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ABSTRACT 
 

We aim to model an adaptive log file parser. As the content of log files often evolves over time, we 

established a dynamic statistical model which learns and adapts processing and parsing rules. First, we 

limit the amount of unstructured text by clustering based on semantics of log file lines. Next, we only take 

the most relevant cluster into account and focus only on those frequent patterns which lead to the desired 

output table similar to Vaarandi [10]. Furthermore, we transform the found frequent patterns and the 

output stating the parsed table into a Hidden Markov Model (HMM). We use this HMM as a specific, 
however, flexible representation of a pattern for log file parsing to maintain high quality output. After 

training our model on one system type and applying it to a different system with slightly different log file 

patterns, we achieve an accuracy over 99.99%. 
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1. INTRODUCTION 
 

Today, almost any computer system documents its performed actions, events, warnings, and 

errors in the form of log files. A lot of information is generated during operation and written 
mostly into text, xml or xes files. For some systems several hundreds of lines per second are 

generated per second which add up to a huge amount of data ready to be interpreted. By parsing 

the log files, valuable information is extracted which can then be further processed into 

knowledge. Furthermore, systems are built to receive software updates. With those, also log file 
contents and their patterns might change. For example, some Key Performance Indicators (KPIs) 

could have been introduced with a certain software version and not logged by older versions, yet. 

Kuhnert et al. [1] covered this issue of the information of body region only logged by Magnetic 
Resonance Imaging systems having the latest software version. They trained clustering methods 

in order to learn the examined body region from the scan parameters. Thus, they applied their 

learnt clustering algorithm to logged scan parameters from earlier software versions and could 
complete the examined body region information in the respective result tables. Furthermore, 

another problem of changing logged events is that rigidly implemented parsing rules will fail and 

lead to incomplete extracted data. Practice has shown that in some cases patterns are flexible 

enough, in other cases patterns are manually adjusted in time before patterns fail due to changed 
log file content. However, those two described scenarios do not always apply which leads to 

failing patterns and missing output data. As this is the very first step of turning raw data into 

actionable insights, failing patterns are a major problem for all subsequent data analysis steps. 
Figure 1 depicts exactly this scenario, where two systems produce log files during operation. The 

systems differ in their software version. This leads to varied key event tags which are crucial for 

the parser. In Figure 1, we marked the difference in the log files in grey. Applying the same, rigid 

parser can result in complete tables for system A on the one hand, however incomplete resulting 
tables for system B on the other.  
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Figure 1. Problem Statement: Emerging log file entries processed by rigid parsers will lead to missing 
entries in output data. 

 

Our target is a model which parses text and is flexible to adapt automatically to gradual changes 
in the text. In this example, we use text from log files produced by Computed Tomography (CT) 

systems during operation. Next to medical imaging data, CTs constantly write events into text 

files which are subject to our research. As described in Maier et al. [2], during acquisition, a CT 
system applies X-rays from different angles and records multiple projection images. Thus, 3-D 

reconstruction enables cross-sectional views of the examined objects. The examined body is 

exposed to X-rays which can harm healthy tissue. Patient’s health and regulatory limitations 
require to measure the radiation dose being applied to the patient. The exposed radiation dose is 

one Key Performance Indicator (KPI) which is recorded in an event log file and is denoted as 

Computed Tomography Dose Index (CTDI). 
 

2. STATE OF THE ART 
 

The high importance of turning plain log files into usable knowledge correlates with the large 

number of literature handling log file analysis. Already in 1993, Hansen and Atkins [3] applied 

algorithms for system monitoring and notification. 
 

The most common methods of extracting information from log files base on detecting known 

fault types using regular expressions [4][5]. This requires knowledge about the exact pattern 

upfront, which is not always given. Thus, several data mining approaches have been applied in 

order to discover trends and correlations without prior knowledge [6][7][8][9]. For example, 
Vaarandi [10] used clustering algorithms to find frequent patterns as well as identify anomalous 

log file lines. 
 

Since log file entries are discrete, sequential data, applying Markov models is natural choice. 
Already in 1966, the statistical concept of Hidden Markov Models (HMM) was presented by 

Baum and Petrie [11], whereas Rabiner [12] took that concept further into practice. A HMM is a 

statistical signal model with unobservable (hidden) states whose likelihood only depends on the 
preceding state (Markov property). Emissions, also called outputs, are observable states 

connected to the hidden states by emission probabilities. Thus, a HMM is fully described by a set 

of hidden states, emissions, starting probabilities, transition probabilities and emission 

probabilities. By setting up a HMM, three fundamental problems can be addressed. First, the 
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evaluation problem can be tackled using the forward-backward algorithm. Thus, the probability 
of a particular output sequence given the model can be determined. Secondly, given the model 

and a given output sequence, we want to find the most likely sequence of hidden states. This is 

solved by the Viterbi algorithm. Lastly, the so-called learning problem addresses finding the most 

likely set of state transition and emission probabilities given a set of emissions, which is solved 
by the Baum-Welch algorithm and used in fitting new data to a previously learnt HMM. 

  

Furthermore, Yamanishi and Maruyama [9] addressed the issue of evolving sequences of events 
in the field of network failure monitoring and proposed to combine HMM mixture with adaptive 

learning of parameters to achieve dynamic modeling and adaptive tracking. More general term of 

data transformation for an increase of information content is data wrangling which is discussed by 
Endel et al. [13] in "how to make data useful again". 
 

Classification is a Machine Learning (ML) technique which addresses the task of assigning data 

to classes. For example, Duda et al. [14] introduce classification by describing the task of 
categorizing images of fish to salmon or sea bass. Another application is to categorize lines of 

text according to similar semantics which means that text with similar meaning is likely to be 

classified equally. Dave et al. [15] classified product reviews by combining sentiment analysis 

per review with training a classifier to separate the relevant reviews from all available data. 
Huge amounts of unstructured text are often tackled with various Information Retrieval 

Techniques which are discussed widely in literature [16]. In Sentiment Analysis, often Latent 

Semantic Analysis (LSA) [17] is used to extract contextual usage and meaning of words. LSA is 
also known as Latent Semantic Index (LSI) and is a ML approach to train a model on 

unstructured collection of text. It learns latent topics by first turning text into matrix form using 

bag of word (BoW) model. Subsequently, this matrix is decomposed by applying Singular Value 

Decomposition (SVD) as illustrated in  

Figure. Thus, the 𝑚 𝑥 𝑚 term document matrix is factorized into an 𝑚 𝑥 𝑛 singular matrix 

holding term assignment per topic, an 𝑛 𝑥 𝑛 diagonal matrix containing topic importance, and 

lastly an 𝑛 𝑥 𝑚 singular matrix with topic distribution across documents.  

 

 
 

Figure 2. Singular Value Decomposition of a Term Document Matrix used in Latent Semantic Analysis. 

 

The effectiveness of LDA models highly depends on the chosen number of topics. By considering 

each topic as a cluster one can find the optimum number of topics. Thus, the optimum number of 

topics is the one which corresponds to the most effective clustering. A measure for the 
effectiveness of a cluster is the Silhouette coefficient as introduced by Kaufman and Rousseeuw 

[18]. The silhouette coefficient is calculated as 
 

𝑆𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 =
𝑏 − 𝑎

max (𝑎, 𝑏)
 

 

where 𝑎 stands for the mean intra-cluster distance and 𝑏 holds the mean nearest-cluster distance 

for each sample. Thus, the Silhouette coefficient can take values between -1 and 1, where -1 
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denotes the most misclassifications and +1 the ideal case. Huang [19] discussed different 
common distance measures like Euclidean distance representing the distance between two points, 

Cosine similarity holding the cosine of the angle between vectors, Jaccard coefficient describing 

similarity as the intersection divided by the union of objects, and others. 
 

Another way to determine the optimum number of topics is by measuring the coherence in topics 

[20] and choosing the number of topics that is most coherent. The coherence measure is 

calculated using the average and median of pair wise word similarity scores of words in a topic. 
 

3. MATERIALS AND METHODS 
 

Our goal is to build an adaptive log file parser. Thus, we want to extract specific, reoccurring 

information out of the raw log file despite of emerging, according entries and rules because of 

software version updates. Here, we present our approach using the example of amount of dose, 

called “ctdi”, which is applied during a Computed Tomography (CT) scan. We reach our goal by 

implementing a processing pipeline as illustrated in  

Figure.  
 

 
 

Figure 3. Processing pipeline of our adaptive parser using HMM. 

 

3.1. Preprocessing 
 

First, we apply several text preprocessing steps such as tokenization, stemming and lower 
capitalization. Furthermore, we remove all English stopwords and punctuation and receive a 

cleared set of tokens. 
 

Semantics carry precious information which we take into consideration by training a LSA model. 

We applied LSA in order to limit the big data set to the topics of interest. Thus, we first turned the 
tokens into TF-IDF representation. Afterwards, we determined the optimal number of clusters by 

calculating the average silhouette score on a small data set using cosine and Euclidean distance as 

similarity measures. For that, we first determine the number of topics by calculating the silhouette 
coefficient for several numbers of topics. The highest found silhouette coefficient determines the 

optimum number of topics. This enables us to set up the LSA and cluster the log file lines into 

topics. 
 

Based on that preprocessed and prefiltered data set we implemented and applied a slightly 

modified version of Vaarandi's "data clustering algorithm for mining patterns from event logs” 

[10] in order to find common structures. Vaarandi’s original approach consists of mainly three 
steps. First, the frequency of words is calculated and only the most frequent words are taken into 

account. Next, based on the found most frequent words cluster candidates are constructed. They 

contain one or more frequent words and are found in the same line of text. Afterwards, for each 

cluster candidate the according number of occurrences is calculated and reported as support 
value. In the third and last step the final clusters are selected from the cluster candidates by 

filtering the support values greater or equal to a given threshold.  
 

In our approach, because of software adaptions we often face irregular order of tokens. As 
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different orders of events do not have an impact on the desired parsing results, we do not consider 
the word's position and order unlike suggested by Vaarandi. As we focus on the dose value in this 

paper, we can assume to find only one kind of KPI to be parsed per line and parsing pattern. 

Thus, we use the number of KPI values as a threshold rather than setting or optimizing a specific 

threshold as Vaarandi proposed. The result is a vector of clusters representing frequently 
occurring types of lines. We further reduce the resulting clusters to the number of expected 

distinct KPIs (e.g. “ctdi”) and choose the most likely clusters.  
 

3.2. Hidden Markov Model 
 

The preprocessed data is subsequently utilized to set up and train a HMM. The found cluster is 

interpreted as a parsing pattern and determines the states of our HMM. The starting probability psi 

reflects the frequency of the tokens, accordingly. A first-order Markov model depicts a sequence 

of states, where one state's likelihood can be predicted using its conditional probability given one 

preceding state. Therefore, next to the probability of the HMM's entry point, information about 
the subsequent state's likelihood pti,j of occurrence is stored in a transition probability matrix by 

utilizing the concept of bigrams. A schematic presentation of the model is displayed in Figure 4. 

The initial starting probability is indicated by arrows drawn from Start to the respective statei. 

Circles in the middle lane represent the different states. Arrows between the states illustrate 
likelihood of one state being followed by the other. Furthermore, dotted lines connect states to 

emissions and specify the emission probability, respectively.  
 

 
 

Figure 4. Parsing one element represented by a HMM. 
 

Thus, our HMM is built and fully described by a vector of states, emissions, starting, transition 

and emission probability matrix. The states are hidden and represent entries in the original log 

file. Emissions can be observed and found as dose values in the output tables of the parsing 
process. pei,k describes the probability that a certain emission k follows a given state i. This 

defines our HMM exhaustively.  
 

Once we built the HMM representing a flexible version of a parsing pattern for dose values on 
one system type (Data A), we can apply the abstract pattern to data of a different system type 

(Data B) in order to extract the relevant dose information. Furthermore, we find the most probable 

states for a new observation sequence using Viterbi [12]. This is illustrated in Figure 5, as well as 

using Baum-Welch [12] to fit our model to new data. This implies that we update the transition 
and emission probabilities which connect the states with each other and states with emissions, 

accordingly. The HMM representing a flexible version of the parsing pattern is adapted to new 

Data B in two ways, using Viterbi as well as Baum-Welch, in order to get the correctly parsed 
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output table. 

 
 

Figure 5. Pipeline of training the HMM on Data A and applying the implicit pattern on Data B.  

 

4. RESULTS 
 

In this chapter, we present the results of our flexible log file parser as well as the intermediate 
results along the introduced pipeline. We trained our new, flexible parsing model on one data set 

from system A. For testing of the desired adaptability, we tested our model on a different data set 

originating from another system B as demonstrated in Figure 6. The input data constitutes log file 
entries and accordingly parsed values of applied dose values from one CT system over the period 

of December 2018, further referenced by data set A. In order to test our approach on rigid patterns 

where the algorithm does not have to adapt, but only parse in the same way as it has been trained 

on, we split A into training and testing using a stratified split. In the following, we will refer to 
70% of data set A by Atrain and use the term Atest for the remaining 30% of A. Thus, we can test the 

trained algorithm on the very same system. Furthermore, we will call data from a different CT 

system of type B from December 2018 for testing purposes of our algorithm’s adaptability as data 
set Btest, accordingly. The split is visualized in Figure 6. 
 

 
Figure 6. Two data sets from different CT system types are used, whereas the data of system A is split into 

training and testing for rigid parsing patterns. Further testing for adaptability of the trained model is 

performed on data of system B. 

 

4.1. Preprocessing Results 
 

Analogously to our processing pipeline, we present intermediate results along the pipeline and 

evaluate all steps in order to judge their success and discuss their importance. Figure 7 shows an 

exemplary, anonymized example event text of a raw log file which carries information about a 
specific scan. Among that information, also the amount of applied dose can be found. This event 

text is tied to a time stamp, event type and event ID. 

A_train
70%

A_test
30%

B_test
100%



International Journal on Natural Language Computing (IJNLC) Vol.8, No.6, December 2019 

31 
 

 
Figure 7. Example of an anonymized, raw event text. 

 

As described in Section 2, this event text is further processed into stemmed tokens. We present in 

Figure 8 the remaining word stem where punctuation as well as stopwords have been removed. In 
order to avoid misleading mismatches of values that are rounded differently, we reduce the digits 

after the decimal point to two.  
 

 

Figure 8. The example event text represented as preprocessed tokens. 

 

All further calculations are based on those preprocessed tokens. Thus, we set up a TF-IDF using 

these tokens to calculate distance matrices and, moreover, average silhouette scores to find the 
optimal number of clusters. Figure 9 illustrates for Euclidean and Cosine distance measure the 

resulting silhouette scores for two to 50 clusters in steps of two. As the silhouette score using 

Cosine distance reports the highest value for a number of 32 clusters, we performed a PCA and 
visualized the spread, accordingly. Figure 10 holds the plot of TF-IDF reduced to 32 clusters 

which are highlighted by different colors. Consequently, we select the cluster among the found 32 

clusters which contains the highest number of emissions. Thus, we focus only on the so-called 
“ctdi-cluster” containing most dose values and similar entries. 

 

 

&Load scan protocol&,@Patient 

LOID@=#2.0.123456#,@Scan@=#1#,@ScanUID@=#1.3.12.2.1107.5.1.4.83004.1234567890

#,@Scan protocol name@=#rot00#,@Organ characteristics@=#MlOrgCharAbdomen#,@Body 
size original@=#MlAdult#,@Scan entry name@=#rot00#,@Kind@=#MlRot#,@Entry 

Mode@=#standard#,@AutoRange@=#Cont#,@kV@=#120#,@mAs@=#250#,@CARE 

Dose@=#Off#,@AEC@=#Off#,@CTDI@=#16.660#,@DLP@=#59.975#,@Slice@=#0.6#,@
Scan start@=#MlRangeStartAuto#,@Slice Width Collimated@=#60#,@No Of Acquisition 

Slices@=#60#,@CBC@=#Off#,@Scan trigger@=#MlScanTriggerAuto#,@No of 

scans@=#1#,@Examination 

time@=#0.500000#,@ScanTime@=#1.000#,@RotTime@=#0.500#,@RotKind@=#Normal#,
@CurrentPeak@=#250#,@DoseModulationType@=#MlNoModulation#,@Focus@=#MlSmal

lFocus#,@Anodespeed 

A@=#120#,@StartDelay@=#2.000#,@NoOfClustersPerRange@=#1#,@RevolAngle@=#360
#,@Contrast@=#false#,@Begin Pos@=#517.000#,@Readings 

A@=#2304#,@Scandirection@=#cr-

ca#,@MasterXray@=#On#,@Service@=#On#,@CycleTime@=#0.00#,@ZigZagReconVolum

e@=#0.00#,@ZigZagScanTime@=#0.00#,@EndPos@=#517#,@SpecialMeas@=#None# 

'load', 'scan', 'protocol', 'paty', 'loid', '2.0.123456, 'scan', '1.00', 'scanuid', 

'1.3.12.2.1107.5.1.4.83004.1234567890, 'scan', 'protocol', 'nam', 'rot00', 'org', 'charact', 

'mlorgcharabdom', 'body', 'siz', 'origin', 'mladult', 'scan', 'entry', 'nam', 'rot00', 'kind', 'mlrot', 
'entry', 'mod', 'standard', 'autorang', 'cont', 'kv', '120.00', 'mas', '250.00', 'car', 'dos', 'off', 'aec', 

'off', 'ctdi', '16.66', 'dlp', '59.98', 'slic', '0.60', 'scan', 'start', 'mlrangestartauto', 'slic', 'wid', 'collim', 

'60.00', 'no', 'of', 'acquisit', 'slic', '60.00', 'cbc', 'off', 'scan', 'trig', 'mlscantriggerauto', 'no', 'scan', 

'1.00', 'examin', 'tim', '0.50', 'scantim', '1.00', 'rottim', '0.50', 'rotkind', 'norm', 'currentpeak', 
'250.00', 'dosemodulationtyp', 'mlnomodulation', 'foc', 'mlsmallfocus', 'anodespee', 'a', '120.00', 

'startdelay', '2.00', 'noofclustersperrang', '1.00', 'revolangl', '360.00', 'contrast', 'fals', 'begin', 

'pos', '517.00', 'read', 'a', '2304.00', 'scandirect', 'cr-ca', 'masterxray', 'on', 'serv', 'on', 'cycletim', 
'0.00', 'zigzagreconvolum', '0.00', 'zigzagscantim', '0.00', 'endpo', '517.00', 'specialmea', 'non' 
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Figure 9. Silhouette score for Euclidean and Cosine distance measure for 2 to 50 clusters. 
 

 
 

Figure 10. PCA for TF-IDF mapped to 32 clusters. 

 

Moreover, by applying an adapted version of Vaarandi [10] to the “ctdi-cluster”, we detect the 
appropriate text that contains the desired dose information, automatically. Furthermore, we find 

again clusters in the reduced but still large amount of log file content. We learnt that a subset of 

the tokens is the representative, common structure applicable to all lines. In Figure 11 we 

highlight the found cluster items among the list of the semantically prefiltered and preprocessed 
tokens. Moreover, the elements of this cluster are used as states of the HMM and states the basis 

for all following steps.  
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Figure 11. The identified cluster elements are highlighted which are found among the preprocessed tokens. 

 

4.2. HMM Set Up Results 
 

We built the HMM based on the preprocessed tokens, found clusters, and emissions. In order to 

assemble a flexible but precise parser, we found the token which is followed most often by 
emissions, automatically. In our case, we found the token “ctdi” to emit most values, correctly. 

We integrated here a flexible version as well, as also the trigger for an emission can be subject to 

changes. For example, “ctdivol” is an equivalent term for a dose value and could be the trigger 
for an emission in log files produced by other software versions. 
 

In order to turn our model into an adaptive parser and successfully retrieve complete information 

from new data sets, we set up the parsing pattern depending on the trained HMM and the most 
emitting state. If we find all elements of the pattern as tokens in the event text, the emitted value 

after “ctdi” is considered as a found emission. The emission found in the example of Figure 11 is 

“16.66”. 
 

4.3. Results for Training on Data Set A_train and Testing on Data Set A_test 
 

As we determined an adaptive version of a parsing pattern, we can now apply the pattern in order 

to parse dose information out of the event text. First, we test if the built parser is representative 
and works without necessary adaption correctly. Thus, we trained our model on Atrain and then 

tested it directly without further fitting on Atest. We achieved an accuracy of 99.99% and 

sensitivity of 98.24%. The respective confusion matrix is given in Table 1. 
 

Table 1.  Confusion matrix after training on Atrain and testing on Atest. 
 

 
 

4.4. Results for Training on Data Set A and Testing on Data Set B 
 

After testing our model without the necessity for adaption, we now test the trained model on a 
different data set which holds slight variations in the respective event text. Thus, we can test our 

'load', 'scan', 'protocol', 'paty', 'loid', '2.0.123456, 'scan', '1.00', 'scanuid', 

'1.3.12.2.1107.5.1.4.83004.1234567890, 'scan', 'protocol', 'nam', 'rot00', 'org', 'charact', 

'mlorgcharabdom', 'body', 'siz', 'origin', 'mladult', 'scan', 'entry', 'nam', 'rot00', 'kind', 'mlrot', 
'entry', 'mod', 'standard', 'autorang', 'cont', 'kv', '120.00', 'mas', '250.00', 'car', 'dos', 'off', 'aec', 

'off', 'ctdi', '16.66', 'dlp', '59.98', 'slic', '0.60', 'scan', 'start', 'mlrangestartauto', 'slic', 'wid', 

'collim', '60.00', 'no', 'of', 'acquisit', 'slic', '60.00', 'cbc', 'off', 'scan', 'trig', 'mlscantriggerauto', 
'no', 'scan', '1.00', 'examin', 'tim', '0.50', 'scantim', '1.00', 'rottim', '0.50', 'rotkind', 'norm', 

'currentpeak', '250.00', 'dosemodulationtyp', 'mlnomodulation', 'foc', 'mlsmallfocus', 

'anodespee', 'a', '120.00', 'startdelay', '2.00', 'noofclustersperrang', '1.00', 'revolangl', '360.00', 
'contrast', 'fals', 'begin', 'pos', '517.00', 'read', 'a', '2304.00', 'scandirect', 'cr-ca', 'masterxray', 'on', 

'serv', 'on', 'cycletim', '0.00', 'zigzagreconvolum', '0.00', 'zigzagscantim', '0.00', 'endpo', '517.00', 

'specialmea', 'non' 
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model on adaptability and flexibility.  Thus, we trained our model on Data A and applied it to 
Data B. Figure 12 shows an excerpt of the differences in the event texts produced by both 

systems, respectively. The main difference is highlighted in yellow, where Data Set A contains 

“ScanUID” which was changed to “StudyLOID” in the event text produced by system B. 

 

 

Figure 12. Example of an anonymized, raw event text from System A compared to System B, respectively. 

The main difference in tokens is highlighted in yellow. 

 

Without adapting the model but applying the model on data generated from a different system, we 
observe an accuracy of 99.84% and sensitivity of 78.35%. The respective confusion matrix is 

given in Table 2.  
 

Table 2.  Confusion matrix after training on A and testing on B without adaption. 
 

 
 

After fitting the model to the new Data B using Baum-Welch and again applying the adapted 

parsing rules we receive an accuracy of 99.78% and hit rate of 100.0%. The confusion matrix can 
be found in Table 3, accordingly. 
 

Table 3.  Confusion matrix after training on A, fitting model to B and testing on B. 

 

 
 

&Load scan protocol&,@Patient 
LOID@=#2.0.107559#,@Scan@=#1#,@Scan
UID@=#1.3.12.2.1107.5.1.4.83004.12345678
90#,@Scan protocol 
name@=#rot00#,@Organ 
characteristics@=#MlOrgCharAbdomen#,@
Body size original@=#MlAdult#,@Scan entry 
name@=#rot00#,@Kind@=#MlRot#,@Entry 
Mode@=#standard#,@AutoRange@=#Cont#
,@kV@=#120#,@mAs@=#250#,@CARE 
Dose@=#Off#,@AEC@=#Off#,@CTDI@=#16.
660#,@DLP@=#59.975#,@Slice@=#0.6#,@S
can start@=#MlRangeStartAuto#,@Slice 
Width Collimated@=#60#,@No Of 
Acquisition Slices@=#60#,@CBC@=#Off# 

&Load scan protocol&,@Patient 
LOID@=#4.0.123727110#,@Scan@=#1#,@St
udyLOID@=#1.3.12.2.1107.5.1.4.73307.0987
654321#,@Scan protocol 
name@=#1_HeadSequence#,@Organ 
characteristics@=#MlOrgCharHead#,@Body 
size original@=#MlAdult#,@Scan entry 
name@=#Topogram#,@Kind@=#MlTopo#,
@Entry 
Mode@=#standard#,@AutoRange@=#None
#,@kV@=#80#,@mA@=#20#,@CARE 
Dose@=#Off#,@AEC@=#Off#,@CTDI@=#0.0
23#,@DLP@=#0.597#,@Slice@=#0.6#,@Sca
n start@=#MlRangeStartConsole#,@Slice 
Width Collimated@=#60#,@No Of 
Acquisition Slices@=#6#,@CBC@=#Off 
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Furthermore, we adapted the model by applying Viterbi to the learnt HMM with the emissions of 
Data B. This gave us results with 99.28% accuracy and hit rate of 56.44%. We present the 

respective confusion matrix in Table 4, accordingly. 
 

Table 4.  Confusion matrix after training on A, fitting only states to B and testing on B. 
 

 
 

5. DISCUSSION 
 

We built a flexible parser which adapts to gradual changes in log files. We tested our model on 

different set ups with two different data sources in order to evaluate and further improve our 

approach. In the following, we discuss the results in more detail and propose how to interpret 
those. 
 

5.1. Discussion on Intermediate Results along the Pipeline  
 

We presented the intermediate results of our first processing step using the example of one single 
line of log file content. We applied tokenization, stemming and removed stopwords and presented 

the resulting tokens in Figure 8. Thus, we could reduce complexity and set the base for further 

processing. Subsequently, we took the meaning of words into account and applied LSA. The 
optimum number of clusters being 32 mirrors the huge variety of information contained in our 

data set. Thus, we sliced the input into semantically similar clusters and reduced the input to the 

clusters containing the events of interest. Finding the most decisive tokens out of the entire data 
set works well as shown in Figure 11. The identified cluster elements primarily describe 

reoccurring elements and important items of lines which distinguish desired lines from others 

correctly. 

  

5.2. Discussion on Results for Training on Data Set A_train and Testing on Data Set 

A_test 
 

Furthermore, we used the found clusters in combination with the most emitting state as parsing 

pattern and tested our model on its basic functionality of parsing without adaption. In order to 

judge the quality and significance of our model, we trained our model on Data Atrain and double 
checked the fundamental structure by directly testing on Atest. This implies that our model does 

not have to adapt to any changes in the input, yet. We could parse almost all desired values and 

achieved an accuracy of 99.99% and hit rate of 98.24%. As the confusion matrix presented in 
Table 1 shows in zero false positives, we did not parse wrong values. However, we missed to 

detect a few values. We explain the few false negatives with some very rare occurrences of line 

types which only occurred in Atest and, thus, have not been trained on. 
 

5.3. Discussion on Results for Training on Data Set A and Testing on Data Set B 
 

Our major goal was to build an adaptive parser which can parse gradually changing inputs 

without missing relevant information. In order to evaluate our model on flexibility, we trained our 
model on data set A and tested on B. Without fitting our model to data B, we already achieve an 
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accuracy of 99.84%. Having a closer look at the confusion matrix presented in Table 2, we see 
that we miss some true values while others are found to be false positive. As we now trained on 

the full data set A, we also trained on the rare cases of lines which have been missed before.  

After we fitted our model to the emissions of data set B, we accomplished a hit rate of one 

hundred percent. We achieve that as applying Baum-Welch and fitting our model to B implies 
reducing the restrictiveness of the cluster and its length to only two distinct clusters. This leads to 

no false negative but 1255 false positives which means that we find wrong values to carry dose 

information. 
 

Finally, Viterbi algorithm was applied to the model. This amplified our clusters to such an extent 

that we parsed almost as many false negatives and false positives as we found true positives. The 

model got sensitive and more descriptive towards wrong event text lines and patterns and led to a 
hit rate of 56.44%.  
 

6. CONCLUSIONS AND FUTURE WORK 
 

We built a flexible parsing model which is capable to adapt to gradual changes in input structures. 

Our model is adaptive to slight changes in input log file and, thus, parses new input with very 
high accuracy. By constant learning and fitting our model using Baum-Welch, we continuously 

adapt our parsing rules to the changes in the input data. However, sensitivity should be improved, 

and further analysis is needed to judge the generality of our model. We found that applying 
Baum-Welch leads to a very well applicable parsing pattern, whereas Viterbi delivers too 

restrictive rules.  
 

The good results of high accuracy mean that the combination of HMMs with text preprocessing 

and latent semantic analysis support the construction of new, flexible, learning models for 
information retrieval. By applying HMMs in combination with text processing and semantics, we 

contribute to research around text data mining and parsing. Thus, we enriched understanding and 

importance of this field of research’s opportunities and added a new perspective on flexible 
parsing. Furthermore, as our research combines semantic analysis, parsing, language processing 

and pattern recognition, it also contributes to the field of information retrieval. Due to our 

knowledge, we are the first who apply semantic analysis and HMMs to machine written text in 
order to build a flexible, automatically adapting parser. In practice, this is a starting point to 

automate information retrieval in log files for any system. Therefore, data analysts can base their 

algorithms on stable, high quality, preprocessed data. Thus, companies installing this model 

holistically, can reduce their maintenance costs for parsers drastically while maintaining high 
quality business insights throughout their systems lifecycles. 
 

In next steps and future work, the model should be enhanced to parse several tokens at a time and 

not be limited to one aspect of information. In our example, an ideal system would parse all 
values belonging to all tokens from “Patient LOID” to “SpecialMeas”. Furthermore, current 

manual parsers do not only parse values but also time frames, durations and distances. Thus, in 

order to fully replace a manually assembled parser, the model should be enhanced to detect 
reoccurring patterns of line pairs. Their relationship should be detected automatically, as well as 

the determining information. In further research, the algorithm should be extended to even more 

complex patterns and parse KPIs that are found as a combination from more than two lines in the 
event text. 
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