
International Journal of Network Security & Its Applications (IJNSA) Vol.13, No.2, March 2021

DOI: 10.5121/ijnsa.2021.13201 1

COMPARISON OF MALWARE CLASSIFICATION

METHODS USING CONVOLUTIONAL NEURAL

NETWORK BASED ON API CALL STREAM

Matthew Schofield1, Gulsum Alicioglu2, Bo Sun1, Russell Binaco1, Paul Turner1,

Cameron Thatcher1, Alex Lam1 and Anthony Breitzman1

1Department of Computer Science, Rowan University, Glassboro, New Jersey, USA

2Department of Electrical and Computer Engineering, Rowan University,

Glassboro, New Jersey, USA

ABSTRACT

Malicious software is constantly being developed and improved, so detection and classification of

malwareis an ever-evolving problem. Since traditional malware detection techniques fail to detect

new/unknown malware, machine learning algorithms have been used to overcome this disadvantage. We

present a Convolutional Neural Network (CNN) for malware type classification based on the API

(Application Program Interface) calls. This research uses a database of 7107 instances of API call streams

and 8 different malware types:Adware, Backdoor, Downloader, Dropper, Spyware, Trojan, Virus,Worm. We
used a 1-Dimensional CNN by mapping API calls as categorical and term frequency-inverse document

frequency (TF-IDF) vectors and compared the results to other classification techniques.The proposed 1-D

CNN outperformed other classification techniques with 91% overall accuracy for both categorical and TF-

IDF vectors.

KEYWORDS

Convolutional Neural Network, Malware Classification, N-gram Analysis, Term Frequency-Inverse

Document Frequency Vectors, Windows API Calls.

1. INTRODUCTION

There are many different forms of malicious applications present in the highly connected

software environment of the current technological world. Malicious applications such as viruses

are constantly being developed and distributed in an attempt to extract information from
computers or networks, and software such as firewalls and antivirus programs are constantly

evolving to attempt to protect benign users and software from this threat [1]. Malicious software

is constantly being developed and improved, so the classification of malicious applicationis an

ever-evolving problem.

Signature-based, behavior-based, and specification-based techniques are commonly used to

detect malware. Signature-based detection techniques [1] keep a database that contains the

signatures of the known malicious programs and uses these signatures to identify the presence of
attacks by matching the signature kept in the database. Suchtechniques offer fast malware

detection and require less computational resources. However, it cannot detect new or unknown

malware. Behavior-based detection techniques analyze various features such as the source and
destination of malware, types of attachments, and statistical features [2]. Behavior-

basedmethodshave ability to detect known and unknown malwares, but they require high

computational resources such as memory and CPU time [2]. To overcome these disadvantages, a

http://airccse.org/journal/jnsa21_current.html
https://doi.org/10.5121/ijnsa.2021.13201

International Journal of Network Security & Its Applications (IJNSA) Vol.13, No.2, March 2021

2

specification-based technique [3], which is basically a behavior-based approach, is developed.
Researchers have employed data mining and machine learning techniques and obtained good

performance in specification based malware detection and classification with high accuracy

scores [4-6]. Figure 1 summarizes the malware detection techniques with their advantage and

disadvantages. These methods provide reliable and accurate results, especially for classifying
metamorphic malware.

Figure 1. The classification of malware detection techniques

Metamorphic malware indicates itself with different sequences in various environments, but it
must demonstrate the same behavioral features in all environments. Hence, most of the methods

usedbehavioral features for malware classification and detectionrather than structural features [7-

8].APIcall sequences can provide considerable information about the behavioral features of
malware. Therefore, most of the researchers conducted their study by using API calls to detect

and classify malware [9-12]. One benefit of having the ability to classify the type of malware

from the system call behavior is to identify a potential malicious source faster and better

understand the effects of the malware. Understanding the class of malware to which a malicious
program belongs gives administrators of an infected deviceinsights on resolution strategies

regarding the attack.

There are three major approaches for malware detection based on the analysis types: static (code
analysis), dynamic (behavioral analysis), and hybrid analysis using both static and dynamic

attributes of malware. Static malware detection inspects the malware files in binary form and

extracts features of the malware. Static analysis decides whether the file is malicious or not by
observing the execution path and analyzing the extracted features. To detect malware through

dynamic analysis, binary files are run on a virtual environment. Then, the run time behavior of

these files is observed. During dynamic analysis, features of the files such as memory usage and
system calls are extracted. Since the API call sequences disclose behaviors of malware, they are

commonly used in dynamic analysis.

In this paper, we proposed two different approaches to classify the type of malware of a malicious
program based on its API call stream.We used a public Windows API call dataset [8] with 8-

classes of malware in experimentation. In our first approach, we encoded and mapped API calls

into a categorical vector. We used a 1-D Convolutional Neural Network (CNN) andcompared our

results with existing methods. We also presented a text-based analysis as a second approach for
malware classification by using n-gram analysis to convert API calls to term frequency-inverse

document frequency (TF-IDF) vectors. Comparisons are conducted by using CNN,Random Forest

(RF), Bernoulli Naïve Bayes (NB), Multinomial NB, Gaussian NB, Decision Tree (DT),
AdaBoost, Bagging Classifier, k-Nearest Neighbors (kNN), and Multilayer Perceptron (MLP). We

also presented overall comparisons for both approaches.This paper extended our previous

Malware Detection

Signature-based

Fast and requires less
computational resources

Fails unknown and new
malware

Behavior-based

Detects unknown and
new malware

Requires high
computational resources

Specification-based

Machine Learning
Techniques

Good Performance and
High Accuracy

Detects unknown and new
malware

International Journal of Network Security & Its Applications (IJNSA) Vol.13, No.2, March 2021

3

publication [13] by presenting both binary and multiclass classification results and adding detailed
information related to our approach.

Since the API call sequences have complex nature to be understood by end users, we also

proposed a visual approach to clarify the patterns of API calls based on overall malware types. The
purpose of the visualization is to form a union between computationally complex algorithms and

human intuition [14]. The studyalso investigates the utility of visual analytic approaches in data

analysis, exploration, and computational model development.

This paper is organized as follows. Section 2 provides a literature review. Section 3 describes the

malware dataset, comprehensively. Section 4 provides a detailed methodology and visual

approaches for data exploration. Section 5 presents the results of the study. Finally, Section 6

concludes the paper along with the discussion.

2. BACKGROUND

Since the volume of malware being spread has had rapid growth, many studies have been carried

out to analyze and detect malware automatically [3,15-18]. The most common and traditional
way to detect malware is for a system to maintain a hash signature-based blacklist of known

malware. These signature-based methods fail to detect new, unknown, or obfuscated malware.

Data mining and machine learning approaches have overcome the disadvantages of signature-
based methods by detecting new and unknown malware with high accuracy and detection rate [5,

18]. Hence, most of the studies used various machine learning algorithms to detect malware

accurately and quickly [4,15-17].

In recent studies, API call sequences are mostly used as a feature to detect malware. Xiaofeng et

al. [16] used a combined deep learning and machine learning model for malware behavior

analysis with binary classification (i.e., benign and malicious). Random Forest (RF) was used to
extract API call features. The combined RF and Long Short-Term Memory (LSTM) model

classified malware with 96.7% accuracy. Malware analyses are carried out by using static or

dynamic analysis. Researchers have studied to improve the usage of static and dynamic analysis.

Han et al. [15] used RF, Decision Tree (DT), k-nearest neighbor, and XGboost methods to detect
and classify multiclass malware by combining static and dynamic API calls sequences.The study

explains the differences and relation between API sequences and explains malicious behavior

types via MalDAE framework.The study achieved a 97.8% detection rate and 94.4%
classification accuracy with RF. The study also examined the effect of sequence length on

measuring time. Salehi et al. [18] proposed a novel dynamic malware feature selection method

based on generating new features to overcome disadvantages of using only static or dynamic
analysis. RF, DT, sequential minimal optimization, and Bayesian Logistic Regression (BLR)

methods were used, and 98.1% accuracy rate is obtained with BLR by generating three feature

sets. As the volume of cyber-attacks with advanced malware increases, it makes malware hard for

detection and classification. Bahtiyar et al.[5] proposed a multidimensional machine learning
approach to detect advanced malware. They applied various regression models by using five

distinguished features: stealthiness, Stuxnet closeness, behavioral instability, conventional

malware arsenal and metamorphic engine. The proposed method provided 0.0001 mean squared
error rate. Belaoued andMazouzi [19] presented a fast-portable executable system to detect

malware by using an efficient feature selection method. They used decision tree, boosted decision

tree, AdaBoost, Random forest, and rotation forest algorithms for binary classification. They

evaluated the proposed system with different subsets of data and achieved more than 98%
accuracy in a short detection time (0.09 seconds). Gupta et al. [20] conducted a comprehensive

study to capture malware behaviors based on API calls sequences. The experiments were

conducted with five malware classes for 2000 samples. They encoded 534 important API calls to

International Journal of Network Security & Its Applications (IJNSA) Vol.13, No.2, March 2021

4

26 categories (A... Z). N-gram analysis was carried out to extract class specific patterns. They
also calculated fuzzy hashed scores with an ssdeep algorithm to use as classification criteria. Yazi

et al. [7] generated a dataset contains 8 different malware type with their Windows API call

sequences and utilized LSTMclassification models for 8 different types of malware. The highest

accuracy rate was obtained with 97.5% in the adware class. Zhang et al. [21] proposed a feature-
hybrid malware variants detection method by integrating various features. They extracted bi-

gram model and encoded API calls as a frequency vector. The study achieved 90% classification

accuracy by utilizing Convolutional Neural Network (CNN). Table 1 presents a summary of the
reviewed studies.

Table 1. A summary of the related studies for malware classification

*Indicates the best performing method

In the light of the literature review, we conducted a comprehensive study by using Windows

system API calls dataset [8] to classify malware. API call sequences are used as a feature for
malware classification. In the literature, most of the studies are carried out for binary

classification to detect malware by utilizing one-vs-rest strategy [7,16,19-20]. However, different

types of malware require different precautions and treatments. For this reason, it is crucial to
classify and determine the type of a given malware sample. We conducted experiments on both

binary and multiclass to detect malware by using various decision trees (DT, RF, AdaBoost DT

and Bagging DT), Naïve Bayes (Bernoulli, Multinomial and Gaussian), k-NN, and MLP and a

1D CNN algorithm. We implemented two different data representation approaches: text-based
analysis through TF-IDF vectors by using n-grams and binary categorical vector by mapping API

calls.

3. WINDOWS MALWARE API CALL DATASET

The Windows Malware API Call Dataset is a public malware dataset containing 7,107 samples of

malicious files among eight classes of malware. This dataset is created by running over 20,000
malware with the Cuckoo Sandbox application, which allows any software to be run as if it were

in a real environment [8]. Then, the API call sequences produced by the malicious applications

on Windows operating system were acquired. The distribution of malware classes is shown in

Table 2.

Study
Analysis

Method
Problem Method Performance

Xiaofeng et al. [16] Dynamic Binary RF, LSTM*
96.7%

Accuracy

Han et al. [15] Hybrid Binary RF*,DT, kNN, XGboost
94.4%

Accuracy

Salehi et al. [18] Dynamic Binary

RF,DT,
Sequential Minimal

Optimization,
Bayesian Logistic

Regression*

98.1%
Accuracy

Bahtiyar et al. [5]

Feature
selection

Linear Regression,
Polynomial Regression, RF

Regression*

0.0001 MSE
rate

Belaoued and

Mazouzi[19]
Static Binary

DT, Boosted DT, AdaBoost,
RF, Rotation Forest

98% Accuracy

Gupta et al. [20] Dynamic Multiclass Fuzzy Hashed Scores 96% Accuracy

Yazi et al. [8]

Binary LSTM
97.5%

Accuracy

Zhang et al. [21] Hybrid Binary CNN, NN 90% Accuracy

International Journal of Network Security & Its Applications (IJNSA) Vol.13, No.2, March 2021

5

The dataset contains a class label and an arbitrary length list of API call strings for each data
entry. For this dataset, API calls represent a system call on the Windows operating system

occurring during the runtime of the malicious file. The dataset does not include benign samples.

Table 2. The distribution of malware classes

Malware Type Sample Size

Spyware 832

Downloader 1001

Trojan 1001

Worms 1001

Adware 379

Dropper 891

Virus 1001

Backdoor 1001

Total 7107

Figure 2. Bubble plot of frequent API calls by class

Exploratory data visualizations are presented to provide some human-readable insight into the

breakdown of data features and metrics for the Windows API call dataset by using Tableau [22].

Figure2shows a bubble plot of the most frequent API calls per class. The labels in the bubbles
represent the API calls. The size of each bubble indicates the average instances that contain the

related API call.GetAsyncKeyState is the most frequent API call for Spyware,Worms, Trojan and

Backdoor malware classes, and thread32next is the most frequent call for the Downloader

class.Similarly, bar charts were constructed for each class with their record percentage, as seen in
Figure3.

International Journal of Network Security & Its Applications (IJNSA) Vol.13, No.2, March 2021

6

Figure 3. API calls frequency of each malware

However, since these most frequent API calls are often used in many of the mentioned classes,

statistical analysis and traditional malware detection techniques may not be sufficient for

identifying what class a call stream belongs to. This justifies the need for a more complex system

than an expert rule set.

4. METHODS

In this section, we presenttwo malware classification methods using CNN based on categorical
and text-based approaches in detail.

4.1. Convolutional Neural Network

Machine learning algorithms arefrequently utilized to classify and detect malware due to their

prediction power and good performance. Since the API call streams are high dimensional

complex data, deep neural networks are preferred by many studies [23-24]. Deep neural networks
can extract features from raw data and classify high dimensional data well. With the increase in

technology and computational resources, these algorithms have achieved good performance.

Convolutional Neural Networksare one of the most popular deep neural networks [25]. They
achieve impressive performance especially for image and voice recognition. CNNs take their

name from a mathematical operation called convolution that helps to extract features from the

input. The architecture of a CNN is shown in Figure 4. It consists of three main layers:
convolutional layer, pooling layer, and fully connected layer.

Figure 4. The architecture of a CNN [26]

International Journal of Network Security & Its Applications (IJNSA) Vol.13, No.2, March 2021

7

The convolutional layer uses convolutional filters to create a feature map from an input.
Convolution is a mathematical operation, that computes a dot product between the input weights

and region that are connected to the input. ReLU (Rectified linear unit function) activation [27]

function is commonly used for the outputs of CNNs. Its formula is shown in Eq. (1). This

activation function rectifies the input values that have less than zero, by forcing them to be zero
[28].

ReLU(x) = x+ = max(0,x) (1)

where x is the pre-activation output value of the nodes.

During the convolution operation, there may be information loss on the edges of the input [25].

To prevent this information loss zero-padding is used. It preserves the dimensionality of the
outputs by equalizing the generated feature maps to the same size as the input.

The pooling layer is responsible for reducing the dimensionality of the attributes. Pooling is used

to gradually decrease the dimensions of the attribute representation. Hence, it provides low

computational cost by shrinking memory cost and the number of parameters [28-29].Average
pooling and max-pooling are the most popular pooling techniques. While average pooling

calculates the average of each feature values of the feature map [29], max pooling instead returns

the maximum value of the feature values.

A fully-connected layer behaves like a traditional feed-forward neural network to do

classification. This layer uses a Softmax activation function, as seen in Eq (2). Softmax provides

an output whose value ranges between 0 and 1 and returns probabilities of each class [27].

()
i

j

x

i x

j

e
SoftMax x

e

 (2)

where x is an input vector of pre-activation values. The letter e represents the base of the natural

logarithm system.

The convolutional neural network model architecture used in this study is shown in Figure5. The

first layer of the network is a 1-D convolutional layer, this uses convolutional filters to create a

feature map from an input API call stream seen as a vector with 279 channels. This layer uses 64
filters with ReLU (Rectified linear unit function) activation function [27], which has an almost

linear function and therefore retains the properties of linear models. These properties provide

ease to optimize with gradient descent methods.The following two layers flatten the generated
feature map using average-pooling [28-29] on segments of length two within the generated

feature map.The next layer is a standard feed-forward layer in a deep learning architecture which

transforms the generated feature vector using ReLU activation [27]. The final layer then uses

softmax activation [27] to generate a vector. Softmax represents the probabilities of the input
malware APIcall stream belonging to each class. Each class is statically assigned to a specific

index of this probability vector within the training data.

International Journal of Network Security & Its Applications (IJNSA) Vol.13, No.2, March 2021

8

Figure 5. The Model Architecture

Two different analytic features based on categorical vector and TF-IDF vector were used for the
API call dataset, and then fed to the proposed CNN to classify the malware.

4.2. Categorical Vector

In the categorical-based approach, the API call stream produced by the same type of malicious

program is used in the one-dimensional convolutional neural network (CNN) to classify malware.
For the data to be formatted for the CNN, preprocessing was necessary. Each sample was

comprised of a list of system API calls. To reduce the dimensionality of the data, all call streams

that were longer than 2000 API calls were reduced to thefirst 2000 API calls. This reduction

affected 1466 of 6851 records. The dataset contains 278 unique API calls in total.These unique
API calls may be repeated throughout the API call stream.

Each unique API callwas encoded into a categorical vector. The lengthof the vector is the same as

the number of unique API calls plus one, totaling 279.For each unique API call, 1 was placed in
the vector’s index corresponding to that call and the rest of the vector was set to 0’s.

Additionally, a padding vector was created as a categorical vector with a 1 in the previously

unused last index. This padding vector is then added to encoded API call streams that have a
length less than 2000 until the API call stream’s length reaches 2000. The padding vector allows

equalizing the API call streams of different lengths to provide batch optimization. Each unique

API call mapped to an integer and converted to a categorical vector to use in the CNN. Figure 6

provides a specific example.As seen in Figure6, API call “ldrloaddll” was mapped to 133 and
API call “ldrgetprocedureaddress” was mapped to 132 according to their positions in alphabetical

order (see Figure 11). Then, using their mapped value, categorical vectors are obtained by

replacing with 1 at position 132 and the rest of the index with 0 for the “ldrloaddll” call. For the
“ldrgetprocedureaddress” call, we placed 1 at position 133 and 0 at the rest of the indices. These

categorical vectors represented the unique API calls, and they were substituted with their

corresponding position in each API call sequence.

International Journal of Network Security & Its Applications (IJNSA) Vol.13, No.2, March 2021

9

Figure 6. Encoding methodology for categorical vector

The proposed 1-D CNN model and encoding methodology can be used to classify multiclass
malware API call streams. Converting a list of words to a categorical variable can be utilized in

any text data. This encoding provides ease in the analysis and classification. After encoding, the

index of the largest probability within the output probability vector will correspond to the

predicted class.

4.3. TF-IDF Vector

The text-based analysis is the othercomputational approach used for the API call dataset. Feature

extraction and selection is an important step of classification through machine learning

algorithms. The API call dataset includes only the lists of calls during malicious files running and
do not includedirect features. Therefore, we need to extract features from the API call sequences

to apply machine learning algorithms for malware classification and detection. Byte n-grams are

one of the most popular approaches to extract features from text data. N-grams, described in [30],
are sequential series of words or terms in an ordered sequence. N-grams are commonly used in

text mining and natural language processing problems. Since the API calls consists of a sequence

of calls in text, we conducted a text-based approach for feature extraction as well. In this study,
N-grams can be created from a moving window of API calls alongthe call streams in the dataset.

Due to the nature of the API call streams (hundreds or thousands of terms in which calls were

often repeated sequentially), 10-grams, sequences of ten terms, were used.Figure7provides

general structure of n-grams. We provided the first three grams for API call streams as an
example with a small piece of API call sequence. As seen in Figure7, when a unigram is utilized

(N=1), each API call is grouped with only 1 API call. Consequently, we obtained 4 unigrams,

namely“getAsyncKeyState”,“ldrloaddll”,“ldrgetprocedureaddress”, and “thread32next”.
Similarly, for bigram (N=2), API calls are grouped with only 2 consecutive calls. In this case, we

obtained 3 bigrams: “getAsyncKeyState, ldrloaddll”, “ldrloaddll, ldrgetprocedureaddress”, and

“ldrgetprocedureaddress, thread32next”. In trigram (N=3), we obtained 2 trigrams containing 3

consecutive API calls including “getAsyncKeyState, ldrloaddll, ldrgetprocedureaddress” and
“ldrloaddll, ldrgetprocedureaddress, thread32next”. In a similar manner10-grams are obtained

from a moving window of API calls along the call streams. To parse API call streams, we

modeled call streams to represent each n-gram as n words, where n is the position of the API call.

International Journal of Network Security & Its Applications (IJNSA) Vol.13, No.2, March 2021

10

Figure 7. N-grams representation

These identified vectors of terms were translated to Term Frequency, Inverse Document
Frequency (TF-IDF) vectors. TF-IDF vectors helps to determine the importance of words by

assigning weights to the words [31]. Term frequency is used to calculate the number of times a

term is present in a document [32]. Inverse document frequency is a measure of information

provided by words. IDF assigns a value to the word according to their frequency in the corpus. If
a word is occurs frequently, then IDF assigns less weight and if a word occurs infrequently thena

higher weight is assigned. The formulation of TF, IDF and TF-IDF are provided in Eq. (3), Eq.

(4) and Eq. (5), respectively [31].

TF(x) = log(x+1) (3)

1
() log() 1

1

p
IDF x

d

 (4)

TF-IDF = TF * IDF (5)

where x is a vector of raw frequencies, p is the number of tracks in the X set, and d is a vector

that counts the tracks where every 10-grams appears.

After 10-grams are obtained, TF values are calculated for each API call. Then IDFs are calculated
and multiplied with TF values to get TD-IDF values. These TF-IDF vectors were used as inputs

for a suite of decision tree classifiers for both binary cases (i.e., Trojan versus Not Trojan, and so

on) and multiclass classifications. Severalclassifiers were used including RandomForest (RF),

BernoulliNaïve Bayes (BNB), MultinomialNB (MNB), GaussianNB (GNB), DecisionTree
(DT)Classifier, AdaBoostClassifier, BaggingClassifier, kNN, and MLP. Additionally, the

proposed1-D CNNwas used to classify the malware by using TD-IDF vectors. The same CNN

structure as described in the previous section was used but its input layer was changed to accept
TF-IDF vectors in a larger length of 14666. The Python scikit-learn library was used for the

implementations of n-grams, TF-IDF vectors, and all of the classifiers.

5. RESULTS

This section provides classification results from several ML approaches including the proposed

1-D CNN by using categorical and TF-IDF vectors, respectively. F-1 scores and various

performance metrics were used to evaluatethe ML methods.

International Journal of Network Security & Its Applications (IJNSA) Vol.13, No.2, March 2021

11

5.1. Categorical Vector

To utilize the 1-D Convolutional Neural Network, API callswere converted to categorical

variables, as described earlier. An 80-20 train-test split of API call stream data was adopted. The

proposed 1-D CNN model achieved an accuracy of 91.0%, a macro F1 score of 91.3%, and a
weighted F1 score of 91.0%. We compared our proposed algorithm with Random Forest (RF)

classifier, Logistic Regression (LR), Support Vector Machine (SVM), and k-nearest neighbor

(kNN) with 3, 5, and 7 neighbors. A comparison of our model and the existing classification
algorithms is shown in Figure8. The 1-D CNN outperformed the other algorithms.The algorithm

that performed most competitively with CNN was the Random Forestwhich achieved an accuracy

of 89.8%(-1.2%), a macro F1 score of 90.3%(-1.0%), and a weighted F1 score of 89.8%(-1.2%).
Naïve Bayes algorithm has the lowest accuracy and F1 scores. For kNN, an increase in the

number of neighbors affected accuracy scores, adversely. The confusion matrix for the CNN is

shown in Figure9.Thematrix shows that each malware has a low number of false positives and

false negatives.

Figure 8. Traditional models compared to our 1-D CNN predicting the types of multiclass malware using
TF-IDF vectors

Figure 9. 1-Dimensional convolutional neural network confusion matrix

International Journal of Network Security & Its Applications (IJNSA) Vol.13, No.2, March 2021

12

5.2. TF-IDF Vector

When using TF-IDF feature extraction, CNN outperformed the other classifiers including

AdaBoost DT, Random Forest, Bernoulli Naïve Bayes (NB), Multinomial NB, Gaussian NB,

Decision Tree Classifier, Bagging Classifier, kNN, and MLP. The proposed 1-D CNN model has
achieved an accuracy of 91.0%, a macro F1 score of 91.3%, and a weighted F1 score of

91.0%.This TF-IDF based CNN performed competitively with the previously described CNN,

which received API call streams as input directly. This is likely the case as the CNN receiving the
API call stream directly can produce a more effective feature map than the TF-IDF feature

extraction. The achieved accuracyfor high dimensional categorical and text-based vectors

indicate that the proposed 1-D CNN can be used to classify malware in real-world applications.

Of the suite of the decision tree classifiers, AdaBoost performed the best among other

algorithms.Figure 10 shows the normalized confusion matrix and area under the receiver

operating characteristics (AUC ROC) curve for AdaBoost classifier in multiclass case. MLP has
the worst accuracy values, specifically at classification of Adware, Dropper, and Spyware. Table

3summarized these results on class accuracy in detail.

Figure 10. Confusion matrix (left) and AUC ROC curve (right) for AdaBoost Classifier

The diagonal of the confusion matrix in Figure 10 shows the normalized of true positives.
According to this, virus, adware, and downloader classes have the highest true positives with

0.76, 0.74, and 0.69 accuracy values, respectively. While the AdaBoost classifier predicted these

classes with relatively high accuracy, it predicted trojan, worms, and dropper classes with low
accuracy scores. The AUC ROC curve is another performance measurement to assess the

performance of a classifier, especially for multiclass problems. True positive rate, in other words,

sensitivity, is an outcome where the model correctly predicts the positive class. False positive rate
indicates false alarm that falsely rejecting the true instances. The AUC ROC curve is used to

evaluate the model according to its ability to distinguish classes. The higher value (close to 1)

indicates that the model has better performance to distinguish classes. Figure 10 (right) shows

that the AdaBoost classifier has a high ability to distinguish adware, virus, and downloader
classes, as seen in the confusion matrix as well.

5.3. Overall Comparison

Table 3 presents the overall comparison in terms of class accuracy for the two approaches of

feature extraction. When comparing CNN performance between TF-IDF vector with categorical
vector, the highest class accuracy varied depending on the type of malware. The performances

International Journal of Network Security & Its Applications (IJNSA) Vol.13, No.2, March 2021

13

are competitive with differences in accuracy ranging from 0.26%-7.32% for eight classes,
respectively. The highest accuracy scores are highlighted in bold, and scores in the 2nd rank are

underlined for each type of malware. While the proposed CNN classified downloader, dropper,

trojan, virus, and worms with the highest accuracy by using categorical vector, it classified

adware, backdoor, and spyware with the highest accuracy by adopting TF-IDF vector.
Specifically, CNN performed the best at the classification of malware type, suggesting that this

form of malware is the most unique relative to its counterparts. Table 3 shows that MLP has the

worst accuracy scores, especially for adware, dropper and spyware classes. Among traditional
ML algorithms, AdaBoost has the best overall accuracy score. Table 4 shows the binary

classification results for TF-IDF vector by adopting one-vs-rest strategy.

Table 3. Performance comparisons on class accuracy scores

Table 4. Performance comparisons on class accuracy scores for binary classification

As seen in Table 4, Gaussian Naïve Bayes, Bernoulli Naïve Bayes, and AdaBoost algorithms

have better accuracy scores compared to other traditional ML algorithms. The best accuracy

scores for each malware are marked as bold. On the other hand, MLP, MNB and RF have the

worst accuracy scores. Comparing with the results from the multiclass case, GNB and BNB
algorithms work well in binary classification problemfor the API calls stream.

Categorical

Vector
TF-IDF Vector

Malware

Type
CNN CNN AdaBoost Bagging BNB DT GNB kNN MLP MNB RF

Adware 95.40% 98.17% 76.00% 48.00%
51.00

%

45.00

%

70.00

%

70.00

%
0% 32.00% 48.00%

Backdoor 88.00% 88.26% 52.00% 46.00%
40.00

%

40.00

%

53.00

%

57.00

%
46.00% 52.00% 62.00%

Downloader 93.20% 91.14% 69.00% 54.00%
51.00

%

50.00

%

59.00

%

67.00

%
64.00% 64.00% 52.00%

Dropper 94.10% 86.78% 57.00% 60.00%
27.00

%

37.00

%

23.00

%

45.00

%
1.50% 29.00% 35.00%

Spyware 85.60% 88.54% 41.00% 38.00%
23.00

%

11.00

%

25.00

%

32.00

%
0% 8.30% 17.00%

Trojan 89.50% 84.04% 51.00% 45.00%
11.00

%

16.00

%

18.00

%

32.00

%
20.00% 32.00% 16.00%

Virus 94.80% 92.26% 74.00% 66.00%
75.00

%

41.00

%

77.00

%

62.00

%
72.00% 63.00% 80.00%

Worms 88.90% 87.69% 57.00% 52.00%
28.00

%

78.00

%

34.00

%

49.00

%
29.00% 32.00% 58.00%

TF-IDF Vector

Malware Type AdaBoost Bagging BNB DT GNB MLP MNB RF

Adware vs Rest 76.00% 63.00% 59.00% 68.00% 76.00% 0% 20.00% 55.00%

Backdoor vs Rest 52.00% 44.00% 87.00% 44.00% 86.00% 0% 17.00% 22.00%

Downloader vs Rest 64.00% 57.00% 53.00% 58.00% 77.00% 0% 49.00% 49.00%

Dropper vs Rest 43.00% 26.00% 89.00% 43.00% 78.00% 0% 9.00% 3.00%

Spyware vs Rest 34.00% 22.00% 56.00% 27.00% 83.00% 0% 0% 0.6%

Trojan vs Rest 34.00% 27.00% 51.00% 27.00% 77.00% 0% 0.5% 6.00%

Virus vs Rest 66.00% 60.00% 85.00% 59.00% 82.00% 3.00% 49.00% 25.00%

Worms vs Rest 49.00% 37.00% 78.00% 41.00% 78.00% 0% 12.00% 13.00%

International Journal of Network Security & Its Applications (IJNSA) Vol.13, No.2, March 2021

14

6. VISUAL ANALYTICS METHOD

Due to the high dimensional and complex nature of the API call sequence data, visual analytics
techniques were used to help understand the data initially. This research used a variety of visual

approaches to explore the dataset as well as the computational performance of the analytical

model. Four metrics were adopted in the experiment including length, unique instances, varibility

and call sequencefor the malware API dataset. Thus, a visual tool that can highlight and compare
the metrics for each malware type would help to analyze the dataset initially and assist in the

selection of computation model for machine learning. Tableau [22] was used for data exploration

and preliminary analysis of feature correlations. D3.js, a JavaScript tool, was used to develop an
interactive, web-based visualization platform for exploring the dataset and its computational

performance.

6.1. Visual Platform for Malware Feature Exploration

To analyze API call streams, a visual platform using D3 was developed. API calls were mapped as
time seriessince they are recorded during malicious files activity. We determined using length,

uniqueness, and variability features in investigating malware behaviors and developed the visual

representations of these features in the platform. Besides, we created an encoder view to assist in
the converting process from API calls to categorical vectors. The encoder view shows API calls in

alphabetical order with their categorical value, as seen in Figure 11. The encoder view helps us to

see the unique API calls and their assigned integer values. The encoder for the time series data can

also be used to inspect any errors.

The distribution of the length, unique instances, and variability metrics is viewed per malware

class within theAPI call stream dataset. These metrics are defined as follows:

 Length: Number of entries in a time-series record

 Unique Instances: Number of unique entries in a time-series record

 Variability: Number of instances in a time-series whereentry n differs from entry n + 1,

divided bylength of the time-series minus 1.

Figure 11. A representation of the encoding map for a given time-series

International Journal of Network Security & Its Applications (IJNSA) Vol.13, No.2, March 2021

15

Figure12. The selected metric distributions of malware over the system API calls

Figure12 shows the length, uniqueness, and variability metrics for each malware. These metric

buttons can be activated simultaneously. This helps to analyze API calls data comprehensively.
Variability metric indicates that downloader (3rd) and adware (8th) have different variability among

other types of malware.This justifies that Adware has the best accuracy score with both

approaches of feature extractions under CNN because it has a lower than usual variability.We also
added Model Performance button to reach the confusion matrix of 1-D CNN. The tool has ability

to analyze any time series data with similar structure. In this applicationa user can upload a dataset

of time series data and find out how a model performs in classification of each record through our
designed metrics. The visualization will help users to view various attributes in determining the

model performance.

The platform also includes a 3D view of API call sequences, as seen in Figure 13. This tool allows

users to visualize randomly selected data or data from top N samples. The 3D view also provides
selection, filter, adding, and removal features to users for further examination. This visual strategy

assists in data exploration and pattern search analysis.

International Journal of Network Security & Its Applications (IJNSA) Vol.13, No.2, March 2021

16

Figure 13. 3-D representation of Sequential API calls

7. CONCLUSION AND DISCUSSION

We utilized two different approachesof feature extraction to classify a malware API dataset at both

binary and multiclass levels. In our first approach, we encoded API call streams by converting

them to categorical variables. We proposed a 1-D CNN and compared its results with other ML

methods includingRandom Forest, Logistic Regression, Support Vector Machine, Naïve Bayes
and k-NN. In the second approach, we conducted text-based analysis by using n-grams. We used

10-grams to extract features from API calls and converted them to TD-IDF vectors. A set of

classifiers includingAdaBoost DT, Random Forest, Decision Tree, and Bernoulli Naïve Bayes,
Multinomial NB, Gaussian NB, Bagging Classifier, kNN, and MLP are used to classify malware

based on n-gram analysis. Then the proposed CNN was used to classify the malware using the

TD-IDF vectors and the results are compared.

This research has ultimately produced a ConvolutionalNeuralNetwork model that achieved

above90% accuracy in classifying the type of malwareusing a malicious program based on its

system call stream. For the purpose of identifying and classifying malware, the results of this
research demonstrate the advantages of using a CNN to label the type of malware that a malicious

system API call stream belongs to. When using the categorical vector, the proposed CNN

outperformedRF, LR, SVM, and k-NN. While using TF-IDF vector, CNN also achieved a higher

accuracy thanAdaBoostDT, Random Forest, Bernoulli Naïve Bayes (NB), Multinomial NB,
Gaussian NB, Decision Tree Classifier, Bagging Classifier, kNN, and MLP. While the second-best

performing method is RF for categorical vector analysis, AdaBoost has the second-best accuracy

score for the TF-IDF vector. Overall comparisons indicate that both feature extraction approaches
produced competitive performance on classification of malware. Depending on the type of

malware, the class accuracy varies between 0.26%-7.32%, respectively between using a

categorical vector input or TF-IDF vector input to a CNN.The results also suggest that the high
impact feature in an API call stream executed by a malware is related to both call variability and

call sequence.

International Journal of Network Security & Its Applications (IJNSA) Vol.13, No.2, March 2021

17

We also demonstrate a visual analysis platform for time-series data to assist our machine learning
model choices. The D3 visualization tool aided in human understandingof the API call stream data

by visualizing both encoder view and generated features, i.e., length, uniqueness, and variability.

The distributions of the variability,uniqueness,andlengthofcallstreamscan be inspected using the

visualizer. The tool also helps other time series formatted data as well.3-D sequential data
visualizer also allows us to see API calls pattern over time by examining through filtering and

sampling functions.

Future work includes expanding the length of call streamsand including non-malicious programs
for classification. An anti-virus system can adapt the model to aid in attack attribution by quickly

gaining an understanding as to the type of malware it is dealing with. Finally, a goal for improving

the visual analytic process of this research is to use the correlations identified in the D3 tool to
adjust the computational model so that it can be more successful in differentiating between similar

classes.

8. ACKNOWLEDGEMENT

This project is partially supported by ASRC Federal Inc.

REFERENCES

[1] Daniel Gibert, Carles Mateu, & Jordi Planes, (2020) “The rise of machine learning for detection and

classification of malware: Research developments, trends and challenges”, Journal of Network and

Computer Applications. 10.1016/j.jnca.2019.102526.

[2] Zahra Bazrafshan, Hashem Hashemi, Fard Hazrati, Mehdi Seyed, & Ali Hamzeh, (2013) “A survey

on heuristic malware detection techniques”, 2013 5th Conference on Information and Knowledge

Technology. 113-120. 10.1109/IKT.2013.6620049.

[3] Jyoti Landage, & M. P. Wankhade, (2013) “Malware and Malware Detection Techniques : A

Survey”, International journal of engineering research and technology, 2.

[4] DainiusCeponis, & Nikolaj Goranin,(2019) “Evaluation of Deep Learning Methods Efficiency for

Malicious and Benign System Calls Classification on the AWSCTD”,Security and Communication

Networks,2317976:1-2317976:12.

[5] SerifBahtiyar, Mehmet BarisYaman, & Can Yilmaz Altinigne, (2019)“A multi-dimensional machine
learning approach to predict advanced malware”, Comput. Networks, 160,118-129.

[6] GyuwanKim, Hayoon Yi, JanghoLee, YunheungPaek, & Sungroh Yoon, (2016) “LSTM-Based

System-Call Language Modeling and Robust Ensemble Method for Designing Host-Based Intrusion

Detection Systems”, ArXiv, abs/1611.01726.

[7] AhmetYazi, Ferhat Ozgur Catak,& EnsarGul,(2019) “Classification of Methamorphic Malware with

Deep Learning (LSTM)”,10.1109/SIU.2019.8806571.

[8] Ferhat OzgurCatak,&AhmetYazi,(2019) “A Benchmark API Call Dataset for Windows PE

MalwareClassification”, https://arxiv.org/abs/1905.01999.

[9] EslamAmer,&Ivan Zelinka,(2020) “A dynamic Windows malware detection and prediction method

based on contextual understanding of API call sequence”, Computers & Security.

10.1016/j.cose.2020.101760.
[10] YuntaoZhao, Bo Bo, Yongxin Feng, ChunYu Xu, & Bo Yu,(2019) “A feature extraction method of

hybrid gram for malicious behavior based on machine learning”, Secur. Commun. Netw.

[11] Chang Choi, ChristianEsposito, MungyuLee, & JunhoChoi, (2019) “Metamorphic malicious code

behavior detection using probabilistic inference methods”, Cognit. Syst. Res. 56, 142–150.

[12] AsgharTajoddin, & SaeedJalili, (2018) “HM3alD: polymorphic Malware detection using program

behavior-aware hidden Markov model”, Appl. Sci. 8 (7), 1044.

[13] Matthew Schofield, Gulsum Alicioglu, Russell Binaco, Paul Turner, Cameron Thatcher, Alex Lam &

Bo Sun, (2021) “Convolutional Neural Network For Malware Classification Based On API Call

Sequence”, In proceedings of 2021 the 14th International Conference on Network Security &
Applications. Computer Science & Information Technology (CS & IT). Zurich, Switzerland.

International Journal of Network Security & Its Applications (IJNSA) Vol.13, No.2, March 2021

18

[14] Jeffrey Heer, Micheal Bostock, & Vadim Ogievetsky,(2010) “A Tour through the Visualization Zoo”,

ACM Queue, 8, 20.

[15] WeijieHan, Jingfeng Xue, YongWang, LuHuang, ZixiaoKong, & Limin Mao, (2019) “MalDAE:

Detecting and explaining malware based on correlation and fusion of static and dynamic

characteristics”, Comput. Secur., 83, 208-233.
[16] LuXiao-Feng, ZhouXiao, Jiang Fangshuo, Yi Sheng-wei,&ShaJing,(2018) “ASSCA: API based

Sequence and Statistics featuresCombinedmalwaredetectionArchitecture”,Procedia Computer

Science, 129, 248-256.

[17] MatildaRhode, Pete Burnap, & Kevin Jones, (2018) “Early Stage Malware Prediction Using

Recurrent Neural Networks”,Comput. Secur., 77,578-594.

[18] ZahraSalehi, Ashkan Sami, & Mahboobe Ghiasi, (2017) “MAAR: Robust features to detect malicious

activity based on API calls, their arguments and return values”, Eng. Appl. Artif. Intell., 59, 93-102.

[19] MohamedBelaoued, & SmaineMazouzi, (2016) “A Chi-Square-Based Decision for Real-Time

Malware Detection Using PE-File Features”, JIPS, 12,644-660.

[20] Sanchit Gupta, Harshit Sharma, & Sarvjeet Kaur, (2016) “Malware Characterization Using Windows

API Call Sequences”,SPACE.

[21] Jixin Zhang, Zheng Qin, Hui Yin, Lu Ou, & Kehuan Zhang, (2019) “A feature-hybrid malware
variants detection using CNN based opcode embedding and BPNN based API embedding”, Comput.

Secur., 84,376-392.

[22] Tableau Software. (2020). Retrieved from www.tableau.com.

[23] Kolosnjaji Bojan, Zarras Apostolis, Webster George, & Eckert Claudia, (2016) “Deep Learning for

Classification of Malware System Call Sequences”, In: Kang B., Bai Q. (eds) AI 2016: Advances in

Artificial Intelligence. Lecture Notes in Computer Science, vol 9992. Springer, Cham.

https://doi.org/10.1007/978-3-319-50127-7_11.

[24] Catak Ferhat Ozgur, Yazı Ahmet Faruk, Elezaj Ogerta & Ahmed Javed, (2020) “Deep learning based

Sequential model for malware analysis using Windows exe API Calls”, PeerJ Computer Science

6:e285 https://doi.org/10.7717/peerj-cs.285.

[25] Albawi Saad, Mohammad Tareq Abed, & Al-Zawi Saad, (2017), “Understanding of a convolutional
neural network”, 2017 International Conference on Engineering and Technology (ICET), Antalya, pp.

1-6, doi: 10.1109/ICEngTechnol.2017.8308186.

[26] “http://alexlenail.me/NN-SVG,” 2016. (Accessed 20 December 2020).

[27] Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, & Stephen Marshall, (2018) “Activation

Functions: Comparison of trends in Practice and Research for Deep Learning”, ArXiv,

abs/1811.03378.

[28] Yinzheng Gu, Chuanpeng Li, & Jinbin Xie, (2018) “Attention-aware Generalized Mean Pooling for

Image Retrieval”, ArXiv, abs/1811.00202.

[29] Mark Cheung, John Shi, Lavender Jiang, Oren Wright, &Jose Moura, (2019) “Pooling in Graph

Convolutional Neural Networks”, 53rd Asilomar Conference on Signals, Systems, and Computers,

462-466.
[30] WilliamCavnar, & John Trenkle, (1994) “N-gram-based text categorization”, Proceedings of SDAIR-

94, 3rd annual symposium on document analysis and information retrieval. Vol. 161175.

[31] Raymond Canzanese, Spiros Mancoridis, &Moshe Kam, (2015) “Run-time classification of malicious

processes using system call analysis”, 10th International Conference on Malicious and Unwanted

Software (MALWARE), Fajardo, 2015, pp. 21-28.

[32] ShahzadQaiser, & Ramsha Ali, (2018) “Text Mining: Use of TF-IDF to Examine the Relevance of

Words to Documents”, International Journal of Computer Applications, 181, 25-29.

Authors

Matthew Schofield is currently enrolled at Rowan University pursuing his B.S/M.S degree in

Computer Science anticipating graduation in December 2021. He is currently working on his

master’s thesis on Deep Reinforcement Learning in Incentivization Systems. His research

interests are in Machine Learning and Deep Reinforcement Learning.

GulsumAlicioglu received M.Sc. Degree in Industrial Engineering from Gazi University,

Turkey, in 2018. Currently, she is a Ph.D. candidate at the Department of Electrical and

International Journal of Network Security & Its Applications (IJNSA) Vol.13, No.2, March 2021

19

Computer Engineering of Rowan University, USA. Her research interests aredata

visualization, machine learning, and explainable artificial intelligence.

Bo Sun is an associate professor of Computer Science and led the project effort of this

paper.She received her B.S. in Computer Science from Wuhan University, her M.S.in
Computer Science from Lamar University, and her Ph.D. in Modeling and Simulation from

Old Dominion University. Her research interests include Visual Analytics and Data

Visualization.

Russell Binaco graduated from Rowan University with an M.S. in Computer Science in

Spring 2020. He now works as a software engineer for Innovative Defense Technologies,

and as an adjunct for Rowan University. At Rowan, he earned undergraduate degrees in

Computer Science and Electrical and Computer Engineering. He has also been published in

the Journal of the International Neuropsychological Society for research using Machine

Learning to classify patients’ levels of cognitive decline with regards to Alzheimer’s

Disease.

Paul Turner received his B.S. in Computer Science from Rowan University in 2018 and is

currently enrolled in an M.S. program at the aforementioned University. His interests

include machine learning, text mining, and cloud computing.

Cameron Thatcher received his B.S in Computer Science from Rowan University in 2019

and is currently pursuing his M.S. in Computer Science at Rowan University. His research

interests include Machine Learning and Data Mining.

Alex Lam is currently attending Rowan University pursuing his B.S/M.S degree in Computer

Science and Data Analytics. He has also been published in the 3rd ACM SIGSPATIAL

International Workshop on Analytics for Local Events and News (LENS’19) for research in
identifying real-world events using bike-sharing data.

Anthony Breitzman holds an M.A. in Mathematics from Temple University, and an M.S. and

Ph.D. from Drexel University. He is an associate professor of Computer Science at Rowan

University and his research interests are Data Mining, Text Mining, Machine Learning,

Algorithm Design, Convolution Algorithms, and Number Theory.

	Abstract
	Keywords

