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ABSTRACT 
 
In recent times, various machine learning classifiers are used to improve network intrusion detection. The 

researchers have proposed many solutions for intrusion detection in the literature. The machine learning 
classifiers are trained on older datasets for intrusion detection, which limits their detection accuracy. So, 

there is a need to train the machine learning classifiers on the latest dataset. In this paper, UNSW-NB15, 

the latest dataset is used to train machine learning classifiers. The selected classifiers such as K-Nearest 

Neighbors (KNN), Stochastic Gradient Descent (SGD), Random Forest (RF), Logistic Regression (LR), 

and Naïve Bayes (NB) classifiers are used for training from the taxonomy of classifiers based on lazy and 

eager learners. In this paper, Chi-Square, a filter-based feature selection technique, is applied to the 

UNSW-NB15 dataset to reduce the irrelevant and redundant features. The performance of classifiers is 

measured in terms of Accuracy, Mean Squared Error (MSE), Precision, Recall, F1-Score, True Positive 

Rate (TPR) and False Positive Rate (FPR) with or without feature selection technique and comparative 

analysis of these machine learning classifiers is carried out. 
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1. INTRODUCTION 
 
Nowadays, it is challenging to protect confidential data from the eye of attackers. The traditional 

methods like firewall and antivirus failed to handle all types of attacks. So, there is a need for 

additional security along with traditional methods. IDS play a significant role in this regard. It 

carefully keeps a track on the network traffic data and differentiates the data as normal or attack. 
 

1.1. Intrusion Detection System 
 
An IDS is used to monitor the network traffic for detecting malicious activity.  It can easily detect 

the attacks that are bypassed by the firewall. It continuously monitors the network, finds 

vulnerable parts of the network, and communicates with the administrator about intrusions [1]. It 
can be separated into two classes: anomaly detection and misuse detection. Misuse detection 

operates with prior prepared patterns of known attacks, also called signatures [2]. It has high 

accuracy and low false alarm rates (FAR) but cannot detect novel attacks [3]. One solution to 
address this problem is to regularly update the database, which is not feasible and costly. So, 

anomaly detection techniques came into existence.  Anomaly Detection deals with profiling user 

behaviour [4]. In this approach, a particular user regular activity model is defined, and any 

deviation from this model is known as abnormal. Fig. 1 shows the diagram of IDS. 
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Fig 1: Intrusion Detection System 

 

In literature, different types of machine learning (ML) algorithms are used for intrusion detection. 

The literature found that there is little work done on comparative analysis of ML algorithms. 

Hence, this paper aims to conduct a performance comparison of several ML algorithms using the 

recent dataset for intrusion detection.  
 

The structure of the paper is divided into seven sections. Section2 gives light on the background 

behind it. In section 3, the taxonomy of the classifiers is discussed. A brief introduction about the 
dataset used for experimental work is described in Section 4. In Section 5, a methodology to pre-

process the dataset is presented. Section 6 explains the feature selection techniques. Experimental 

work is shown in Section 7, and Section 8 gives a conclusion and future scope. 
 

2. BACKGROUND 
 

This section provides the literature survey on the ML algorithms. This section's main motive is to 

give an overview of the research work done in the field of intrusion detection. It is found in the 
literature that researchers have put a lot of efforts into ML algorithms, and some of their 

contributions are described below: 

 
Narudin et al. (2014) [5] described an evaluation of ML classifiers, namely RF, J-48, MLP, NB, 

and KNN, to detect mobile malware using MalGenome and private datasets using Weka Tool. 

The performance metrics such as TPR, FPR, precision, recall and F-measure were used to 

validate ML algorithms' performance. The accuracy obtained using RF Classifier is 99.99% 
during experimental work on MalGenome dataset. The author has suggested the use of feature 

selection methods for improving the results in their future work. 

 
Belavagi & Muniyal, (2016) [6] designed a NIDS with the various supervised machine learning 

classifiers. NSL-KDD dataset was used to check the performance of various classifiers. The 

result shows that RF classifier outperforms other classifiers. It results in the lowest FPR and the 
highest TPR and accuracy obtained is 99%. But still, there is a need for classifiers that can be 

used for the multiclass classification.  
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Ashfaq et al. (2017) [7] described a semi-supervised learning (SSL) approach based on novel 
fuzziness. To improve the classifier performance, it utilizes unlabelled samples along with a 

supervised learning algorithm. NSL-KDD dataset was used for the evaluation of this model.  The 

limitation of this model was that its performance was studied only for the Binary classification 

task.   
 

Yaseen et al. (2017) [8] described a multilevel hybrid intrusion detection model using SVM and 

EVM. The evaluation was done on KDD 99 dataset. The accuracy obtained was 95.75% and 
shorter training time in this proposed model. This technique is better only for known attacks and 

for novel attacks, efficient classifiers are required. 

 
Aljumah, (2017) [9] described a trained algorithm to detect DDoS attacks that were based on 

Artificial Neural Network (ANN). ANN showed 92% accuracy when it was trained with older 

datasets, and when the system is trained with updated datasets, the accuracy obtained was 98%. 

The accuracy of the ANN model depends upon the dataset. So, there is a need forupto date and 
balanced dataset. 

 

Roshan et al. (2018) [10] discussed an adaptive design of IDS based on Extreme Learning 
Machines (ELM). The NSL-KDD dataset was applied for the evaluation. It was found that it can 

detect novel attacks and known attacks with an acceptable rate of detection and false positives. 

 
Ali et al. (2018) [11] proposed a PSO-FLN classifier for intrusion detection. The benchmark 

dataset KDD99 was used to validate the results. PSO-FLN has outperformed ELM and FLN 

classifiers in terms of accuracy. But for some classes like R2L, it does not show accurate results. 

 
Anwer et al. (2018) [12] proposed a feature selection framework for efficient network intrusion 

detection. The UNSW-NB15 data set was used to evaluate five different strategies. J48 and NB 

methods were used for evaluation.  The best strategy was to use a filter ranking method to select 
18 features, and then J48 was applied as a classifier. By using this strategy, 88% accuracy and a 

speedup factor of 2 was achieved.  

 

Hajisalem et al. (2018) [13] proposed a new hybrid classification method based on Artificial Fish 
Swarm and Artificial Bee Colony algorithms to enhance the Detection Rate (DR) of IDS. In this 

approach, generated rules were used to train the hybrid method. The simulated results on UNSW-

NB15 dataset showed that the proposed method achieved 98.6% DR, 98.9% accuracy and 0.13% 
FPR.  

 

Viet et al. (2018) [14] described a scanning method based on Deep Belief Network (DBN). It was 
performed by supervised and unsupervised ML methods along with DBN. UNSW-NB15 dataset 

was used to find out the attack in the form of binary classification. DBN results were compared 

with Support Vector Machine (SVM) and RF. The results obtained were TPR 99.74%, 99.80%, 

99.86% and FAR 3.20%, 3.31%, 2.76% for SVM, RF and DBN respectively. 
 

The literature survey concluded that most of the research had been validated using older datasets. 

These datasets lack novel attacks and contain imbalanced network audit data. Non-uniform data 
distribution may lead to ML algorithms' biased training, and this problem needs to be resolved. 

The new dataset can be used to detect novel attacks. A few researchers have utilized the UNSW- 

NB15 dataset, a newer dataset containing novel attacks but still needs to be explored. So, in this 
paper, the UNSW-NB15 dataset is used.  There are many classifiers used for research in literature 

out of which the RF classifier shows better results. 
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3. TAXONOMY OF CLASSIFIERS 
 
The classifiers are divided into two classes based on their learning methods, i.e. lazy and eager 

learners [15-18]. The proposed taxonomy of classifiers is based on theoretical analysis and is 

shown in Fig. 2. 

 

 
 

Fig 2: Taxonomy of classifier 

 

Lazy learners can store examples and solve multiple problems with these examples. These 

learners adapt automatically to changes in the problem domain and easy to maintain. But the 

limitation of these learners is that they stored the same kind of examples often and require high 
memory and time-consuming learners. Eager learners firstly build a classification model on given 

training data and then perform a classification. These learners take more time for learning and 

less time for classifying the data. 
 

KNN, SGD, NB, RF, and LR classifiers are used for conducting experimental work in this paper 

by using the proposed taxonomy. The description of these classifiers is provided follows: 

 

3.1. Lazy Learners 
 
These learners use the training data for storage and wait for testing data to appear. KNN, locally 

weighted learning (LWL) and SGD are examples of Lazy learners. 

 

3.1.1. K- Nearest Neighbour 

 

Itis a lazy learning algorithm that firstly stores all the training data. At the time of classification, it 

uses this data and tries to find the similarities between the new data and the available data. It 
places the new data in the category that is most similar to the available data. It is based on the 
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Euclidean distance [19]. The test data is allotted to the class of its K nearest neighbours. As you 
increase the value of K, accuracy might increase. It can be used for both regression and 

classification but is often used for classification problems. 

 

3.2. Eager Learners  
 

Eager learners take a long time for training and less time for predicting. NB, LR, SVM, RF, 
MLP, and J48 are examples of eager learners. 

 

3.2.1. Logistic Regression 

 
It is applied to solve both binary class and multiclass classification problems. The probability of 

occurrence of an event is predicted by giving fitting data to Logistic function.  The output of this 

function lies between 0 and 1. The median value, i.e. 0.5 is considered as the threshold between 
class 1 and class 0. The output greater than 0.5 is considered class 1 and if output is below 0.5, 

then it is considered class 0 [6]. 

 

3.2.2. Random Forest 

 

It was proposed by Breiman in 2001. This method is based on the proximity search and can be 

used both for regression and classification. It is a decision tree-based classifier.  In this technique, 
random samples are used to create decision trees, and then the prediction is made from each tree. 

The best solution is found out by the voting method [19]. The random forest has many 

applications like image classification, feature selection and recommendation engines. 
 

3.2.3. Naive Bayes  

 
It is a classification algorithm used both for two-class and multiclass classification problems. It 

assumes that every feature's probabilities belonging to each class are used for prediction [6]. It 

also assumes that the probability of every feature belonging to a given class value is independent 

of other features. For the known value of the feature, the probability is known as conditional 
probabilities. Prediction can be attained by calculating each class's instance probabilities and 

selecting the highest probability class value [15]. 

 

4. DATASET USED 
 
The benchmark datasets used in the literature are older datasets and contain repeated records due 

to which ML algorithms give unfair results. So, selected ML algorithms are tested using UNSW-

NB15 dataset, which is novel dataset [20]. This dataset comprises 49 attributes, including a class 
label and 25, 40, 044 labelled instances, each being labelled either normal or attack. A detailed 

description of the features is given in Table 1.Table 2 gives the details of the attacks. 
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Table 1: Description of the attributes of UNSW-NB15 dataset 

 

 

When the UNSW-NB15 dataset is used for evaluation, out of 49 attributes, we got 45 attributes 
only. The four ID attributes are combined to make a single attribute as ID from flow attribute 

category. Two attributes of time category (Stime and Ltime) are combined in one attribute known 

as Rate. 

 
Table 2: Types of attacks in the dataset 

 
Type Whole Training 

No. of Records No. of Records 

Normal 2218761 56000 

Fuzzers 24246 18184 

Analysis 2677 2000 

Backdoors 2329 1746 

DOS 16353 12264 

Exploits 44525 33393 

Generic 215481 40000 

Reconnaissance 13987 10491 

ShellCode 1511 1133 

Worms 174 130 

  175341 

 

5. FEATURE SELECTION TECHNIQUES 
 

This section describes different feature selection methods. The feature selection methods are used 

to select the relevant features [12]. These methods select a subset of relevant features for 

constructing the model and are categorized into the filter, wrapper and hybrid techniques. Filter 
methods measure each feature independent from the classifier, rank them and take the superior 

ones. Chi-square is one of the examples of filter-based methods. Wrapper methods are dependent 

on the selected classifier. These methods take a subset of the feature set to measure classifier 

performance, and then the next subset is assessed on the classifier. The subset which gives utmost 
performance is selected. RFE is an example of Wrapper methods. Hybrid methods utilize the 

merits of both filter and wrapper methods. In this paper for the experimental purpose, Chi-square 

from Filter method is used. Different Feature selection techniques are shown in Fig. 3. 

S.No.  Type of attributes Name of attributes Sequence No. 

1 Flow  Script, Sport, Dstip. Dsport, Proto 1-5 

2 Basic  State, Dur, Sbytes, Dbytes, Sttl, Dttl, Sloss, 

Dloss, Service, Sload, Dload, Spkts, Dpkts 

6-18 

3 Content 

 

Swin, Dwin, Stepb, Dtcpb, Smeansz, 

Dmeansz, trans_depth,  

res_bdy_len 

19-26 

4 Time 

 

Sjit, Djit, Stime,Ltime, Sintpkt, Dintpkt, 

Tcprtt, Synack, Ackdat 

27-35 

5 General Purpose 
 

is_sm_ips_ports, ct_state_ttl, 
ct_flw_http_mthd,is_ftp_login, ct_ftp_cmd 

36-40 

6 Connection 

 

ct_srv_src,ct_srv_dst, ct_dst_ltm, ct_src_ 

ltm ,ct_src_dport_ltm,ct_dst_sport_ltm, 

ct_dst_src_ltm 

41-47 

7 Labelled 

 attack_cat, Label 

48-49 
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Fig 3: Feature Selection Techniques 

 

6. METHODOLOGY 
 
The pre-processing steps are shown in Fig.4, and Fig. 5 shows the methodology used. In pre-

processing, first of all, the null values present in the dataset are handled. Then the categorical data 

is converted into the numerical form using label encoder. After this, one hot encoder is used to 

break the relation between the values obtained through label encoder. The standard scaler is used 
to standardize the values at one scale. 

 

After performing pre-processing, significant features are selected using chi-square, and after this, 
the pre-processed data is separated into training and testing data. 80% of data is used for training, 

and 20% of data is used for testing. The KNN, LR, NB, SGD and RF classifiers are used to 

construct the models. Then the prediction of labels of test data is made using these models. A 
comparison is carried out between actual labels and predicted labels. The performance metrics 

used to evaluate the models are accuracy, precision, mean square error (MSE), recall, f1-score, 

TPR and FPR. 

 

 
 

Fig 4: Pre-processing steps on the UNSW-NB15 dataset 
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Fig 5: Experimental methodology 

 
The procedural steps to construct the models are given below: 

 

1. Start with pre-processing of the dataset. 
2. Select the significant features using the chi-square method. 

3. Divide dataset into two parts, i.e. training and testing. 

4. Construct the classifier model using training data for KNN, LR, NB, RF and SGD. 
5. Take the test data. 

6. Testing of classifier models using training data. 

7. Calculate and compare Accuracy, Recall, Precision, F1-Score and MSE for the selected 

models. 
 

7. EXPERIMENTAL WORK 
 

The selected ML algorithms, namely LR, NB, RF, SGD and KNN classifiers, are tested on 
UNSW-NB15 dataset, the novel dataset for intrusion detection. The experimental work is done 

on Intel Core (TM) i3-1005G1 CPU @1.20 GHz, 4GB RAM using Python. After performing pre-

processing steps, 23 significant features are selected, and the dataset is divided into two parts: 

training and testing data. Then five classifiers are used for training as shown in Fig.5. 
Performance is evaluated based on several parameters using all features and selected features, as 
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shown in Table 3 and Table 4, respectively. Fig. 6and Fig. 7show the pictorial representation of 
selected classifiers' accuracy on all features and using selected features, respectively. 

 

It can be observed from the results shown in Table 3 that the RF classifier outperforms the other 

methods in terms of accuracy 99.57%, TPR 0.997 and MSE 0.004. In contrast, the NB shows the 
highest MSE 0.234 and lowest accuracy of 76.59% in the selected group of classifiers. 

 
Table 3: Performance comparison of selected classifiers using UNSW-NB15 dataset  

with train test split method 

 

 

 
 

Fig 6:  Accuracy of selected classifiers using UNSW-NB15 dataset 

 
Table 4: Performance comparison of selected classifiers using UNSW-NB15 dataset  

with the feature selection method 

 

Classifier Accuracy Precision Recall F1-Score MSE TPR FPR 

LR 98.42 0.98 0.99 0.99 0.015 0.994 0.048 

NB 76.59 1.00 0.69 0.82 0.234 0.693 0.007 

RF 99.57 1.00 1.00 1.00 0.004 0.997 0.009 

SGD 98.16 0.98 1.00 0.99 0.018 0.983 0.043 

KNN 

 

98.28 0.99 0.99 0.99 0.017 0.989 0.039 

Classifier Accuracy Precision Recall F1-Score MSE TPR FPR 

LR 98.17 0.98 1.00 0.99 0.018 0.996 0.063 

NB 75.16 1.00 0.67 0.80 0.248 0.674 0.005 

RF 99.64 1.00 1.00 1.00 0.003 0.998 0.009 

SGD 97.99 0.98 1.00 0.99 0.020 0.997 0.073 

KNN 

 

98.90 0.99 0.99 0.99 0.011 0.993 0.025 
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Fig 7:  Accuracy of selected classifiers with selected features using UNSW-NB15 dataset 

 

8. CONCLUSION AND FUTURE SCOPE 
 
Experimental work has been carried out to evaluate the ML classifiers' performance, namely 

KNN, LR, NB, SGD and RF for detection of intrusion. These classifiers are tested onUNSW-

NB15 dataset. The classifiers are compared based on precision, MSE, recall, F1-Score, accuracy, 

TPR and FPR. The results show that RF classifier is better than other classifiers on UNSW-
dataset using selected parameters. The accuracy of RF classifier comes out to be 99.57% with all 

features and 99.64% with selected features. In future, this work can be extended for multiclass 

classification intrusion detection. 
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