
International Journal on Natural Language Computing (IJNLC) Vol.7, No.3, June 2018

DOI: 10.5121/ijnlc.2018.7301 1

AUTOMATED SQL QUERY GENERATOR BY

UNDERSTANDING A NATURAL LANGUAGE

STATEMENT

Amit Pagrut, Ishant Pakmode, Shambhoo Kariya, Vibhavari Kamble and Yashodhara Haribhakta

Department of Computer Engineering and Information Technology College of Engineering Pune

Wellesley Road, Shivajinagar, Pune, Maharashtra, India

ABSTRACT

This project aims to develop a system which converts a natural language statement into MySQL query to

retrieve information from respective database. The system mainly focuses on creation of complex queries

which includes nested queries with more than two-level depth, queries with aggregate functions, having

clause, group by clause and co-related queries which are formed due to constraint on aggregate function.

The natural language input statement taken from the user is passed through various OpenNLP natural

language processing techniques like Tokenization, Parts of Speech Tagging, Stemming and Lemmatization

to get the statement in the desired form. The statement is further processed to extract the type of query, the

basic clause, which specifies the required entities from the database and the condition clause, which

specifies constraints on the basic clause. The final query is generated by converting the basic and condition

clauses to their query form and then concatenating the condition query to the basic query. Currently, the

system works only with MySQL database.

1. INTRODUCTION

Almost all applications in today‘s world make use of collected data to fulfill the intended require-

ments and to enhance their functionalities. The main objective remains the efficient storage and

fast retrieval of this data. Databases provide a better provision and are the most suitable solu-

tion which addresses these objectives. The relational databases provide a structured way to store

the huge collection of data and provide real-time accessibility. Relational database management

system is representation of domain entities and their respective attributes in the tabular form.

Many organizations and social networking sites make use of relational databases for storage and

analysis. In this modern world, everyone aims to be more dynamic in terms of information gath-

ering, retrieval and sharing using existing systems of database storage, but are not enough well

versed with the underlying technology. Users need to learn the underlying database language and

database properties to generate queries. Natural language is used in day-to-day life, and if in-

formation sharing can be made easy with the use of natural language, it will reduce the cost of

learning and understanding the technology used for it.

NLIDB(Natural Language Interface to Database Systems) is the provision under which the

natural language is used to interact with databases. There are many existing NLIDB systems

which allows user to work with databases using their own languages, although the research on

these systems started a few decades ago, there is still no perfect system that fulfills all the

objectives of NLIDB.

This system is a type of NLIDB system which concentrates on formulating complex queries,

along with simple queries. In this project, we take the user natural language query input in

English language through the graphical user interface. In Java, OpenNLP library provides various

natural language processing modules. The input is then processed through various Natural

language Processing processes like tokenizing the sentence by the space delimiter, mapping each

token with its Parts Of Speech(POS) tag using POS Tagger, lemmatizing each token to convert it

into its basic form, and these lemmas and tags are stored. The converted statement is now broken

International Journal on Natural Language Computing (IJNLC) Vol.7, No.3, June 2018

2

down into two parts : Basic clause and Condition clause. The Basic clause identifies the

attributes used to form the query and the Condition clause identifies the constraints on these

attributes and are mapped to their respective attribute. A Table Linking Algorithm(TLA) is

incorporated to find the links between different tables of the query. The basic query and

condition query is then joined together to form the final resultant query.

2. RELATED WORK

[1] Lunar Involved a system that answered questions about Rock Samples brought back from the

moon. Two databases were used, the chemical analyses and literature references.

Lifer/Ladder, it was designed as a natural language interface to database of information about

US Navy ships.

It used a semantic grammar to parse Questions and query a distributed database.EasyAsk2, Also

known as English wizard, is a commercial application that offers both keyword and natural lan-

guage search over relational databases.EQ, Stands for English query. It was implemented by Mi-

crosoft. It creates a model, collecting database objects (tables, fields, joins) and semantic objects

(Entities).

(Siasar et al., May 2008) [2] gave an insight on how the machine understands natural language.

They proposed an expert system taking into account the concepts of syntactic and semantic

knowl- edge. They also suggested a selection algorithm to select most appropriate query from the

sug- gested possible query.

Mrs. Neelu Nihalani , Dr. Sanjay Silakari , Dr. Mahesh Motwani, March 2011[is an introduction

to Intelligent Database System and Natural Language Interface to databases. It gives a brief

overview of NLIDB subcomponents and also explains NLIDB architectures and various

approaches for the development of NLIDB systems.

Akshay G. Satav, Archana B. Ausekar, Radhika M. Bihani, Mr Abid Shaikh, March 2014 [3] pro-

vides result to users for any type of query accurately and efficiently, even if any user make

spelling mistake the system will autocorrect the spelling and experimental result will be shown.

They used a query mapping algorithm where query of any form in English language mapped

according to syntax of SQL query that provides user accurate data from the database after

execution of the query.

Alessandra Giordani and Alessandro Moschitti [4]used linguistic dependencies and metadata to

build sets of possible SELECT and WHERE clauses and then exploit again the metadata to build

FROM clause enriched with meaningful joins. Finally, combining all the clauses they got the

set of all possible SQL queries. The algorithm can be recursively applied to deal with complex

questions, requiring nested SELECT instructions.

(Garima Singh, Arun Solanki, September 2016) [5]combined Artificial Intelligence (AI) and Lin-

guistics to develop programs helped to understand and produce information in a natural language.

The NLIDBS are built for to optimize the search results and produce information with more accu-

racy. This paper extends the existing work further by processing more complex queries along

with ambiguity removal.

K. Javubar Sathick and A. Jaya, 2014 [6]provides an user friendly interface between end user

and the database for easy access of social web data from different web sources such as facebook,

twitter and linkedIn etc. by deriving a query translator which take natural language statement as

input.R-tool is used to collect the data from social web sources.

Abhijeet Gupta and Rajeev Sangal [7] In this paper, they introduced an aggregation processing

framework, which can handle different types of aggregation operations in a natural language

query, including direct quantitative as well as indirect qualitative aggregations, and those which

combine quantifiers or relational operators with aggregations.

International Journal on Natural Language Computing (IJNLC) Vol.7, No.3, June 2018

3

(Hu Li and Yong Shi, 2010) [8]This paper presents the framework based on ontology techniques

to implement a portable NLIDBs that makes it easier to migrate from one domain to another.

(Ashish Palakurthi, Ruthu S. M, Arjun R. Akula and Radhika Mamidi, September 2015) [9] uses

a statistical classifier trained on manually prepared data. They report their results on three

different domains also shows how the system can be used for generating a complete SQL query.

They also used Conditional Random Fields (CRF) for classifying the explicit attributes in a

natural language query to different SQL clauses.

(Abhijeet R. Sontakke, Amit Pimpalkar, July 2015) [10] have developed the rule based system

which accepts Hindi language as query and gives output in Hindi languageonly.

(Nandan Sukthankar, Pranay Deshmukh 2016) [11]The research focuses on incorporating com-

plex queries along with simple queries irrespective of the database.The system accommodates

aggregate functions, multiple conditions in WHERE clause, advanced clauses like

ORDER BY, GROUP BY and HAVING. The system handles single sentence natural language

inputs, which are with respect to selected database.

3. OUR APPROACH

3.1. SYSTEM ARCHITECTURAL LAYOUT

Figure 1.0 gives the simple architecture of the system. It consists of tokenization,

lemmatization of tokens to convert them into their basic forms called lemmas, parts of speech

tagging of each lemma, using OpenNLP APIs. The input natural language statement goes through

these above mentioned steps and forms parsed data. Each keyword in the parsed data is processed

through semantic analysis and relation mapping which makes use of data dictionaries (contains

database schema information like synonyms of SQL clause words, aggregation words, database

attributes and table names). The synonyms are found using WordNet data dictionary in NLTK.

Figure 1. System Architecture

International Journal on Natural Language Computing (IJNLC) Vol.7, No.3, June 2018

4

The processed data is then used to generate final MySQL query by using semantic conceptual rules and

clause templates(query templates e.g. SELECT_FROM_WHERE etc.)

3.2 MORPHOLOGICAL AND LEXICAL ANALYSIS

3.2.1 Tokenization

Tokenization refers to the breakdown of the natural language sentence into tokens with ‗white

space‘ as delimiter. This step is required to convert each token into its root form in the next step.

3.2.2 Lemmatization

Lemmatization is the process of converting a word into its root form. The tokens from the earlier

step are converted into their respective root form e.g (‘employees‘ to ‘employee‘, ‘saw‘ to ‘see‘)

to extract their actual meaning so as to incorporate the processing algorithms on them. These

converted tokens are calledlemmas.

3.2.3 PARTS OF SPEECH (POS) TAGGING

The lemmas are mapped to their Parts Of Speech tags so as to derive their semantic meaning for

further processing using the Parts of Speech tags. For example, the Parts of Speech tags are used

to find the nouns and verbs in the input sentence, and further help to find the tables and

attributes in the query, considering the fact that table and attribute names are nouns and verbs.

Ex.1. Find the names of employees with salary greater than 50000. Here,

Lemmas Parts of Speech tags

show VBZ

the DT

name NN

of IN

employee NN

with IN

salary NN

great JJ

than IN

50000 CD

3.3 CONDITION CLAUSE EXTRACTION

3.3.1 Determination of attribute values

The attribute values are derived from the user query with the help of the Parts of Speech tags

provided by lexical analysis stage. The Parts of Speech tags are checked for tags like ―NNP‖

for string values, as attribute values in the database are usually proper nouns and ―CD‖ for

integer values. Ex.2. Show the names of employees whose salaries are greater than 50000 and

department is Computer Science. Here, 50000 is CD and ‘Computer Science‘ is NNP.

International Journal on Natural Language Computing (IJNLC) Vol.7, No.3, June 2018

5

3.3.2 Mapping relational operators to attributevalues

The attribute values are related to their respective attribute through the relational operators like

equal to, is greater than, etc. These operators define the condition or the constraint on the

attribute, and would contribute in making the query more descriptive. The operator symbol for

each operator is stored in advance. The mapping is stored as => RELATIONAL OPERATOR —

OPERATOR SYMBOL — ATTRIBUTE VALUE. In Ex.2, 50000 is mapped to ‘>‘ and

‘Computer Science‘ is mapped to ‘=‘.

3.3.3 Mapping of attribute values to the respective attributes

The above extracted attribute values are linked to their respective attributes using the attribute

mapping algorithm, which searches for the most probable attribute to be mapped to the value. The

attribute names are replaced by their original names in the database. This mapping is stored as =>

ATTRIBUTE TABLE - ATTRIBUTE NAME - OPERATOR SYMBOL - ATTRIBUTE

VALUE.

In Ex.2, the mapping is => {salary, salary, >, 50000}, {department, depart name, =, ‘Computer

Science‘}

3.3.4 Check for aggregation function on theattribute

The query is processed to check if the mapped attributes have an aggregation function applied on

them, by extracting the synonyms of the aggregation words(MINIMUM, MAXIMUM, COUNT,

AVERAGE, SUM) and then mapping the actual aggregation function word with the attribute.

3.3.5 Removing the condition clause part from the Query

The condition clause part is removed from the query to obtain the basic clause required to process

the remaining part of the SQL query. In Ex.2, the remaining part of the query is => show the

name of employee.

3.4 BASIC CLAUSE EXTRACTION

The basic clause will determine the ―SELECT‖ part of the SQL query. The select clause of the

SQL query contains the names of the attributes, which are to be extracted from the user query.

After the extraction and removal of the condition clause part from the user query, the basic clause

part is evaluated and the required entities are mapped and stored. The execution of the basic

query part will be done using of the following algorithms:

3.4.1 Table Linking Algorithm(TLA)

In TLA, the tables present in the database schema are represented as a data structure entity and

has following properties:

 tableName

 allAttributes

 foreignKeys

 primaryKey

The main focus of the algorithm is to find a path between two referenced tables, the source table

and the destination table.

The algorithm proceeds in the following fashion:

• First, the data structure references of the source and destination tables are retrieved. All the

foreign keys present in the source table are obtained. Now, for each foreign key, the key‘s

International Journal on Natural Language Computing (IJNLC) Vol.7, No.3, June 2018

6

referencing table is linked to the source table, with the use of the foreign key reference

and the fact that the attribute would be present in both tables, this path is appended to the

available paths. The referencing table now becomes the source table and now, source and

destination tables are fed to the algorithm to find a path between them, making the algorithm

recursive. If the referencing table at some point matches the destination table, the path till

now plus the path appended between the current source and destination table becomes the

final path.

• If the source table doesn‘t contain any foreign key attributes, the source and destination

tables are swapped, and then they are passed again to the algorithm, but with an indicator

that the tables have been swapped. If the indicator indicates that the tables are swapped, the

path between those tables is reversed to obtain the correct path and then appended to the

available paths.

• If the source and destination tables don‘t contain any foreign key attributes, a common

table linking both the source and destination table is found out, by considering the fact that

the common table would contain at least one common attribute of both tables. Now the

path between source table and common table is first appended and the path between the

common table and the destination table is appended later and this path is appended to the

available paths. Out of the found common tables, only one has the actual semantic of both

the joining tables and only the query generated through this common table is correct. Ex.3,

Find employees in Human Resource department, While finding path between employee and

department tables, depart emp and depart manager are tables which has foreign keys of

both. So, two paths will be generated by system, but by semantic only path with depart emp

is correct.

3.4.2 NATURAL JOIN Algorithm

NATURAL JOIN is used in the FROM clause when the SELECT clause contains attributes which are

to be extracted from different tables. Ex.3 Show salary and names of employee. Here, attribute

‘salary‘ is from ‘salary‘ table and ‘name‘ is from ‘employee‘ table. The tables to be joined using

NATURAL JOIN are tables of the attributes present in the SELECT clause as well as the tables

of the attributes present in the WHERE clause. The WHERE clause tables are retrieved from the

Condition Clause Extraction stage, whereas the tables of the SELECT clause are found out and

the link between these tables is to be identified using the Table Linking Algorithm, in the

following manner:

• The tables of the SELECT clause are linked with each other by passing them one by one

in the Table Linking Algorithm and finding their intermediate tables in the path joining the

tables. The tables obtained are stored in a set.

• Now, each table from the SELECT clause is to be linked with each table of the WHERE

clause, in the similar above fashion, and the tables identified are appended to the set.

• Now, the resultant tables in the set are used to form the FROM clause of the SQL query,

using the ‗NATURAL JOIN‘ keyword between them.

3.5 THE AGGREGATION FUNCTION EXTRACTION

The aggregated functions provide the constraints on the result set of the SQL query. The aggre-

gate functions are handled by an RDBMS independent layer called Aggregation Extraction Layer

(AEL). The steps in AEL are:

• The synonyms of the aggregated words are extracted from the user query and are mapped

with their actual aggregation function.

• The query is then processed to relate the aggregate words with their respective attributes and

stored.

International Journal on Natural Language Computing (IJNLC) Vol.7, No.3, June 2018

7

• The query is further processed to find if there is any constraint on the aggregation function.

If present, the constraint is filtered and mapped to the corresponding aggregate function.

• The final mapping is stored as => [Constraint on Aggregation, Aggregation function, At-

tribute name].

• The GROUP BY clause is then formulated by taking the attributes other than the aggregate

attribute from the SELECT clause (if any).

3.6. CORRELATED QUERY EXTRACTION

Correlated query is formed whenever there is a constraint on the aggregation functions like MAX

or MIN. The correlated query is formed by deriving the constraint value mapped to the attribute

and formulating the SQL query in the below givenform:

SELECT T1.attribute FROM table AS T1 where (N - 1) = (SELECT COUNT (DISTINCT

T2.attribute) FROM table AS T2 WHERE T1.attribute <operator> T2.attribute)

Where, N => constraint value of the aggregation function

<operator> => depends on the type of aggregation function (Minimum or Maximum)

3.7 LIMIT AND ORDER BY CLAUSES

The LIMIT clause is formed when there is a constraint on the number of records to be shown in

the result set of the SQL query. The query is processed to find LIMIT value to which the LIMIT

clause word is mapped and stored.

The ORDER BY clause is formed when there is need of sorting the records of the result set in

ascending or descending order according to one or more attributes. The ORDER BY clause is

formulated by extracting the synonyms of the clause words and then mapping them to the actual

ORDER BY clause words like ASC or DESC, for ascending and descending respectively.

4. RESULTS

We have tested our system on a synthesized corpus of natural language statements related to em-

ployee database. Employee Database contains 6 tables. The system has tested with around 50

queries with single sentence natural language inputs. The accuracy comes out be 82%. Fallowing

are the example of inputs given to the system

4.1 SYSTEM OUTPUT

4.1.1 Simple Query

Query: Find the salary of employee whose id is 4

International Journal on Natural Language Computing (IJNLC) Vol.7, No.3, June 2018

8

Figure 2. Flow of execution

Figure 2 shows the implementation steps by which the natural language statement is converted into Final

MySQL query.

In this query, ‘salary‘ and ‘employee‘ tables are linked together using the Table Linking

Algorithm. Here, the WHERE clause is formed by using the integer value ‘4‘.

Output: SELECT salary.salary FROM salary WHERE emp _id IN (SELECT emp id FROM

employee WHERE employee.emp_id = 4)

Query: Show the department manager with department name Techonology

In this query, ‘depart manager‘ and ‘department‘ tables are joined together using Table Linking

Algorithm. Here, the WHERE clause is formed using literal value ‘TECHNOLOGY‘.

Output: SELECT * FROM depart manager WHERE dep id IN

(SELECT dep_id FROM department WHERE department.dep_name = ‘TECHONOLOGY‘)

Query: Show all employees
Output: SELECT * FROM employee

4.1.2 Queries with same semantics

Query 1: Show the salaries of Human Resource department employees

Query 2: Determine the salaries of employees whose department is Human Resource Query 3:

Choose the salaries of Human Resource department

Query 4: Find the salaries of employees if they are in Human Re- source department

The system is able to handle the queries with same semantics up to some level. The above queries

have same semantics. Therefore, they form the same result query. One out of the two queries

International Journal on Natural Language Computing (IJNLC) Vol.7, No.3, June 2018

9

given by the system is correct due to the fact given in theTable Linking Algorithm.

Output 1: SELECT salary.salary FROM salary WHERE emp_id IN (SELECT emp id FROM

employee WHERE emp _id IN (SELECT emp_id FROM depart_manager WHERE dep_id IN

(SELECT dep_id FROM department WHERE department.dep_name = ‘HUMAN

RESOURCE‘)))

Output 2: SELECT salary.salary FROM salary WHERE emp_id IN (SELECT emp _id FROM

employee WHERE emp_ id IN (SE LECT emp_id FROM depart_emp WHERE dep_ id IN

(SELECT dep_id FROM department WHERE department.dep_name = ‘HUMAN

RESOURCE‘)))

4.1.3 Queries with advanced condition clause

Query: Show the id of employee, birth date of employees with department name computer

science and names are Amit and Alex

Output 1: SELECT employee.emp_id, employee.birth_date FROM employee NATURAL JOIN

department NATURAL JOIN salary NATURAL JOIN depart_manager WHERE

department.dep_name = ‘COMPUTER SCIENCE‘ AND employee.name = ‘AMIT‘ AND

employee.name = ‘ALEX

Output 2: SELECT employee.emp_id, employee.birth_date FROM employee NATURAL JOIN

department NATURAL JOIN salary NATURAL JOIN depart_emp WHERE

department.dep_name

= ‘COMPUTER SCIENCE‘ AND employee.name = ‘AMIT‘ AND employee.name = ‘ALEX‘

4.1.4 Queries with aggregation functions

Query 1: show the name of employee whose salary is maximum

In this query, the aggregation function ‘MAX‘ is mapped to ‘salary‘. The aggregation function is

in the Condition clause elements and therefore it is used to form the WHERE clause.

Output: SELECT employee.name, salary.salary FROM employee NATURAL JOIN salary

WHERE salary.salary IN (SELECT MAX(salary.salary) FROM salary)

Query 2: Show the maximum salary and employee id, employee name, title of employee whose id

is 4

In this query, aggregation function ‘MAX‘ is mapped to ‘salary‘. But, the aggregation function is

in the Basic clause elements and therefore it is used to form the SELECT clause.

Output: SELECT MAX (salary.salary), employee.emp_id, employee.name, title.title FROM

salary NATURAL JOIN employee NATURAL JOIN title GROUP BY employee.emp_id,

employee.name, title.title HAV- ING employee.emp_id = 4

4.1.5 Queries with BETWEEN and LIKE clause

Query Determine the birth date of employees having salary between 40000 and 50000

Output: SELECT employee.birth date FROM employee WHERE emp id in (SELECT emp id

FROM salary WHERE salary.salary BETWEEN 40000 AND 50000)

Query 2: Show the title of employee where employee name starts with Sham

Output: SELECT title.title FROM title WHERE emp_id IN (SELECT emp_id FROM employee

WHERE employee.name LIKE ‘SHAM‘

International Journal on Natural Language Computing (IJNLC) Vol.7, No.3, June 2018

10

4.1.6 Correlated Queries

Query: Find the 4th maximum salary

Here, aggregation function ‘MAX‘ will be mapped to ‘salary‘ but aggregation has constraint on it

and the query is formed according to the format given in Correlated queryExtraction.

Output: SELECT T1.salary FROM salary as T1 WHERE 3 = (SELECT COUNT(DISTINCT

T2.salary) FROM salary as T2 WHERE T1.salary > T2.salary)

4.1.7 Queries with LIMIT and ORDER BY clause

Query: show the first 5 names of employee in ascending order of salary

Output: SELECT employee.name FROM employee NATURAL JOIN salary ORDER BY

salary.salary ASC LIMIT 5

5. LIMITATIONS

• Queries which have another query embedded in it. e.g Find the department manager of

employees whose employee id is greater than Alex employee id. Here we are unable to find

correct condition clause elements as it is another query.

• Query ‖ Who is Alex‘s department manager‖, here Alex will be mapped to department

manager but query semantic demands to find department manager of employee Alex

• Queries with qualitative quantifiers can not be processed in the system e.g. Find the

youngest employee. Here, ‘youngest‘ is the qualitative quantifier and the system is not able

to map it with birth date of employee.

6. CONCLUSION AND FUTURE SCOPE

The user of the system will be able to give a natural language input statement and formulate the

following types of MySQL queries:

• Generate nested queries with more than two- leveldepth.

• Formulate aggregate queries along with HAVING and GROUP BY clause.

• Generate correlated queries having constraints on aggregation function.

• Generate queries with NATURAL JOIN.

• Generate queries with LIMIT and ORDER BY clauses.

• Generate queries with BETWEEN, LIKE and RANGE clauses.

The system can be further developed by incorporating the following future works, which are yet

to be implemented in the present system. The development on the points mentioned in future

work is in progress.

• The system can be developed to handle qualitative quantifiers in the user query.

• A recursive algorithm can be designed to handle advanced nested queries which have an

independent SQL query in the condition clause.

• Machine Learning algorithms can be incorporated to determine the most efficient query

amongst all the possible SQL queries for a user query.

• There can be a situation where the user query has more than one se- mantic. An algorithm

can be designed to formulate a SQL query with respect to each derived semantic.

• The system uses only MySQL database. It can be broadly developed to accept other

database or unstructured database systems.

International Journal on Natural Language Computing (IJNLC) Vol.7, No.3, June 2018

11

REFERENCES

[1] William Woods, Ronald Kaplan, and Bonnie Webber, (01 1972) ―The lunar science natural

language information system: Final report‖.F Siasar djahantighi, Mohammad Norouzifard, Seyed

Hashem Davarpanah, and M. H. Shenassa, ―Using natural language processing in order to create sql

queries‖, (2008).

[2] Mr Abid Shaikh Akshay Satav Archana B. Ausekar, Radhika M. Bihani, ―A proposed natural

language query processing system‖, (2014).

[3] Giordani Alessandra and Moschitti Alessandro, (2012) ―Generating sql queries using natural

language syntactic dependencies and metadata‖, in NLDB.

[4] Arun Solanki Garima Singh, ―An algorithm to transform natural language into sql queries

for relational databases‖, (2016).

[5] Javubar Sathick K. and Jaya A., (2015) ―Natural language to sql generation for semantic knowledge

extraction in social web sources‖, Indian Journal of Science and Technology, Vol. 8, No. 1.

[6] Abhijeet Gupta and Rajeev Sangal, (December 2013) ―A novel approach to aggregation pro- cessing

in natural language interfaces to databases‖, in Proceedings of the 2013 International Conference on

Natural Language Processing, CDAC Noida, India, International Institute of Information

TechnologyHyderabad.

[7] Li Hu and Shi Yong, (Feb 2010) ―A wordnet-based natural language interface to relational

databases‖, in 2010 The 2nd International Conference on Computer and Automation Engi- neering

(ICCAE), Vol. 1, pp. 514–518.

[8] Ashish Palakurthi, Ruthu S. M., Arjun R. Akula, and Radhika Mamidi, ―Classification of attributes

in a natural language query into different sql clauses‖,(2015).

[9] Amit Pimpalkar Abhijeet R. Sontakke, ―A rule based graphical user interface to relational database

using nlp‖.

[10] Nandan Sukthankar, Sanket Maharnawar, Pranay Deshmukh, Yashodhara Haribhakta, and Vibhavari

Kamble, ―nquery - a natural language statement to sql query generator‖, (2017).

