
International Journal of Network Security & Its Applications (IJNSA) Vol.13, No.3, May 2021

DOI: 10.5121/ijnsa.2021.13301 1

DEEP LEARNING CLASSIFICATION
METHODS APPLIED TO TABULAR
CYBERSECURITY BENCHMARKS

David A. Noever and Samantha E. Miller Noever

PeopleTec, Inc., Huntsville, Alabama, USA

ABSTRACT

This research recasts the network attack dataset from UNSW-NB15 as an intrusion detection problem in

image space. Using one-hot-encodings, the resulting grayscale thumbnails provide a quarter-million

examples for deep learning algorithms. Applying the MobileNetV2’s convolutional neural network

architecture, the work demonstrates a 97% accuracy in distinguishing normal and attack traffic. Further

class refinements to 9 individual attack families (exploits, worms, shellcodes) show an overall 54%
accuracy. Using feature importance rank, a random forest solution on subsets shows the most important

source-destination factors and the least important ones as mainly obscure protocols. It further extends the

image classification problem to other cybersecurity benchmarks such as malware signatures extracted

from binary headers, with an 80% overall accuracy to detect computer viruses as portable executable files

(headers only). Both novel image datasets are available to the research community on Kaggle.

KEYWORDS

Neural Networks, Computer Vision, Image Classification, Intrusion Detection, MNIST Benchmark.

1. INTRODUCTION

This work explores image-based classifiers for non-traditional tasks, either to recognize a pattern

described previously only in numerical tables or to extract meaningful malware signatures as

images. The interest in this approach arises from the success of applying deep convolutional
neural networks (CNN) to similarly challenging but unconventional ways borrowed from

computer vision. For example, audio classifiers and speech recognition have benefited from

projecting the audio time-series into a spectrogram, which in turn a CNN can apply computer

vision methods to identify words or sounds.

Figure 1. Nine attack types and one normal traffic dataset. We map

the tabular features to grayscale thumbnails

http://airccse.org/journal/jnsa21_current.html
https://doi.org/10.5121/ijnsa.2021.13301

International Journal of Network Security & Its Applications (IJNSA) Vol.13, No.3, May 2021

2

For cybersecurity applications, this work updates the UNSW-NB15 attack dataset [1-4] and
extends the popular intrusions detection system (IDS) originally inspired by the KDD-

99/DARPA challenge [5-7]. The details of the UNSW-NB15 dataset are published in a series of

previous papers [1-4] which described the raw network packet captures, generated features on

labeled attacks, and scored statistical methods for identifying each attack family. As illustrated in
Figure 1, the current approach aims to map scaled numerical features to images, a method likened

to traditional spectrogram methods. These fingerprinting techniques have proven useful when

image-based neural networks have solved similar but challenging time-dependent [8] or audio [9]
problems. We test the capabilities for mapping tabular features to build fast image classifiers.

One advantage of this hierarchical method arises from the unique power of transfer learning to

high accuracy, even when the underlying patterns prove difficult for humans to understand or
classify. The datasets are available on Kaggle [10].

2. METHODS

The new datasets to evaluate image classification as a network defense tool include the intrusion
simulations from UNSW-NB15 [1-4] and a custom anti-virus example.

2.1. Network Intrusion Dataset

The use of convolutional neural networks for network attack classification depends on first

converting all tabular feature sets into thumbnail images. We, therefore, recast the UNSW-NB15

Figure 2. Layout template for one-hot-encoded images.

tabular set of features as scaled image thumbnails [11] to solve for 9 families of attack types. This

version of the dataset renders the corresponding UNSW-NB15 attack set as 256-pixel grayscale
images (16 x16). We employ one-hot-encoding [12] for the categorical inputs and rescale all

International Journal of Network Security & Its Applications (IJNSA) Vol.13, No.3, May 2021

3

numerical inputs as grayscale pixel values (0-255) between the training set’s minimum and
maximum values. The baseline UNSW-NB15 dataset [1-4] yields 194 values and the images are

right padded with all black (255) values for any unused pixels (62) identically for all attack

labels. This padding assists deep learning approaches [13] which have a stride length in powers

of 2. The column labels are also included in the train and test sets as tabular formats (comma-
separated value files) to compare image-based classification methods to more statistical

approaches like decision trees, random forest, and support vector machines. The expectation is

that all the legacy algorithms of both deep learning and statistical machine learning may assist in
the new task after mapped to images of feature sets.

This approach shares many characteristics with the traditional MNIST dataset [14-20] and thus
can build quickly on those findings for algorithmic comparisons. Several image-based problems

to solve include simply binary classifiers for attack vs. normal traffic. Like MNIST digits [14],

there are 10 categories shown (0=normal; 1-9 various attacks). As shown in Figure 2, the original

42 network features expand to 194 when one-hot-encoded [12]. This process converts all
categorical data (services, protocols, and states) into individual columns with their presence

marked by 1 and absence by 0. For instance, protocol_http becomes pixel value 255 at the

appropriate grayscale image location (row=3, column = 13) if the attack used hypertext transfer
protocol. Conversely, the same pixel maps to 0 if the protocol was not used. Each row of the

UNSW-NB15 thus renders 256 features (of which 194 follow directly from the tabular set).

Figure 3. Training and testing count per attack family count.

We leave unchanged the train/test split of the original UNSW-NB15 dataset at a 1:2 ratio [1-4].

The detailed counts for each class are shown in Figure 3. It is worth noting that the UNSW-NB15
dataset updates and statistically rebalances some of the KDD99 counts based on their analysis of

duplicates and potential data leakage between training and test sites. The ratio of 1:2 for training

and test presents a challenging amount of previously unseen data when an algorithm gets scored
or deployed. In total, we created almost a quarter-million images as 256-pixel thumbnails using

ImageMagick [11]. The largest training class (normal traffic: 37,000) outnumbers the smallest

attack class (worms: 44) by nearly 1000:1 as a ratio of cases.

To explore whether transfer learning from a convolutional neural network can identify network

attacks, we tested the small (2 Mb) MobileNetV2 model [13] as pre-trained, then introduced both

the binary and multi-class problems. The binary classifier determines whether a given image
pattern represents normal or attack traffic. The multi-class problem identifies one of the 10

possible families (9 attacks in Figure 3 vs. normal).

The multi-class example shares an analogous data setup to the traditional MNIST handwriting

dataset [14] and thus may benefit from the various state-of-the-art approaches developed to

International Journal of Network Security & Its Applications (IJNSA) Vol.13, No.3, May 2021

4

handle those 10 classes. We solve both the binary and multi-class cases with a standard set of
hyper-parameters (epochs:50, batch size:16, learning rate: 0.001). Slower learning rates disrupt

the pre-trained layers of the neural network and preserve some of its beneficial weights for

feature extraction in the images. We also explore the effects of smaller dataset size (<10,000

training examples vs. the full 250k) [22].

Figure 4. Feature information (GINI) Contribution to Attack Detection.

To rank the feature importance for detecting attacks, we applied a random forest algorithm

(Figure 4) to the binary classifier [23]. The descending order for the top 14 contributors is shown

using the Gini Index [23] (or impurity) which effectively gauges the factors contributing to a
decision split between normal and attack. The highest contributors include 1) the “Source to

destination Time To Live” value (sttl); 2) Number for each state (dependent protocol, e.g. ACC,

CLO, CON) according to a specific range of values for source/destination Time To Live

(ct_state_ttl); and 3) Number of connections of the same source and the destination address in
100 connections according to the last time (ct_dst_src_ltm). Not shown in Figure 4 are the least

important which somewhat surprisingly include most of the one-hot-encoded protocol features

that are more exotic than ordinary TCP (e.g. zero, XTP, XMN.IDP, WSN, etc.). In addition to
providing a future path to reduce the intrusion detector’s dimensionality, this feature importance

rank defines what cannot be safely ignored in attack datasets like UNSW-NB15 [1-4].

Figure 5. Binary classifier results.

International Journal of Network Security & Its Applications (IJNSA) Vol.13, No.3, May 2021

5

2.2. Anti-Virus Dataset

Recent interest in applying the same image-based classification techniques to anti-virus and

malware detectors [24-30] motivates the present work to score a similar formatted problem and
compare the algorithmic performance with existing methods. Intel Labs and Microsoft Threat

Protection Intelligence Team recently launched their static malware collaboration called

STAMINA: Scalable Deep Learning Approach for Malware Classification [31]. The present
contribution is to reformulate the malware-image problem as a familiar MNIST variant, to

generate the 9-virus clusters based on byte-similarities, and then to identify the virus family based

on a grey-scale thumbnail image (32 x 32). Figure 6 shows the abstract images derived for each

of the 10 classes, with “0” as the only one that is non-malicious.

Figure 6. Virus MNIST showing 10 classes. The “0” class represents non malicious examples.

The other 9 virus families were clustered using a K means method to match with the

standard MNIST format and multi class solutions.

We explore the malware dataset first combined [27] as bulk virus downloads (from

virusshare.com) and non-malicious examples (from portableapps.com). Microsoft documents the

format header for Portable Executable (PE) files [32-33] and importable python libraries
(“pefile”, [34]) exist as convenient extraction tools from compiled and executable code. The

Portable Executable dataset [27] contains 51,880 examples of the first 1024 bytes (32x32 pixel

values) of the header. As comma-separated-values, the entire file’s MD5 hash augments the
information available for each example and provides enough identifying information to trace its

operating features using community-supported repositories like VirusTotal.com.

International Journal of Network Security & Its Applications (IJNSA) Vol.13, No.3, May 2021

6

Figure 7. Class distributions and example types for malware and “beneware” PE File headers.

Previous solutions have designated a binary class label as either malware or not (e.g. benign
programs or “beneware”) [27]. If formulated as a two-class problem, the imbalanced ratio of

malware to “beneware” equals approximately 20:1 (49,364:2516). Without rebalancing this ratio,

a 95% correct solution would simply declare all cases as malware. To recast the image dataset as

an MNIST-formatted alternative, we performed a standard cluster analysis using the KMeans
algorithm [35]; we assigned cluster numbers equal to 9 based on the 1024 column byte vector.

We exclude the identifying file hash. We attempted to assign dominant families to each derived

cluster based on the known MD5 hashes but found multiple names and sample diversity when
querying VirusTotal. To reduce the number of code changes comparing a larger or smaller multi-

class problem with existing MNIST infrastructure, we opted to use the assigned 9-cluster result as

a fully unsupervised example. Figure 7 summarizes the class distribution following KMeans
clustering for the malware class only and the 9 resulting virus families. By testing 10 or more

MD5 hash values against the VirusTotal.com database, we assigned the broad types and example

executable names. These choices showed sufficient diversity and overlap that the designations

provide only representative choices. The outcome proves more statistical and less operational for
malware behavior.

We converted the CSV format [23] to greyscale images using the intermediate NetPBM text
format (PGM) to create ASCII-raw images (Figure 6), then the ImageMagick [11] command-line

tools for compressing the image to viewable JPEG files. We split the resulting 51,880 thumbnails

into the same 85:15 ratio used by MNIST training and testing bins, such that the unseen test

images help validate any algorithm’s ability to generalize from the training images. The choice of
32x32 pixels to represent the PE header proves useful for later deep learning algorithms that

depend on powers of 2 (in stride length) to form their convolutional layers. This differs slightly

from the traditional (arbitrary) 28x28 pixel thumbnails in most MNIST variants [37]; the
differences are cosmetic only for most algorithms other than deep learning ones. Three different

formats are provided for download, including train and test sets as comma-separated values files,

JPEG images sorted by class (10 total), and the original MNIST binary format (idx-ubyte) [14,
36]. These three formatting options should cover most all published MNIST solutions with only

minor modifications.

3. RESULTS

The modeling of two separate cybersecurity-related datasets with image classifiers highlights

future insertion points for including deep learning and more specifically pre-trained neural

International Journal of Network Security & Its Applications (IJNSA) Vol.13, No.3, May 2021

7

networks like MobileNetV2 [13] for minimizing data requirements and transfer learning between
unrelated tasks.

3.1. Network Intrusion Defense

As shown in Figures 8-10, the results for transfer learning with a deep convolutional neural

network (MobileNetV2 [13]) demonstrate that the image-based binary classifier achieves greater
than 97% accuracy in identifying whether an attack occurs (Figure 5).

Figure 8. Multi-class results.

In Figure 8, the specific identification of an attack family averages 54% accuracy between the 10

classes, with large deviations between the best (normal and generic traffic: 96+%) and the worst
(worms and analysis <19%). Figures 8-9 show the error matrix of which attack images confuse

the neural network (worms misclassed as exploits). It is worth noting that the majority class

(normal) loses no performance as more attack classes get added from the binary to the multi-

classification example.

One contribution to this variance is the relative sparsity of UNSW-NB15 examples for the lower

performing classes. To test this hypothesis, we performed the same experiment on a smaller
subset (<4000) of images with a hold-out test and validation set that represents 20% of the

training set (as opposed to 200% in the original UNSW-NB15 split). By better balancing, the

dataset, undetectable worms, and other lesser represented classes could be detected in Figure 8
(second column). Mapping attacks to images shows the dependence of accuracy on both class

size and imbalance [23].

One interesting outcome of using these image-based detection maps is their portability to small
hardware appliances. The small MobileNetV2 architecture [13] is tailored to run on edge devices

[37], such as mobile phones. Simple network detectors thus render a complex matrix of packet

features into a rapid classifier capable of running in near real-time imagery (e.g. 30 frames -or
attacks- per second). The reduction of the model to use tflite [38] (Tensorflow) as a set of stored

weights represents a standard model [37] for deploying deep learning to edge devices.

International Journal of Network Security & Its Applications (IJNSA) Vol.13, No.3, May 2021

8

Figure 9. Confusion matrix by class for network intrusion data.

For the binary classifier distinguishing attacks from normal traffic, the current results (accuracy =

97%) compare to previous work using statistical machine learning [39], such as support vector

machines (SVM, accuracy = 92.28%), Naïve Bayes (NB, accuracy = 74.19%), decision tree
(simple, accuracy = 95.82%), and random forest (RF, accuracy = 97.49%). For a smaller UNSW-

NB15 subset [40], deep learning approaches [41] reported 91.4% (normal) accuracy and 99.2%

(attack). Using manual feature selection

Figure 10. Comparison between previous statistic al solutions and the present result using image based

classifiers and transfer learning with MobileNetV2 deep neural network.

[41], a larger deep learning approach n the tabular data reported 98% (normal) accuracy and 85%

(attack). In summary, the original contribution of combining an image-based transfer learning

method to traditional tabular data offers a promising detector for network defense, particularly for
97+% accuracy to distinguish normal and malicious traffic connections.

For the refined determination of the attack family, Figure 10 compares the present results with 13

other popular machine learning approaches [42] as shown by class type and accuracy. While the
performance of the image-based approach to collecting features lags other methods in some

under-represented attack families, the high accuracy for normal traffic (98%) vs generic attacks

International Journal of Network Security & Its Applications (IJNSA) Vol.13, No.3, May 2021

9

(96%) offers a viable intrusion detection for the multi-class problem. Since Figure 8 demonstrates
the accuracy dependence on sample size, the lower accuracy seen in under-represented classes

like worms, analysis, and shellcode would benefit from supplemental or synthetic attack data.

3.2. Virus Detection

Figure 11 shows the accuracy per class in three different CNN models. The highest accuracy
across all classes averages 80%.

Figure 11. Accuracy per class. Acc-1 is 20% sampling, Acc-3 is 100% sampling

and Acc-2 is slow learning rates.

To explore the effects of dataset size, we modeled a faster 20% sampling (Acc-1) with a learning

rate of 0.001, batch size=16, and 50 epochs. A second model (Acc-2) featured a slower learning

rate (0.0005) over longer training times (100 epochs). A slower learning rate can avoid disruptive
steps when transfer learning from a pre-trained network like MobileNetV2. A final model (Acc-

3) included 100% samples (the full 51,880 train and test sets) and a faster learning rate (0.001)

and time (50 epochs). Across all 10 classes, the average accuracy varied less than 2% for the
three cases but did peak at 80% for the larger dataset (Acc-3). The three models together show

the highest false-negative rate for malware is class “0” or benign executables that get flagged as

potentially malicious. This behavior may reflect the inexactness of the PE header as an indicator

of malware, or the hijacking of benign header characteristics to disguise malware in the first 1024
bytes.

Figure 12. Error matrix highlighting the classes across the rows that each actual case most often gets

mistaken for. The diagonal shows the correct proportion.

International Journal of Network Security & Its Applications (IJNSA) Vol.13, No.3, May 2021

10

Figure 12 shows the error matrix for the first model (Acc-1), which highlights that the class of
benign programs is most often mistake for backdoors (7), heuristic (9), and downloader (8). It’s

worth noting that particularly for a downloader that reaches out to a command and control

malware site, this byte-code signature may prove malicious or benign since it depends on the

website itself; a benign program may reach out to download an update from Microsoft on launch.
The higher false-negative rates may also originate in the KMeans approach, given the clustering

excluded the non-malicious cases to simplify the generation of 9 malware families as independent

groups from good, benign, or normal software called here as “beneware”. Further investigation
may explore whether other clustering approaches benefit the class distinctions. For instance,

density-based clustering (DBSCAN) optimizes the tight groups with minimal overlap. A further

enhancement would use the MD5 hash to determine virus family and avoid clustering altogether
as an alternative which also prevents the CNN from simply modeling the unsupervised (KMeans)

algorithm itself rather than the natural distribution of malware images.

4. DISCUSSION AND CONCLUSIONS

The results demonstrate a viable path of converting tabular feature data to image thumbnails, then

applying convolutional neural networks to classify attack families. One potential shortcoming in

our approach is any dependencies on the parametric ordering in the table format. For instance,
convolutional neural networks tend to highlight close neighbors as being related in the image

[43], yet there is no obvious relationship in the generated images between protocols, services, or

states that justify making them into a particular attack fingerprint. One could address this flaw

quantitatively by shuffling the order and determining the change of accuracy (if any). Future
work should compare alternative statistical methods borrowed from the extensive machine

learning literature devoted to the MNIST (and its derivative [14-21]) dataset of handwriting

recognition. One can anticipate that like MNIST solutions, there exist high accuracy decision
trees (like extreme gradient boosted trees – XGBoost [44]) that generate both accuracy and

inference speeds comparable to the deep learning approach here. Further work could also use the

image dataset [45] to design new attacks (and defenses) based on the techniques of generative
adversarial networks (GANs [46]). The network intrusion dataset is available on Kaggle [10].

To address the generality of this approach, we recast a second and consolidated dataset for

scoring malware Portable Executable file headers as an abstract image recognition problem. The
image-based approach may generalize better than other heuristic methods, particularly given how

virus authors change single-bytes to fool hash-based signatures but CNN detection typically

proves less sensitive to small image changes. The ability to read headers only and render a
readable file fingerprint as a small image suggests a potential fast detection rate seen in other

vision applications (near real-time if greater than 30 frames per second by convention). Further

enhancements may improve accuracy with data augmentation [45] strategies. While the reduction

of file headers to images may initially seem counterintuitive, the abstract representation of text or
audio into images has benefited other machine learning applications. We anticipate that further

work may render simple, standalone appliances that may operate offline for successful detection,

particularly for the small, fast, and accurate models like MobileNetV2. The Virus-MNIST dataset
is also available on Kaggle and Github [47].

ACKNOWLEDGMENTS

The author would like to thank the PeopleTec Technical Fellows program for encouragement and

project assistance.

International Journal of Network Security & Its Applications (IJNSA) Vol.13, No.3, May 2021

11

REFERENCES

[1] Moustafa, Nour, and Jill Slay. "UNSW-NB15: a comprehensive data set for network intrusion

detection systems (UNSW-NB15 network data set)." Military Communications and Information

Systems Conference (MilCIS), 2015. IEEE, 2015. See online https://www.unsw.adfa.edu.au/unsw-

canberra-cyber/cybersecurity/ADFA-NB15-Datasets/

[2] Moustafa, Nour, and Jill Slay. "The evaluation of Network Anomaly Detection Systems: Statistical

analysis of the UNSW-NB15 dataset and the comparison with the KDD99 dataset." Information

Security Journal: A Global Perspective (2016): 1-14.
[3] Moustafa, Nour, et al. . "Novel geometric area analysis technique for anomaly detection using

trapezoidal area estimation on large-scale networks." IEEE Transactions on Big Data (2017).

[4] Moustafa, Nour, et al. "Big data analytics for intrusion detection system: statistical decision-making

using finite Dirichlet mixture models." Data Analytics and Decision Support for Cybersecurity.

Springer, Cham, 2017. 127-156.

[5] Özgür, Atilla, and Hamit Erdem. "A review of KDD99 dataset usage in intrusion detection and

machine learning between 2010 and 2015." PeerJ Preprints 4 (2016): e1954v1.

[6] Olusola, A. A., Oladele, A. S., & Abosede, D. O. (2010, October). Analysis of KDD’99 intrusion

detection dataset for selection of relevance features. In Proceedings of the world congress on

engineering and computer science (Vol. 1, pp. 20-22). WCECS.

[7] Meena, Gaurav, and Ravi Raj Choudhary. "A review paper on IDS classification using KDD 99 and

NSL KDD dataset in WEKA." In 2017 International Conference on Computer, Communications and
Electronics (Comptelix), pp. 553-558. IEEE, 2017.

[8] Hatami, Nima, Yann Gavet, and Johan Debayle. "Classification of time-series images using deep

convolutional neural networks." In Tenth international conference on machine vision (ICMV 2017),

vol. 10696, p. 106960Y. International Society for Optics and Photonics, 2018.

[9] Hershey, Shawn, Sourish Chaudhuri, Daniel PW Ellis, Jort F. Gemmeke, Aren Jansen, R. Channing

Moore, Manoj Plakal et al. "CNN architectures for large-scale audio classification." In 2017 IEEE

international conference on acoustics, speech and signal processing (ICASSP), pp. 131-135. IEEE,

2017.

[10] Noever, David “Intrusion Detection as an Image Classifier”, Kaggle.com, (2021),

https://www.kaggle.com/datamunge/intrusion-detection-as-an-image-classifier

[11] Salehi, Sohail. ImageMagick Tricks. Packt publishing ltd, 2006.
[12] Zhang, Weinan, Tianming Du, and Jun Wang. "Deep learning over multi-field categorical data." In

European conference on information retrieval, pp. 45-57. Springer, Cham, 2016.

[13] Sandler, Mark, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.

"Mobilenetv2: Inverted residuals and linear bottlenecks." In Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 4510-4520. 2018.

[14] LeCun, Yann, Corinna Cortes, and C. J. Burges. "MNIST handwritten digit database." (2010): 18.

http://yann.lecun.com/exdb/mnist/ and Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-

based learning applied to document recognition." Proceedings of the IEEE, 86(11):2278-2324,

November 1998

[15] Cohen, Gregory, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. "EMNIST: Extending

MNIST to handwritten letters." In 2017 International Joint Conference on Neural Networks (IJCNN),

pp. 2921-2926. IEEE, 2017.
[16] Chen, Li, Song Wang, Wei Fan, Jun Sun, and Satoshi Naoi. "Beyond human recognition: A CNN-

based framework for handwritten character recognition." In 2015 3rd IAPR Asian Conference on

Pattern Recognition (ACPR), pp. 695-699. IEEE, 2015.

[17] Image Classification on MNIST, (accessed 01/2021), https://paperswithcode.com/sota/image-

classification-on-mnist

[18] Grim, Jirı, and Petr Somol. "A Statistical Review of the MNIST Benchmark Data Problem."

http://library.utia.cas.cz/separaty/2018/RO/grim-0497831.pdf

[19] Preda, Gabriel, Chinese MNIST: Chinese Numbers Handwritten Characters Images, (accessed

01/2021) https://www.kaggle.com/gpreda/chinese-mnist

[20] CoMNIST: Cyrillic-oriented MNIST, A Dataset of Latin and Cyrillic Letters, (accessed 01/2021)

https://www.kaggle.com/gregvial/comnist

International Journal of Network Security & Its Applications (IJNSA) Vol.13, No.3, May 2021

12

[21] Prabhu, Vinay Uday. "Kannada-MNIST: A new handwritten digits dataset for the Kannada

language." arXiv preprint arXiv:1908.01242 (2019). https://www.kaggle.com/higgstachyon/kannada-

mnist

[22] Warden, P. "How many images do you need to train a neural network?" (2017).

https://petewarden.com/2017/12/14/how-many-images-do-you-need-to-train-a-neural-network/
[23] Han, Hong, Xiaoling Guo, and Hua Yu. "Variable selection using mean decrease accuracy and mean

decrease Gini based on random forest." In 2016 7th IEEE International Conference On Software

Engineering And Service Science (ICSESS), pp. 219-224. IEEE, 2016.

[24] Anderson, H. S., & Roth, P. (2018). Ember: an open dataset for training static PE malware machine

learning models. arXiv preprint arXiv:1804.04637.

[25] Manavi, F., & Hamzeh, A. (2020, September). A New Method for Ransomware Detection Based on

PE Header Using Convolutional Neural Networks. In 2020 17th International ISC Conference on

Information Security and Cryptology (ISCISC) (pp. 82-87). IEEE.

[26] Vasan, D., Alazab, M., Wassan, S., Safaei, B., & Zheng, Q. (2020). Image-Based malware

classification using an ensemble of CNN architectures (IMCEC). Computers & Security, 92, 101748.

[27] Oliveira, Angelo (2019). Malware Analysis Datasets: Raw PE as Image. IEEE Dataport.

https://dx.doi.org/10.21227/8brp-j220, https://ieee-dataport.org/open-access/malware-analysis-
datasets-raw-pe-image and Kaggle, https://www.kaggle.com/ang3loliveira/malware-analysis-

datasets-pe-section-headers

[28] Oliveira, Angelo (2019). Malware Analysis Datasets: PE Section Headers. IEEE Dataport.

https://dx.doi.org/10.21227/2czh-es14 , https://ieee-dataport.org/open-access/malware-analysis-

datasets-pe-section-headers and Kaggle, https://www.kaggle.com/ang3loliveira/malware-analysis-

datasets-raw-pe-as-image

[29] Oliveira, Angelo (2019). Malware Analysis Datasets: Top-1000 PE Imports. IEEE Dataport.

https://dx.doi.org/10.21227/004e-v304 , https://ieee-dataport.org/open-access/malware-analysis-

datasets-top-1000-pe-imports and Kaggle, https://www.kaggle.com/ang3loliveira/malware-analysis-

datasets-top1000-pe-imports

[30] Freitas, S., Duggal, R., & Chau, D. H. (2021). MalNet: A Large-Scale Cybersecurity Image Database
of Malicious Software. arXiv preprint arXiv:2102.01072.

[31] Chen, L., Sahita, R., Parikh, J., Marino, M. (2020), “STAMINA: Scalable Deep Learning Approach

for Malware Classification,” Intel Labs Whitepaper,

https://www.intel.com/content/www/us/en/artificial-intelligence/documents/stamina-deep-learning-

for-malware-protection-whitepaper.html

[32] Microsoft, “PE Format”, https://docs.microsoft.com/en-us/windows/win32/debug/pe-format ,

accessed online (Jan 2021)

[33] InfoSec Institute, “Demystifying PE File”, https://resources.infosecinstitute.com/topic/2-malware-

researchers-handbook-demystifying-pe-file/ , accessed online (Jan 2021)

[34] pefile, “Python PE parsing module”, https://pypi.org/project/pefile/ accessed online (Jan 2021) and

description of uses, https://malwology.com/2018/08/24/python-for-malware-analysis-getting-started/

[35] Hartigan, J. A. (1985). Statistical theory in clustering. Journal of classification, 2(1), 63-76.
[36] Lu, Arlen, “Convert-own-data-to-MNIST-format” (accessed 01/2021)

https://github.com/Arlen0615/Convert-own-data-to-MNIST-format

[37] Lee, Juhyun, Nikolay Chirkov, Ekaterina Ignasheva, Yury Pisarchyk, Mogan Shieh, Fabio Riccardi,

Raman Sarokin, Andrei Kulik, and Matthias Grundmann. "On-Device Augmented Reality with

Mobile GPUs."

[38] Shah, Vishal, and Neha Sajnani. "Multi-Class Image Classification using CNN and Tflite."

International Journal of Research in Engineering, Science and Management 3, no. 11 (2020): 65-68.

[39] Belouch, Mustapha, Salah El Hadaj, and Mohamed Idhammad. "Performance evaluation of intrusion

detection based on machine learning using Apache Spark." Procedia Computer Science 127 (2018):

1-6.

[40] Choudhary, Sarika, and Nishtha Kesswani. "Analysis of KDD-Cup’99, NSL-KDD and UNSW-NB15
Datasets using Deep Learning in IoT." Procedia Computer Science 167 (2020): 1561-1573.

[41] Kanimozhi, V., and Prem Jacob. "UNSW-NB15 dataset feature selection and network intrusion

detection using deep learning." International Journal of Recent Technology and Engineering 7: 443-

446.

[42] Pujari, Rakshit, “Network Attack Detection and Classification Using Machine Learning Models

Based on UNSW-NB15 Data-Set”, Medium, (10/2020). https://i-rakshitpujari.medium.com/network-

International Journal of Network Security & Its Applications (IJNSA) Vol.13, No.3, May 2021

13

attack-detection-and-classification-using-machine-learning-models-based-on-unsw-nb15-

a645bba73987

[43] Liu, Li, Jie Chen, Paul Fieguth, Guoying Zhao, Rama Chellappa, and Matti Pietikäinen. "From BoW

to CNN: Two decades of texture representation for texture classification." International Journal of

Computer Vision 127, no. 1 (2019): 74-109.
[44] Chen, Tianqi, and Carlos Guestrin. "Xgboost: A scalable tree boosting system." In Proceedings of the

22nd ACM Sigkdd International Conference On Knowledge Discovery And Data Mining, pp. 785-

794. 2016.

[45] Shorten, Connor, and Taghi M. Khoshgoftaar. "A survey on image data augmentation for deep

learning." Journal of Big Data 6, no. 1 (2019): 1-48.

[46] Samangouei, Pouya, Maya Kabkab, and Rama Chellappa. "Defense-GAN: Protecting classifiers

against adversarial attacks using generative models." arXiv preprint arXiv:1805.06605 (2018).

[47] Noever, D. and Noever, Samantha E. Miller, “Virus-MNIST: Portable Executable Files as Images for

Malware Detection”, https://www.kaggle.com/datamunge/virusmnist and

https://github.com/reveondivad/virus-mnist

	Abstract
	Keywords
	Neural Networks, Computer Vision, Image Classification, Intrusion Detection, MNIST Benchmark.
	2.1. Network Intrusion Dataset
	2.2. Anti-Virus Dataset

