boundary 
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features. We evaluated the BIE, BIES, BIO, and BIOES tagging schemes for morphological 

boundary detection. Although the size of the corpus is relatively small, we achieved 94.67% F1 

score in boundary detection using the BIE chunking scheme.  

In the future, we plan to improve and enlarge the corpus by including vocabularies from 

different domains. This will allow the inclusion of potentially unseen patterns as the current 

orthographic style is limited to news domain. We also plan to extend our experiments to use 

embeddings with character and substring concatenated features for the BIO and BIOES schemes, 

which currently have lower performance. We are also interested in integrating minimally 

supervised approaches to make use of large unlabeled datasets. Segmented words have proved 

useful in mitigating the adverse effects of data sparseness in Semitic language processing [26]. 

We would like to explore the use of our segmentation output in machine translation, full-fledged 

morphological analysis, stemming, part of speech tagging, and other downstream NLP tasks.  
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