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ABSTRACT 
 
This research paper is focused on the issue of mobile application malware detection by Reverse 
Engineering of Android java code and use of Machine Learning algorithms. The malicious software 
characteristics were identified based on a collected set of total number of 1958 applications (including 996 
malware applications). During research a unique set of features was chosen, then three attribute selection 
algorithms and five classification algorithms (Random Forest, K Nearest Neighbors, SVM, Nave Bayes and 
Logistic Regression) were examined to choose algorithms that would provide the most effective rate of 
malware detection. 
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1. INTRODUCTION 
 
The main malware detection techniques consist of static and dynamic analysis [16]. Dynamic 
analysis techniques rely on monitoring the application in real time, working in an isolated 
environment [1]. Static analysis works on decompiled source code, without launching 
applications [2] analyzing the case of reporting rights, components, API calls. In this paper we are 
focused on static approach case based on the automatic analysis of decompiled mobile application 
code. Based on reference items [3], [4] and [5], a unique feature vector derived from the 
application Java code was constructed. The total number of features is 696. We divided them into 
three categories: First one is model implementation of on Receive () methods for Broadcast 
Receiver components. As demonstrated in [3], in malware applications, calls to certain methods 
more often occur in the overridden on Receive () method than in secure applications. The full list 
of wanted calls in the on Receive() method of components extending the Brodacast Receiver class 
can be found in first part of Table 1. Second one is Linux system commands - as the Android 
system uses the Linux kernel, there is an API available to execute Linux-specific commands on 
the Android mobile device. Some of the commands under examination relate to operations on the 
file system. There is also a group of commands that are used to obtain administrative access to the 
device (rooting), then to increase the possibilities of attack, and to hide the operation of malware 
on the device. The full list of searched Commands is available in second part of table 1. Selected 
on the basis of [6]. Third one is API Calls - the largest group of features (616). Includes methods 
from classes, some of which have been indicated in [5]. Third part of Table 1 contains a list of 
classes, whose selected methods were included in the extraction of features. These were classes 
characteristic of the context of the mobile application, for objects of type Intention, for HTTP 
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protocol operations, for telephone operations (SMS, connection, MMS), for device network 
settings, for data encryption or for dynamic code loading [19]. 
 

2. PREPARING TESTING ENVIRONMENT 
 
Based on the literature on the subject, especially on [4], [7], [8], [9], [10], [11], [5], [12], [18], 
five classification algorithms were selected for testing under this work. These algorithms were 
among the most popular in the field of malware detection on the Android system. 
A collection of  tested data consist of secure and malicious applications. Safe applications have 
been downloaded from two sources. First one is APK Pure - an alternative Android application 
store. Second one is F-Droid - the directory of the FOSS Android application (Free and Open 
Source Software), which includes free and open software [17]. To increase the likelihood that 
applications are considered safe indeed they are not malicious, each of the downloaded files has 
been uploaded to the web application Virus Total. Its task consists of analyzing the file using over 
70 antivirus scanners, indicating whether the file is malicious, additionally revealing a label, 
indicating the species of malware to which the given scanner has classified a dangerous file. 
Secondly, Virus Total provides additional information about the file, such as: the date of the first 
and last file upload operation to Virus Total, the number of these operations, the results of static 
analysis (eg internal structure of the file), the results of dynamic analysis (behavioral 
characteristics of the application). The condition for joining the application to the test set of this 
work was not to detect malicious activity by any of the more than 70 scanners. Malicious 
applications also came from two sources: Virus Share - malware repository, currently containing 
over 24 million and Contagio Mobile - a blog that is part of the Contagio Dump project, which is 
a collection of malware samples. Contagio Mobile focuses on mobile malware, especially on 
Android and iOS. Applications downloaded from the above two sources have also been analyzed 
in Virus Total. They were added to the test database if at least one of the scanners classified them 
as malware.  
 
2.1. JAVA CODE FEATURES EXTRACTION 
 
To be able to extract the features, the files should be prepared properly. To this end, BASH shell 
scripts have been developed and auxiliary scripts that organize files. Scripts gets the .apk file to 
the input, returning the corresponding .jar file. For this purpose, the dex2jar tool is used.  
 

Table 1.  Methods, commands and classes from which methods where extracted belonging to  
the feature vector from java code. 

 
BroadcastReceiver  psneuter  StringBuilder  
startService  wpthis  Process  
bindService  exploid  Context  
schedule  rageagainstthecage  Intent  
startForegroundService  motofail  ActivityManager  
registerReceiver  GingerBreak  PackageManager  
goAsync  Classes  SmsManager  
startActivity  ContentResolver  TelephonyManager  
startActivieties  Cipher  DexClassLoader  
Commands  Class  BaseDexClassLoader  
su  File  ClassLoader  
mount  FileOutputStream  Runtime  
insmod  DataOutputStream  System  
rebot  psneuter  ConnectivityManager  
chown  wpthis  NetworkInfo  
pm install  exploid  WifiManager  
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zergRush  rageagainstthecage  HttpURLConnection  
m7  motofail  Socket  
fre3vo  GingerBreak  handler  

 
It’s used for work with .dex and .class files. It enables: reading and writing to a .dex file (Dalvik 
Executable format, executable format for Dalvik), conversion from a .dex file to .class files 
(compressed as a .jar file), disassembling the .dex file to a small format, as well as the decryption 
of code strings present in the code, which have been obfuscated through encryption and whose 
decryption was to take place only after execution.  
 
A Java program was prepared for the extraction of the tests. The external library used for the 
extraction of features is JD-core-java - a package decompiling Java decompiler called Java 
Decompiler (Java Decompiler authors did not provide a tool in the form of a library that can be 
used inside the code, only a decompiler as a plug-in for selected programming environments or 
graphics tool). Necessary to obtain the application code from the .jar file, on which the analysis of 
malware in the second research case is based. To focus on the analysis of features selected by all 
three selection methods, in Table 2 there are features present in the top characteristics for each 
selection method and their participation in malware applications and secure applications. All 
features from Table 2 are much more common in malware than in secure applications.  
 

Table 2.  Percentage of occurrences of features derived from java code, which are in the 
 top features chosen by 3 selection algorithms in the malware and safe application sets. 

 
Feature Percentage in malware Percentage in safe apps 

startService 0.34809 0.00118 
getString 0.35412 0.04471 

setPackage 0.25553 0 
putExtra 0.27767 0.01059 

startActivity 0.19215 0.01882 
getSystemService 0.17907 0.02000 

append 0.20121 0.04588 
indexOf 0.11268 0.00941 

getInputStream 0.09558 0.00235 
 

Methods from the String class, such as append or index Of, which are much more prevalent in 
malicious applications than in safe ones, show a legal manipulation on the string of characters to 
obfuscate the code. Operations on strings are used to avoid detection by dynamically creating 
URLs, providing parameters to the reflection mechanism API, or to hide Linux commands. The 
proof of probable manipulations with Linux commands is that the method for calling them 
appeared in 1% of malicious applications, while the extractor detected ten times less true Linux 
commands (at the level of 0.1%) - thus the vast majority of applications that calls the method to 
Linux commands do not contain these explicit commands (or they are very unpopular and 
unusual commands - but this alternative is less likely). In addition, the Context. get String method 
allows to extract a string from application resources that are outside the Java code. Therefore, this 
is a great opportunity to save a dangerous string of characters, e.g. the URL of a malicious server, 
in the application resources, so that it will not be detected during Java code analysis, and this 
method allows you to download this string to the code. 
 
The Context.start Service method, the frequency of which in malware applications was mentioned 
in [5], is used to start the service. In the dataset of this work, it occurred about 350 times more 
often in malware. Knowing that the service is a component running in the background, possibly 
without the user’s knowledge, it seems clear that malicious applications will want to reach for the 
described method in order not to alert the user about malicious activity by using a component that 
will work in hiding. 
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The get System method. The Context class service, appearing in malicious applications 9 times 
more often than in safe applications, allows access to given system services. Without examining 
the parameters of this method, it is difficult to conclude what specifically access was requested 
for. However, among the system services that this method gives access to, there are those that can 
be potentially dangerous: window visibility management, network connections, Wi-Fi 
connectivity, HTTP download process, location data.  
 
The get Input Stream method from the Http URL Connection class, occurring in almost 10% of 
malicious applications, and only in 0.2% of secure applications, is important in the process of 
data transfer (both sending and receiving) via the HTTP protocol. Thanks to this method, on the 
one hand, the application can receive harmful packages (payload), on the other hand, send 
sensitive data about the user to the external server. 
 
Intent: set Package and put Extra methods, used mostly in malware in comparison with secure 
applications, may have their justification in intentional intentions. Intentional intentions are those 
that do not indicate a specific component that the intention can pick up. Therefore, it is possible 
that the intention will be received by another application. The threat occurs when a secure 
application uses implicit intent, does not specify which component can perform the action, and 
then such an intention intercepts the malware. Then he will be able to send the application in 
response to inaccurate data or send information about the success of the operation at the moment 
when the operation did not take place. The result of intention can be saved using the put Extra 
function. The set Package function is used to determine which components can receive the 
intention. Perhaps such a large presence in the malware serves to specify exactly which 
component should be responsible for the actions in order to have full control over the course of 
malicious activity, so that no other application could accidentally intercept the expected event. 
It is noted that only two patterns listed at all appear in the code of the tested applications - and 
these are the start Service and schedule methods. Appear on the level of 3% and 1% respectively 
in the malware code. They are used to activate the service accordingly and scheduling the service. 
Statistical tests were performed on the characteristics of Table 2 using the Mann-Whitney U-test. 
The confidence level at 0.05 was assumed. For each of the features in Table 2, the null hypothesis 
of median equality was rejected and an alternative hypothesis with a larger median in the malware 
population was adopted than in the population of safe applications.  
 

3. PRACTICAL MALWARE DETECTION 
 
The research will cover features obtained from the application code. Three methods of feature 
selection where be tested. Then, for each classifier, its selected parameters will be tested, and with 
the adopted determined parameters, the classification will be determined depending on the 
number of features taken into account. Next, the most common features in malware will be listed. 
The best results in terms of the number of correctly classified instances will be compiled for the 5 
tested classifiers, along with the time of the algorithm’s operation and the time of the pre-
processing process and the extraction of features. For testing each classifier, 10-fold cross 
validation will be used, repeated 10 times. The stages are as follows: First is selection of features, 
second is characteristics of malware, third is classifiers and their parameters (see Table 3), fourth 
is summary of the best results and time data for classifiers and last each of the 5 classifiers will be 
tested for selected parameters (see second column of Table 3). 
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Table 3.  Parameters tested for classifiers. 
 

Classifier Parameter 
Random Forest Iterations / max depth 

Naive Bayes - 
logistic regression Iterations 

k-NN number of neighbors 
SVM Kernel function 

 
3.1  RANDOM FOREST 
 
Random Forest algorithm is derived from the random tree, which is a type of decision tree. 
Therefore, the first element discussed will be the Decision Tree. The Decision Tree creates a 
hierarchical division of data from the set, where a homogeneous division into classes is obtained 
at the tree leaf level. Each vertex corresponds to the selected attribute describing the instances in 
the set, and the edges speak about the set of values of individual attributes. The tree structure is 
usually top-down, i.e. from the root to the leaves. Data is split in a recursive manner based on 
specific attributes. Split division (partitioning) ends when this division is pure - that is, when all 
instances considered in this vertex belong to one class. Other stop conditions are no attributes for 
further division or no instance. In the classic Decision Tree (as opposed to the Random Tree), in 
each of the vertices the best attribute is selected from all available ones. However, you must 
define what "best" means. There is no single answer to this question, because there are several 
metrics to assess the apex division. However, they come down to the assessment of the 
homogeneity of the division. Among the methods for assessing the homogeneity of the division 
are such metrics as: Entropy or Gini Coefficient. The given methods are applied to each candidate 
subset; therefore, the quality of the division is calculated by aggregating the obtained results for 
subsets. An example of the entropy-based aggregation method is information gain. Classification 
consists in browsing the tree from root to leaf through branches - edges that are described by 
attribute values. The random tree is a variant of the decision tree, which differs from the classical 
decision tree in that we use k randomly chosen attributes to split the vertex, not all available 
attributes [24]. And the random forest is based on classification by means of a group of random 
trees. Each tree is built by randomly drawing N instances from the N cardinality training set. The 
final decision to which class the examined instance belongs to is made by majority voting over 
the classes returned by individual trees 
 
First test case included changing of the maximum depth of the tree with assumptions: number of 
iterations: 100, number of features: 696. Table 4 shows that after reaching the maximum depth of 
50, the percentage of correctly classified instances was stable - and in the range of maximum 
depth from 80 to 200 and equal to infinity even identical. Some of the other indicators also 
remained at the same level from a depth greater than or equal to 80: TP, FN and F-measure. 
Interestingly, among these research cases, the lowest time was recorded for a maximum depth of 
100. Measures TN and FP had the best result for a depth of 20.  
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Table 4.  Results of the examination of the influence of the maximum 
depth for a random fo

 the root of mean square error and the time of learning and testing

Max 
Depth 

Correctly 
classified 

mean square 
error 

10 78,1598 0,4268 
20 80,1345 0,3917 
30 80,2212 0,3731 
40 80,5359 0,3656 
50 80,6118 0,3636 
100 80,6444 0,3637 
200 80,6444 0,3637 

 
However, it is worth noticing a very large difference between the matrices of 
matrix. The average value of TP was 68%, while TN 
4%, and FN - 32%. The high FN value, i.e. the second type error, seems to be more dangerous in 
the field of malware detection -
unconscious infection of the system or even the network of systems, while the error of the first 
type, i.e. the recognition of a safe application as dangerous is a false alarm, which can be further 
examined and reversed the diagnosis, and then use the application securely.

Figure 1.  Percentage of correctly classified instances with changing 
number of attributes and attribute selection method (Random Forest)

Second test case included chang
depth: 80, number of features: 696
the number of iterations. The highest percentage of correctly classified instances was recorded for 
55 iterations and it was 80.6662%. 55 iterations 
(0.9542) and the lowest FP index value (0.0458). For the 80 iterations, the best results were 
obtained for FN (0.319) and F (0.7906). Again, the second type of erro
error of the first type, and the percentage of correctly classified instances never exceeded 81%, 
which proves the poor quality of the classification. 
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Learning and 
testing time [ms] 

TP TN FP FN 

15227,6102 0,6305 0,9582 0,0418 0,3695 
31206,3691 0,6564 0,9708 0,0292 0,3436 
46360,0157 0,667 0,9604 0,0396 0,333 
62293,7623 0,677 0,9554 0,0446 0,323 
93321,374 0,68 0,9536 0,0464 0,32 

104305,4938 0,6808 0,9534 0,0466 0,3192 
122231,6517 0,6808 0,9534 0,0466 0,3192 

However, it is worth noticing a very large difference between the matrices of the confusion 
matrix. The average value of TP was 68%, while TN - 96%. Similarly, the average FP value was 
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- not detecting software malware and using it may result in the 
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rsed the diagnosis, and then use the application securely. 

 
 

Figure 1.  Percentage of correctly classified instances with changing  
number of attributes and attribute selection method (Random Forest) 

 
hanging of the number of iterations with assumptions:

umber of features: 696. The percentage of correctly classified instances, varying with 
iterations. The highest percentage of correctly classified instances was recorded for 
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(0.9542) and the lowest FP index value (0.0458). For the 80 iterations, the best results were 
obtained for FN (0.319) and F (0.7906). Again, the second type of error is much greater than the 
error of the first type, and the percentage of correctly classified instances never exceeded 81%, 
which proves the poor quality of the classification.  
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Figure 2.  Percentage of correctly classified instances with varying number of 
attributes and attribute selection method (SVM)

 
Third test case included changing of
80, number of iterations: 55. Fig.
in the number of features (and the algorithm of feature selection) and its impact on the percentage 
of correctly classified instances. 5 to 80 best traits with step 5 were examined. Only at 80
selected using the ReliefF algorithm, this index was achieved at over 80%. It is not possible to 
distinguish a strong favorite among the algorithms of feature selection 
at different times all the algorithms studied.
 
3.2 NAIVE BAYIAN CLASSIFER
 
Let the definition of conditional probability be used as an introduction to the discussion of the 
naive Bayesian classifier. The conditional probability P (X | Y) is the probability of an X event, 
provided that an event Y has occurred. It is expressed by the formula:
 

By way of simple mathematical transformations, the basis of the Naive Bayes algorithm can be 
obtained from the above formula, namely 
 

where P(X) is the a priori probability, P(X
probability of occurrence (likelihood).
Y. In the case of many variables, on which the variable X depends, to facilitate complex 
mathematical operations, we sim
dependent are independent. Therefore, operating on the concepts from the field of classification, 
if for X we assume the class C, and for the variables on which it depends, we adopt a set o
attributes F1, ..., Fn, the probability of belonging to the class C in its description with features F
..., Fn stands out from the formula:
 

 
Since the denominator P(F1, ..., F
classification is made by calculating the probability P(C
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ing of the number of features with assumptions: maximum depth: 
Fig. 2 presents the summary results from the research on the change 

in the number of features (and the algorithm of feature selection) and its impact on the percentage 
of correctly classified instances. 5 to 80 best traits with step 5 were examined. Only at 80
selected using the ReliefF algorithm, this index was achieved at over 80%. It is not possible to 
distinguish a strong favorite among the algorithms of feature selection - they came out on the lead 
at different times all the algorithms studied. 

AYIAN CLASSIFER 

Let the definition of conditional probability be used as an introduction to the discussion of the 
naive Bayesian classifier. The conditional probability P (X | Y) is the probability of an X event, 

occurred. It is expressed by the formula: 

By way of simple mathematical transformations, the basis of the Naive Bayes algorithm can be 
obtained from the above formula, namely - the Bayes theorem  

where P(X) is the a priori probability, P(X│Y) is a posteriori probability, and P(Y
(likelihood). The above formula assumes the existence of one variable 

Y. In the case of many variables, on which the variable X depends, to facilitate complex 
mathematical operations, we simplify the assumption that the variables on which the variable X is 

Therefore, operating on the concepts from the field of classification, 
if for X we assume the class C, and for the variables on which it depends, we adopt a set o

, the probability of belonging to the class C in its description with features F
stands out from the formula: 

, ..., Fn) is constant, we can omit calculating it for each class C. The 
classification is made by calculating the probability P(C│F1, ..., Fn) for each class C with the new 
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instance features obtained on entry and then selecting the largest value from the calculated 
probabilities. Test case for this research have
3 shows how the percentage of correctly classified instances has changed depending on the 
number of features selected by each selection method. The highest score achieved over 80 
attributes is 76.12% for 10 features se
attributes - it dominated competitors. Despite that, from 45 to 80 features, there was no significant 
improvement in the quality of the classification.
 

Figure 3.  Percentage of correctly classified instances with varying number of 
attributes and attribute selection method (Naive Bayesian classifier, features from Java code)

 
3.3 LOGISTIC REGRESSION 
 
The regression problem is aimed at the given training 
output value y for the new observation x. To this end, we want to model the conditional 
distribution p(y | x). When the model is linear, the problem is called linear regression. The model 
then has the form: 

where w is parameter matrix, φ (x) 
of y observation. The conditional distribution model then has the form:
 

 
So, for linear regression, the conditional reliability function is expressed as:
 

 

Its logarithm is the function of the goal, and our task is to optimize it in terms of parameters 
However, linear regression assumes that the variable we predict is continuous. The problem of the 
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output value y for the new observation x. To this end, we want to model the conditional 

When the model is linear, the problem is called linear regression. The model 
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The conditional distribution model then has the form: 

So, for linear regression, the conditional reliability function is expressed as: 
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output variable, which is the value on the nominal scal
two values), corresponds to logistic regression. When the output variable can take more than two 
values, we deal with multi-logistic regression (multinomial logistic regression)
 
In our research as first test case 
assumptions: Number of features: 696
the increase in the number of iterations decreased slightly. This is best seen in 
the initial 10 and 20 iterations, more than 79.1% of correctly classified instances were achieved, 
and for each of the subsequent cases it was about 78.9%. With such small differences it can be 
said that changes in the records were negligible. 
 

Figure 4.  Percentage of correctly classified instances with varying
 number of attributes and attribute selection method (Logistic regression)

Second test case included chang
iterations: 20. Figure 5 shows deterioration
features less than 35. For 35 and more features, the metric value was reached between 77% and 
79%. 

Figure 5.  Percentage of correctly classified instances from the 
number of iterations

 
 
 

International Journal of Network Security & Its Applications (IJNSA) Vol. 11, No.1, January 2019

output variable, which is the value on the nominal scale, and in particular dichotomic (assuming 
two values), corresponds to logistic regression. When the output variable can take more than two 

logistic regression (multinomial logistic regression) 

test case we included changing of the number of iterations 
Number of features: 696. The quality of classification for logistic regression with 

the increase in the number of iterations decreased slightly. This is best seen in Fig. 4, where for 
nitial 10 and 20 iterations, more than 79.1% of correctly classified instances were achieved, 

and for each of the subsequent cases it was about 78.9%. With such small differences it can be 
said that changes in the records were negligible.   

 
ercentage of correctly classified instances with varying 

number of attributes and attribute selection method (Logistic regression) 
 

hanging of the number of features with assumptions:
deterioration in the quality of the classification with a number of 

features less than 35. For 35 and more features, the metric value was reached between 77% and 

 
 

Figure 5.  Percentage of correctly classified instances from the  
number of iterations (logistic regression) 

International Journal of Network Security & Its Applications (IJNSA) Vol. 11, No.1, January 2019 

9 

e, and in particular dichotomic (assuming 
two values), corresponds to logistic regression. When the output variable can take more than two 

the number of iterations with 
The quality of classification for logistic regression with 

ig. 4, where for 
nitial 10 and 20 iterations, more than 79.1% of correctly classified instances were achieved, 

and for each of the subsequent cases it was about 78.9%. With such small differences it can be 

assumptions: Number of 
in the quality of the classification with a number of 

features less than 35. For 35 and more features, the metric value was reached between 77% and 
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3.4. K NEAREST NEIGHBORS 
 
The k-nearest neighbors kNN algorithm belongs to the group of memory algorithms. The 
prediction is based on considering K the most similar to the test instance object from the teaching 
set and assigning it to a new object of this class, which is assigned t
object instance. The parameters of the algorithm include the neighborhood size K and the distance 
function, which is used to calculate the similarity between objects. The classification algorithm k 
nearest neighbors consists of the 
test object and the objects from the training set
the most similar objects by distance value
neighboring objects are assigned.
distance function. Its choice often depends on the type of features in the set. The distance function 
that was used during the research in this work is the Euclidean distance, which is a generalization 
of the distance of points in a two
 

 
Where xi, xj are examined objects
features and xim is the value of the m feature for the x
included changing of the number of neighbors 
Euclidean distance function Fig. 6 show that the best results in 
instances, TP, FN and F, were achieved for k = 1, and these statistics deteriorated with increasing 
parameter k. When the number of neighbors is equal unity, there is a risk of over
too much a fit of the model to the learning data. 
 

Figure 6.  Percentage of correctly classified instances with changing 
number of attributes and attribute selection method (K

Second test case included chang
neighbors: 1. Research on the number of features selected by 3 selection methods for K = 1 in the 
k nearest neighbors algorithm. With 50 features, the highest result was obtained in terms of 
properly classified instances - 80.1995% for information profit. Then, 
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this metric ranged from 78.3% to just over 80%. None of the selection methods was not the 
absolute best in this case. 
 
3.5 SVM 
 
The SVM algorithm, also known as the Support Vector Machine, is based on finding a classifier 
that divides the solution space into two (in the case of binary classification) disjoint areas that will 
correspond to the two classes. Therefore, the search object is the decision boundary between 
classes. In the case of 2D space, it is simple, while with the
- the hyperplane. However, if there is a linear separability of space points, it turns out that there 
are many such hyper-planes, and therefore one should choose the optimal one. For this purpose, 
objects called carrier vectors will be used 
which would change the position of the decision boundary between classes. Optimization in the 
case of SVM is a quadratic optimization with linear constraints, where the margin of s
separating the nearest points in the data space from different classes is maximized, with the 
limitation that there is no object from the training set between the maximum margins. The 
problem is solved by the Lagrange multipliers method.
separate the data linearly. Then, the transformation takes place in a highly multidimensional 
space, defined by the kernel function. 
 
In our research with use of this algorithm f
assumptions: Number of features: 696
correctly classified instances was achieved for the Puk function (79.8579%), however, it is only 
slightly better than the Polykernel function (79.7879%), but the diff
the Puck function this is over 60 seconds, and for Polykernel, 23 seconds. The Puk function also 
proved to be the best according to TP, FN, F
the high level of 98%, the functio
an extremely low TP rate - 55%. 
 

Figure 7.  Percentage of correctly classified instances with varying 
number of attributes and attribute selection method (SVM)

 
Second test case included chang
algorithms of feature selection is noticed. By reducing the number of features, a better result was 
not obtained according to the percentage of correctly classified instances than in sub
where all 696 features were used. The highest result in this case is 79.8091% for 75 features 
selected by the ReliefF algorithm
than the best result using 696 features, and the time decrea
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this metric ranged from 78.3% to just over 80%. None of the selection methods was not the 

The SVM algorithm, also known as the Support Vector Machine, is based on finding a classifier 
divides the solution space into two (in the case of binary classification) disjoint areas that will 

correspond to the two classes. Therefore, the search object is the decision boundary between 
classes. In the case of 2D space, it is simple, while with the increase in the number of dimensions 

the hyperplane. However, if there is a linear separability of space points, it turns out that there 
planes, and therefore one should choose the optimal one. For this purpose, 

r vectors will be used - those points from the training set, the removal of 
which would change the position of the decision boundary between classes. Optimization in the 
case of SVM is a quadratic optimization with linear constraints, where the margin of s
separating the nearest points in the data space from different classes is maximized, with the 
limitation that there is no object from the training set between the maximum margins. The 
problem is solved by the Lagrange multipliers method. However, it is not always possible to 
separate the data linearly. Then, the transformation takes place in a highly multidimensional 
space, defined by the kernel function.  

In our research with use of this algorithm first test case included Kernel F
Number of features: 696. Figure 7. shows that the best result by percentage of 

correctly classified instances was achieved for the Puk function (79.8579%), however, it is only 
slightly better than the Polykernel function (79.7879%), but the difference in time is large 
the Puck function this is over 60 seconds, and for Polykernel, 23 seconds. The Puk function also 
proved to be the best according to TP, FN, F-measure and error indicators. According to TN, at 
the high level of 98%, the function Normalized Polykernel won, but this should be combined with 

55%.  

 
Figure 7.  Percentage of correctly classified instances with varying  

number of attributes and attribute selection method (SVM) 

hanging of the number of features. No clear favorite among the 
algorithms of feature selection is noticed. By reducing the number of features, a better result was 
not obtained according to the percentage of correctly classified instances than in sub
where all 696 features were used. The highest result in this case is 79.8091% for 75 features 

ithm - it is worth noting that it is only 0.05 percentage point worse 
than the best result using 696 features, and the time decreased from 60 seconds to 23 seconds.
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3.6. SUMMARY OF THE BEST RESULTS 
 
As part of this paper, selected aspects of the test outputs were verified by statistical tests. The 
tests carried out belong to the two groups: comparison of the medians of the occurrence of 
features in safe applications and malware and comparison of the accuracy of classifiers. Statistical 
methods (Shapiro-Wilk test and Lilliefors test) were checked for distribution normality for 
features whose size was to be compared in populations. After receiving a negative answer to the 
question about the normality of the distribution, the Mann-Whitney U-test was used to compare 
the population. It is used to answer the question whether observations in one population are 
greater than in the second population, which is interpreted as a comparison of medians in 
populations [13]. Based on [14] and [15], the McNemar test was selected to compare the accuracy 
of classifiers. Most of the features were dichotomous and did not have a normal distribution, 
which spoke for the use of the test.  
 

Table 5.  Accuracy of the classifiers 
 

Classifier Options Correctness Learning and 
testing time 

Random Forest max depth = 80 
Iterations = 55 
Features = 696 

80.6662 74552.3246 

Naive Bayes Features = 10 (RelieF) 76.1217 9.5848 
Logistic Regression Iterations = 20 

Features = 696 
79.1152 2441.0845 

k-NN neighbors = 1 
features = 696 

80.3301 20979.0845 

SVM Kernel Function = PUK 
features = 696 

79.8579 60714.3058 

 
All statistical tests were carried out in the MATLAB environment. The best result in terms of 
percentage of correctly classified instances, equal to 80.6662% was obtained by random forest, 
with an iteration number equal to 55, maximum depth equal to 80 and 696 features. At the same 
time, the learning and testing time was the highest, at 75 seconds. It is worth comparing this result 
with the algorithm k nearest neighbors, which acted three times shorter, and correctly classified 
instances are lower by only 0.4 percentage points. Unfortunately, none of the algorithms 
exceeded 81 according to the discussed indicator. A comparison of the classification results times 
is shown in Table 5.  
 

Table 6.  Results of statistical surveys 
 

 RF  NBC KNN  LR  SVM  
RF   ←  =  ←  ←  
NBC    ↑  ↑  ↑  
KNN     ←  ←  
LR      ↑  
SVM       

 
Then the classifiers were statistically compared to the accuracy of the classifiers with the 
McNemar test. Table 6 shows the results of statistical surveys. The equality sign says that there 
were no grounds for rejecting the null hypothesis about the equality of the classifiers accuracy. 
The arrow indicates the classifier for which an alternative hypothesis has been adopted with 
greater accuracy than for the second classifier. According to statistical surveys, there are the 
following relationships between the accuracy of classifiers: Random forest algorithm and k 
nearest neighbors have the same accuracy, and both are more accurate than logistic regression, 
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SVM and the naive Bayesian classifier. The naive Bayesian classifier has an accuracy lower than 
all other algorithms. 
 

4. CONCLUSION AND FUTURE WORK 
 
Paper is focused on the issue of malware detection for currently the most popular mobile system 
Android, using static analysis. In this thesis, an overview of Android malware analysis was 
presented, and a unique set of features was chosen that was later used in the study of malware 
classification. Five classification algorithms (Random Forest, SVM, K-NN, Nave Bayes, Logistic 
Regression) and three attribute selection algorithms were examined in order to choose those that 
would provide the most effective malware detection. The characteristics of malicious software 
were identified based on a collected set of applications. This analysis was conducted for features 
extracted from Java class code. It was determined which source of features provides higher 
quality of classification. 
 
Research has been carried out to select the best classification algorithms for application, which is 
detection of malware on the Android platform, indication of the applications features of the 
highest usefulness in the classification of malware. Among the classification algorithms, the best 
proved to be: random forest and k nearest neighbors. They obtained the highest scores on the 
percentage of correctly classified instances (at the level of 80.3% - 80.7% for Java code). The 
accuracy of these classifiers was examined statistically and turned out to be the same. With the 
use of the naive Bayesian classifier and logistic regression, the classification accuracy was lower. 
It was noticed, to a small extent, the advantage of the existence of patterns of implementation of 
the onReceive method in malware, namely calling the function of starting or scheduling a new 
service. 
 
The research on Java code has shown a strong presence of methods for manipulation on strings, 
as well as for downloading them outside of Java code. Such actions are manifestations of attempts 
to hide the real purpose of the application, i.e. obfuscation of the code. In addition, there has been 
a high use of methods that give access to and launch services (including system services). There 
is an increased presence of the method for data transfer over the HTTP protocol compared to 
secure applications, as well as methods for handling intentions, especially secret ones [20-23]. 
However, the quality of malware detection based on Java code proved to be low. None of the 
algorithms did exceed 81% of correctly classified instances. There are many reasons for this: the 
transformation and obfuscation of the code, the mechanism of reflection, manipulation on the 
chains of characters make the extraction of features a difficult task. Calling the API method can 
be implemented in several ways, and code transformation additionally increases the difficulty 
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