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ABSTRACT 

 
The emergence of mobile platforms with increased storage and computing capabilities and the pervasive 

use of these platforms for sensitive applications such as online banking, e-commerce and the storage of 

sensitive information on these mobile devices have led to increasing danger associated with malware 

targeted at these devices. Detecting such malware presents inimitable challenges as signature-based 

detection techniques available today are becoming inefficient in detecting new and unknown malware. In 

this research, a machine learning approach for the detection of malware on Android platforms is 

presented. The detection system monitors and extracts features from the applications while in execution 

and uses them to perform in-device detection using a trained K-Nearest Neighbour classifier. Results 

shows high performance in the detection rate of the classifier with accuracy of 93.75%, low error rate of 

6.25% and low false positive rate with ability of detecting real Android malware. 
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1. INTRODUCTION 

 
Mobile devices have drastically become a ubiquitous computing and storage platform, among 

these devices; Android holds a large percentage of the market share [1]. In 2013 over 967 million 

units of smartphones were sold to consumers worldwide, of these smartphones sold to end users 

in the final quarter of 2013, almost 78 percent ran on the Android platform [2] this amount to 

sales of almost 220 million units. Based on unit shipments of these smart devices, Android’s 

market share increased further in 2014 with the company holding over 80 percent of the global 

smartphone Operating System (OS) market in the first quarter of 2014 according to this report. 

Similarly, in 2014, sales of smartphones to end users totalled 1.2 billion units, with 28.4 percent 

increase from 2013 as shown in Table 1 and represented two-thirds of global mobile phone sales. 
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Table 1: Global Smartphone Sales (Thousand Units) to end users by Vendor in 2014 (Source: [3]) 

 

Company 2014 Units 2014 Market Share (%) 2013 Units 2013 Market Share (%) 

Samsung 307,597 24.7 299,795 30.9 

Apple 191,426 15.4 150,786 15.5 

Lenovo 81,416 6.5 57,424 5.9 

Huawei 68,081 5.5 46,609 4.8 

LG Electronics 57,661 4.6 46,432 4.8 

Others 538,710 43.3 368,675 38.0 

Total 1,244,890 100.0 969,721 100.0 

 

The availability of smartphones at relatively low prices has led to an accelerated migration of 

feature phone users to smartphones making the smartphone OS market to experience fast growth 

in most emerging countries, including India, Russia and Mexico [3]. This trend continued to 

benefit Android, which saw its market share grow by 2.2 percentage points in 2014, and 32 

percent year on year as shown in Table 2 and charted in Figure 1.  
 

Table 2: Global Smartphone Sales (Thousand Units) to End Users by OS in 2014 (Source: [3]) 

 

Platform 2014 Units 2014 Market Share (%) 2013 Units 2013 Market Share (%) 

Android 1,004,675 80.7 761,288 78.5 

iOS 191,426 15.4 150,786 15.5 

Windows 35,133 2.8 30,714 3.2 

BlackBerry 7,911 0.6 18,606 1.9 

Other OS 5,745 0.5 8,327 0.9 

Total 1,244,890 100.0 969,721 100.0 

 

 
 

Figure 1: Global Smartphone Sales to End Users by OS in 2014 and 2013 Compared 

 

The ubiquity of the Android platform and in deed the Smartphones in general has not gone 

unnoticed by malware developers. Mobile devices have become a target to attacks with Android 

platform being the worst hit [1]. There are already well-known and documented cases of Android 

malware in both official and unofficial markets [4]. With known malware nefarious capabilities 

and effects, the detection of malware is an area of major concern not only to the research 

community but also to the general public. Malware attack is a challenging issue among the 

Android user community. It therefore becomes necessary to make the platform safe for users by 

providing defense mechanism especially against malware [5]. Techniques that researchers 
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develop for malware detections are realized through the implementation of malware detectors [6]. 

Malware detectors are the primary tools in defense against malware and the quality of such 

detectors are determined by the techniques they employed. Intrusion detection methods can be 

classified as host-based, cloud-based or social collaboration. In host-based method which is the 

method adopted in this work, the detection engine runs entirely in mobile device [7]. This rational 

behind the adoption of this method is the assumption that the capabilities of mobile devices in 

general and Smartphones in particular increases steadily following Moore’s theory [8]. This 

means that client-server or cloud-based design decisions that moved most of the data analysis 

processing to the server is changed. The advantages of this architecture are that relocating some 

of server functionality to the client-side will result in the reduction of communication latencies 

[9] while the cost in terms of the use of bandwidth is eliminated with ability for real-time 

detection. The disadvantage of this method is the difficulty in implementation because of the 

resource-poor limitations of mobile devices but the interest here is purely Smartphones. 

 

Irrespective of the detection method employed, techniques used for detecting mobile malware can 

be categorized broadly into three categories: Signature-based detection, anomaly-based also 

known as Behaviour-based detection and Virtual Machine based (VM-based) Detection. Figure 2 

shows the relationship between the various types of malware detection techniques.  

 
Figure 2: A Classification of Mobile Malware Detection Techniques (Source: [6]) 

 

Each of the detection techniques can employ one of the three different approaches: static, 

dynamic or hybrid (see Figure 2). The specific approach of an anomaly-based or signature-based 

technique is determined by how information is gathered for use in malware detection. Anomaly-

based detection systems use a prior training phase to establish a normality model for the system 

activity. In this method of detection, the detection system is first trained on the normal behaviour 

of the application or target system to be monitored. Using the normality model of behaviour, it 

becomes possible to detect anomalous activities by looking for abnormal behaviour or activities 

that deviate from the normal behaviour earlier defined occurring in the system. Though this 

technique look more complex, it has the advantage of being able to detect new and unknown 

malware attacks. Anomaly-based detection requires the use of feature vectors to train the 

classifier before subsequent classification can be carried out. These feature vectors are obtained 

from features or data collected from the system. 

 

This research employs a machine learning approach specifically supervised learning to anomaly-

based detection in a host-based manner. A machine learning model is train using a labelled data 

obtained from the understanding of the application behaviours. The trained classifier is then used 

to predict future outcomes of test feature vectors. The use of machine learning-based classifier to 

detect malware poses two main challenges first, the need to extract some sort of feature 
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representation of the applications and secondly, the need for a data set that is almost exclusively 

benign or well labelled which will be used to train a classifier. In addressing these problems, first 

a heterogeneous data are extracted processed and vectored into a feature set. Secondly, a K-NN 

classifier is trained using a normality model that describes to the classifier the normal behaviour. 

With this, it becomes possible to detect anomalous behaviour by looking for behaviours that 

deviate from the defined normal behaviours of applications.  
 
This paper is organized as follows: section one gives the introduction; in section two, related 

works are discussed; in section three, the approach used to realize the design is presented; in 

section four, the various testing carried out to validate and ensure the workability of the system is 

explained and the evaluation measures adopted are also defined; in section five, results are 

presented and discussed accordingly based on the defined evaluation measures defined in section 

four and finally section six provides conclusions and suggestion for further studies. 

 

2. RELATED WORKS 

 
There have been significant research efforts on the problem of mobile malware detection. 

Generally, malware detection systems employ different approaches. Static analysis approaches 

such as [9]; [10]; [11] are based on comparing applications to already known malware through a 

reverse engineering method that decompiles packaged applications and looking for signatures or 

using other heuristics within the program code. Other approaches like [12]; [13]; [14] monitors 

the power usage of applications, and report anomalous consumption. [15]; [16]; [17] used a 

dynamic analysis by monitoring system calls and attempt to detect unusual system call patterns. 

Some others like [4]; [18] used the universal signature-based approaches that compare 

applications with known malware or other heuristics. While [19]; [20]; [21]; [22] focused on the 

use of machine learning and data mining approaches for malware detection.  

 
Although Crowdroid by [16] used a machine learning-based framework that recognizes Trojan-

like malware on Android Smartphones, it monitored the number of times a particular system call 

was issued by an application during the execution of an action that requires user interaction. 

Crowdroid used about 100 system calls with only two trojanized applications tested. The 

HOSBAD approach differs from Crowdroid in that it use features extracted from the application 

layer rather than the kernel layer. Device does not need to be rooted as in the case of intercepting 

system calls. Furthermore, feature extraction and detection need not be carried out on external 

servers but in-device in a host-based manner.  

 

Similarly Andromaly by [23] is an intrusion detection system that relies on machine learning 

techniques. It monitors both the Smartphone and user's behaviours by observing several 

parameters, spanning from sensor activities to CPU usage. Andromaly used 88 features to 

describe system behaviours besides rooting the device and the use of external Linux server; the 

features are then pre-processed by feature selection algorithms. Compared to Andromaly, 

HOSBAD approach use fewer sets consisting of five features without the need for external 

server; HOSBAD is host-based and does not require the device to be rooted.  

 
In the work of [24] a machine learning approach was adopted using the clustering model for the 

analysis of static function calls from binaries to detect anomalies. This technique was used to 

detect malware on the Symbian operating system. The framework included a monitoring client, a 

Remote Anomaly Detection System and a visualization component. Remote Anomaly Detection 
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System is a web service that receives, from the monitoring client, the monitored features and 

exploits this information, stored in a database, to implement a machine learning algorithm. In 

HOSBAD, the detection is done dynamically rather than the statically furthermore, the detection 

will be performed locally and need no connection to remote server saving bandwidth cost, 

eliminating latency delay and, more importantly, in real-time. HOSBAD uses a supervised 

machine learning model the K-NN classifier as opposed to clustering being used by Aubrey et al. 

Instead of performing static analysis on the executable to extract functions calls usage using 

readelf command, HOSBAD will use dynamic analysis of applications at the application layer. In 

the work of [18]; [25] their detection framework were targeted at the Symbian platform while 

HOSBAD operates on the Android platforms the most used mobile platform in recent times. 

They discriminate the malicious behaviour of malware from the normal behaviour of applications 

by training a classifier based on Support Vector Machines (SVM). HOSBAD approach does not 

only differ from their work in terms of platform but also uses KNN classifier as opposed to SVM 

used by these authors. The reason is that mobile devices are resource constrained, SVM requires 

large memory as opposed to KNN classifiers, and this makes KNN more suitable for host-based 

implementation than SVM. 

 
Dini et al., [26] presented Multi-Level Anomaly Detector for Android Malware MADAM. 

MADAM is a multi-level system that extracts features from both the application level and the 

Kernel level using a total of 13 features to describe the system behaviour including system calls. 

It is target on a rooted device and adopted a static approach that requires applications to be 

decompiled. Unlike HOSBAD approach, MADAM did not consider phone calls made or 

received by applications in describing system behaviour. 

 

Portokalidis et al., [27] used a VMM approach to malware detection in their design of Paranoid 

Android system where researchers can perform a complete malware analysis in the cloud using 

mobile phone replicas. In their work, the phone replicas are executed in a secure virtual 

environment, limiting their system to no more than 105 replicas running concurrently. In their 

approach, different malware detection techniques can be applied but compare to HOSBAD 

approach, there is no restrictions to the number of users since the approach is host-based where 

the detection will be local to the device without the need for cloud infrastructure benefiting from 

the advantages of local detection systems. 

 

Mirela et al., [28] used neural network approach this proved effective in detecting fraud calls and 

imposters. The disadvantage of this method is that the process is relatively slow and this method 

classifies applications into groups having same behaviours and hence, there will be lot of false 

positives. Jerry et al., [29], focused on viruses that are transmitted through SMS messages and 

other communication interfaces like Bluetooth and Infrared. But they did not concentrate on 

worms that will automatically make high rate calls from the mobile device which will incur loss 

to the user as they are only collecting and monitoring SMS traces.   
 

3. APPROACH 

 
HOSBAD is a Host-based Anomaly Detection System targeted at Android Malware propagated 

via SMSs and calls. HOSBAD integrates data mining with supervised machine learning 

techniques in its implementation. It is designed to monitor and extract Android’s applications 

data at the application layer and using these data to detect malware infections using a supervised 

machine learning approach to differentiate between normal and malicious behaviours of 
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applications. The problem of anomaly detection can be considered as a problem of binary 

classification according to [26], in which good behaviour is classified as “Normal”, while 

abnormal ones are classified as “Malicious”. The supervised machine learning model could be 

viewed as a black box having as input sets of behaviours formatted into sets of feature vectors in 

ARFF and the output is a flag of “Normal” or “Malicious”. The supervised machine learning 

model which in this case is the K-NN classifier is trained using a normality model on how to 

classify correctly each element of the feature vector. The training of the classifier takes place at 

the point called the training phase. This phase is critical because the accuracy of the classifier is 

dependent on the training phase hence a good training set must be supplied to the classifier. Table 

3 shows the list of monitored features used in this work.  

 
To generate a good feature vector that represents typical Android device behaviour HOSBAD 

utilize features that represents behaviours when the device is active and when it is inactive. 

However, our training set also contains some malicious behaviour, which strongly differs from 

the normal ones. Choosing the right features to best represent the device behaviours is a critical 

task, since their number and correlation determine the quality of the training set [30].  

 
Table 3: List of Monitored Features 

 

S/No.  Features 

1. In/Out SMSs 

2. In/Out Calls 

3. Device Status 

4.  Running Applications/Processes 

 

3.1 Malware Detection Processes 
 

HOSBAD combines features extracted from different categories of the device functionality as 

given in Table 3. First, it monitors the device activities and extracts the features associated with 

these activities. Secondly, it observes correlation among the features derived from the events 

belonging to the different activities. In order to extract features first, HOSBAD monitors the in-

coming and out-going SMSs. An application may send SMS during its execution and for this to 

happen, it must contain the SEND_SMS permission in its manifest file otherwise the application 

will crash as soon as it tries to send SMS message by invoking the SEND_SMS function. The 

Permissions required by an application are displayed to the user during installation time and the 

user must either accept all or forfeit the installation of the application that is, the user must agree 

with all the stated permissions for the application to get installed. This mechanism provides a 

rough control that can be effective especially to new Android users. An application that gets the 

SEND_SMS permission could be harmful, since it is able to send SMSs including premium 

SMSs without the knowledge of the user. This attack is performed by a good number of Android 

malware that can be found in the markets, since this attack is easy to realize and inimical to the 

user's credit for this reason, HOSBAD monitors SMS usage.  

 
Furthermore, the system monitors In-coming and Out-going calls since a good number of 

Android malware initiates calls unauthorized by the user. Lastly, the system monitors the status 

of the device. The device status is a very good feature since the activity of the device is usually 

more intense when the user is actively interacting with the device. It is a clear fact that after a 

very short period of user inactivity the device screen is turned off by the OS, the device can be 

considered active either if the screen is in ‘ON’ or there is an active voice call [26]. The elements 
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of the datasets are vectors with M + 5 features, where M represents features added to the 5 

features during the process of parsing or pre-processing by the parser function, these features are 

two in number namely; the Date/time stamp and the Applications/processes running on the device 

at the time. The 5 features include the number of OutCall, InCall, OutSMS, InSMS and the 

device status (active or inactive). An architectural description of the HOSBAD system is given in 

Figure 3.  

 
To monitor and extract the stated features from the device, the design includes three monitors; the 

call monitor, the SMS monitor and the device status monitor see Figure 3. A collector receives 

these features from all the monitors and then builds the vectors in .csv format. These vectors are 

parsed and converted to arff; the format acceptable by Weka machine learning tool and stored in 

local files on the SD card in .arff using a logger module so that they can be used as test set.  

 

 
Figure 3: Architecture of the Host-based Anomaly Malware Detection System (HOSBAD) 

 

The classifier module is responsible for performing behaviour-based analysis in which Android 

applications are classified as either Normal or Malicious. This is done by employing the trained 

K-NN classifier. A key process of the system is the training phase which identifies the behaviour 

of the applications. It identifies Android applications into two classifications namely: Normal and 

Malicious. Figure 4 gives a complete representation of the processes involved in the different 

phases of the malware detection. 

 
The Waikato Environment for Knowledge Analysis (WEKA) tool [31] is used programmatically 

by adding the weka.jar file as external jar to the project. After this is done, the machine learning 

models embedded in the Weka tool become available and are accessed via some sets of 

Application Programming Interfaces (APIs) provided by Java. The K-NN classifier of Weka tool 

is invoked and train using set of feature vectors called the normality model.    

 

3.2 The Normality Model  
 

In order to efficiently develop a machine learning model, it is important to train the model on the 

normal and abnormal behaviour of the system. To do this, a normality model is required to 

describe to the classifier the pattern of behaviours. Hence a normality model is designed based on 
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the fact that malware requires user interaction to activate its payload on the target device. For 

malware that uses SMS and calls as its propagation vector, it becomes evident that user 

interaction is necessary for such malware to propagate. SMSs and calls require user interaction 

with the device to compose and send SMSs or to initiate calls. Therefore, a normal SMS and call 

activity is one that has active user interaction. In this work, five (5) features were used to describe 

a normality model for the K-NN model, these features include: 

 

i. The out-going call 

ii. The In-coming call 

iii. The Out-going SMS 

iv. The In-coming SMS and  

v. The device Status. 

 

These features were used as follows; 

 

i. If the device is active or inactive at the point of any activity;  

ii. If any SMS is being sent or received when the phone is inactive and  

iii. If any call is being made or received when the phone is inactive 

 

Using a binary representation for these features, the number of probable permutations of these 5 

features is obtained by the formula in (1)  

 2�                              (1) 

Where n is the number of features to be represented. 

 

In this case our n = 5; so we get 2� = 32 instances of the features. The value of 1 represents the 

presence of the feature while the value of 0 represents the absence of that feature. The numeric 

count of how many occurrence of the feature is immaterial because even a single presence is 

enough to describe the entire behaviour. For the device status, 1 represents an active user 

interaction where the device screen is ‘ON’ while 0 represents no interaction with the device with 

the screen turned ‘OFF’ or hibernated. The combination of the features gives thirteen (13) normal 

instances and nineteen (19) malicious instances based on the condition that certain activity do not 

occur at the same time and at certain device state. For example the instances given as; 
 

��	
��� ����� ��	���
0 0 1
0 0 1

   
���� ����
� �	�	�� �����

0 0 ����
����
0 1 ������

 

 

The first instance signifies the occurrence of an out-going SMS while the device screen is in an 

inactive (OFF/hibernated) state. The application behaviour represented by this instance is 

suspicious; the reason is that sending SMS requires active interaction with the device; to compose 

the text message and then send it by pressing the send button. This activity would not have been 

made by a valid user when the device is idle hence; it is classified as a malicious behaviour. In 

the second instance, the out-going SMS occurred while the device screen state is active signifying 

that there is active interaction with the device that kept the screen light ON hence, the activity is 

classified as a normal activity. This normality model is parsed and converted into Attribute 

Relation File Format (ARFF) with the date/time stamp and application and or services features 

appended to each instance and used to train the K-NN classifier. 
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3.3 The Training Phase 

 
The processes of data gathering, pre-processing or parsing and classifier training are collectively 

referred to as the Training Phase while the stages where the user interacts with the device and its 

installed applications resulting to monitoring and recording of the feature vectors, parsing of 

feature vectors, classification and report generation are referred to as the Operative Phase. In the 

training phase, behaviour model for Android applications represented by the normality model is 

used to train the classification algorithm. The training or learning phase creates a trained machine 

learning model or classifier with knowledge of how to classify or predict the future test set that 

will be supplied to it by the feature extraction module at the operative phase. The normality 

model is parsed and translated into ARFF for Weka to be able to process the collected data. In the 

training phase, a training set is used to obtain a trained K-NN classifier while in the operative 

phase, the user uses the device and each monitored feature vector is given as input to the trained 

K-NN classifier that classifies them as Normal or Malicious with a notification immediately 

displayed on the device screen for the user who then decides whether to leave the application or 

service running in the device or to uninstall it depending on the outcome of the classification 

result. 

 

 
 

Figure 4: Stages of the Malware Detection System 

 

3.4  K-NN Classification 

 
The algorithm used for this module is the K-NN model or classifier which is one of the machine 

learning models embedded within the Weka tool. This is part of the Operative Phase which 

combines testing using the test feature set used for the classification after the training phase. The 

testing feature set is the output of the feature extraction module which is a file in arff containing 

unclassified instances of application behaviours to be tested or classified. Figure 8 shows a 

sample of test.arff file generated by the monitoring module to be passed to the classification 

model for classification. The classifier out this file as a labeled.arff file which is the classified file 

output from the K-NN classification model.    

 
In the training of the K-NN classification model, samples containing 32 instances (13 normal and 

19 malicious) obtained from the normality model were used. In order to get test feature vectors, 

the device monitoring was carried out by the feature extraction module whose output is arff 
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containing the instances of application behaviours. The number of instances depends on the 

number of applications installed on the device, the user interactions with the installed 

applications and the duration of the monitoring. This file is used as test feature which is passed to 

the trained K-NN classifier for prediction or classification. The evaluations are carried out based 

on the defined evaluation criteria in (2) to (11) given in section 4.1. A 10-fold cross validation 

was employed; this strategy was chosen to provide a wider range of samples for the testing of the 

classifiers’ ability to detect unknown malware. 

 

3.5 Implementation 

 
The detection framework has been developed on a laptop machine with the Intel Core-i3-370M 

Processor, 3GB of available memory and 500GB Hard Disk Drive (HDD). This machine runs 

Windows 7 Operating System and tests are carried out on a TECNO P5, with Android Jelly Bean 

version 4.2.2 OS, and Linux kernel version 3.4.5. The implementation does not require rooting or 

jail breaking the device since the monitored features are all carried out at the highest layer; the 

application layer. The component of the system framework includes an Android Application in 

Java implemented using the Android Studio version 1.3.2 Integrated Development Environment 

(IDE) as the Software Development Kit (SDK).  

 
The first component of the Java Application is the Device Monitoring, which monitors the device 

for activities. These activities include (i) sent SMSs (ii) received SMSs (iii) initiated calls (iv) 

calls received and (v) the device status (idle/active). The Java application also includes two task 

modules; application-level logger (see Figure 3), which reads the vectors built by the collector in 

the .csv format and parse them into .arff and then logs them on the SD card. The second task is 

the classifier that states if the vectors built by the collector and logged in the logger are normal or 

malicious. If an instance is classified as malicious, the classifier sends a notification to the device 

screen for the user and then the classified vector is logged on the SD card. For classification 

Weka version 3.7.3; an open source library in Java that includes several classification tools was 

used by adding the Weka.jar file as an external library to the Android Studio project from where 

the available features are invoked programmatically using sets of available Java APIs. The screen 

display of the integrated detection system is given in Figure 5. 

 

 
 

Figure 5: Screen Shoot of the HOSBAD Application 



International Journal of Network Security & Its Applications (IJNSA) Vol.7, No.6, November 2015 

25 

4. HOSBAD SYSTEM TESTING 

 
This section discusses the tests that were performed on the system to ascertain its effectiveness 

and performance. The Application was installed on different devices running different versions of 

Android and reports are collected and analyzed. In order to have enough dataset for analysis, the 

design include a means of obtaining monitored reports remotely via email such that the 

application can be installed on different versions of Android and configured to send reports to the 

desired email address without the user’s interference. Users of these devices will interact with 

their device normally and after a desired period of time, the monitoring will be stopped and the 

reports immediately sent to the specified email address. Figure 6 shows the configuration 

interface of HOSBAD for local and remote reporting. The Results obtained from monitoring the 

device shown in Figure 8 identifies the tested applications under AppName attribute in the report. 

These applications are not known prior to monitoring but as the monitoring is done, the 

applications are added and combined with the values from the Training file to make a new file the 

test.arff. The normality model which was carefully constructed to represents the complete 

permutations of the features was used for training the classifier. Tests were carried out on the 

trained classifier in the operative phase where the user uses the device. During this time, the 

device monitoring is carried out where features were extracted, parsed and logged into feature 

vectors in ARFF. The monitoring report was then used to test the performance of the classifier by 

running the classifier against the reported feature vectors.  

 

 
 

Figure 6: Screen Shoots of the HOSBAD Application Configuration for Local and Remote Reporting 

System 

 

In a normal usage, SMS and Calls require active interaction and both actions cannot be 

performed simultaneously that is; SMS cannot be composed and sent at the same time that a call 

is being initiated. However, some applications send or receive SMSs to provide some kind of 

services. Since, SMS is a costly service, if compared to the amount of data that are sent with a 

message, applications should avoid SMS as communication channel as much as possible, and 



International Journal of Network Security & Its Applications (IJNSA) Vol.7, No.6, November 2015 

26 

they should require that the user actively agrees with the sending of each message. Applications 

that send SMS messages or initiates calls when the device is inactive should be considered 

malicious. Similarly, Applications that sends SMS while an active call is on or vice versa should 

be classified as malicious. For all these reasons, a log of several SMS sending operations were 

made and several calls initiated to represent real-life scenarios and the resulting vectors added to 

the dataset. To properly test this application’s performance, an SMS malware called SendSMS 

that automatically sends SMSs to a specified number at certain time intervals was also developed. 

This malware sends the SMS without the user being aware and uses up the users’ credit without 

giving message sending report. The feature vector of this SendSMS application is observed in the 

monitored report feature vector instances and the classifier run on the feature vectors to see if the 

developed malware will be caught by HOSBAD and classified adequately.   

 
Classifiers are not able to predict suspicious elements if they are not trained. As previously stated, 

a malicious behaviour is one that strongly deviates from those known to be normal. Hence, we 

have manually defined some malicious elements by creating vectors with SMS and call 

occurrences, when the user is idle, and vectors with SMS and calls both initiated at the same 

time. Figure 8 shows example of a report produced during device monitoring. The first entry in 

the report is the date/time stamp, the second entry is the running application or service, the third 

entry is the OutCall, the fourth entry is the InCall, the fifth entry is the OutSMS, the sixth entry is 

the InSMS. These header titles are defined by the ARFF @ symbols after the @relation key 

word. The seventh entry is the device status and the last entry which is not derived from the 

monitoring events represents the class the instance belongs to after classification. Before the 

classification the value for this field is ‘?’ which is Weka’s default way to represent an unknown 

class, these are replaced immediately after classification is carried out on the file to produce the 

predicted value of either “Normal” or “Malicious”. Figure 8 shows a parsed monitored and 

extracted feature vector that has not been classified. 

 
To represent malicious behaviours concerning SMS messages, we have manually added to the 

test set some vectors with a number of sent messages. It is to be noted here that if the classifier is 

trained using such dataset, which does not include malicious vectors generated by real malware 

then each malware, if detected, can be considered as a zero-day-attack according to [26]. The 

classifier is a K-Nearest Neighbours (K-NN) with K = 1 (also known as 1-NN). This classifier 

has very good performance and can easily adapt to a large number of problems, requiring a small 

amount of computation time to classify an element and a trivial update algorithm amenable to 

mobile devices which are limited in their available resources. Figure 7 shows the working display 

of HOSBAD detection system using features vectors with normal instances and one with 

malicious instances.  

 

4.1 Evaluation Measures 

 
There are many evaluation measures proposed in literature for evaluating the predictive accuracy 

of machine learning models. Some of these measures have been employed by scholars in their 

machine learning researches in time past, for example [32]; [21]; [33]. In the context of our 

problem, the relevant measures used in line with this research are detailed hereafter. 

 

Supposed that �� → ������ is the number of Normal applications correctly classified as 

Normal, and  �� →  ����
���� be the number of Normal applications incorrectly classified as 

malicious, �� → ����
���� be the number of malicious applications correctly classified as 
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Malicious and �� → ������ be the number of malicious applications incorrectly classified as 

Normal. The accuracy of the classifier’s algorithm which is the proportion of the total number of 

predictions that were correct is given in (2). 

 

       �

���
� (�

. ) =  #$ →$%&'()*#+ →+(),-,%./
#$ →$%&'()*#$ →+(),-,%./*#+ →$%&'()*#+ →+(),-,%./       (2) 

 

The error rate is given by: 

 

    0���� ��	� (0. 1) =  �2 →34567689:*�3 →28;<45
�2 →28;<45*�2 →34567689:*�3 →28;<45*�3 →34567689:          (3) 

 

The accuracy measure in (2) shows the general statistics of correctly classified instances, whether 

Normal or Malicious of the machine learning model during the testing phase. The error rate given 

by (3) can also be calculated by the equation; 

     

      0���� ��	� = 1 − �

���
�              (4) 

 

This is the complementary measure of the accuracy. 

Other evaluation measures like Positive predictive value or precision also known as True Positive 

Rate (TPR), Negative predictive value or True Negative Rate (TNR), False Positive Rate (FPR), 

False Negative Rate (FNR) and Precision (ρ) are also defined and given in (5) to (11). 

                                    >?1 = �3 →34567689:
�3 →34567689: * �3 →28;<45                 (5) 

 

>�1 =  �2 →28;<45
�2→28;<45 * �2 →34567689:            (6) 

 

@?1 =  �2 →34567689:
�2 →34567689:*�2 →28;<45       (7) 

 

@�1 =  �3 →28;<45
�3 →34567689:*�3→28;<45       (8) 

 

A =  �3 →34567689:
�2 →34567689: * �3 →34567689:       (9) 

 

The TPR is also known as the model’s detection rate and it is the proportion of positive cases that 

were correctly identified. It is the number of truly malicious applications that are classified as 

Malicious divided by the total number of malicious samples in the test set; this measure 

represents the classifier’s ability to detect ‘unknown’ malicious samples. The FPR, with respect 

to the malicious class is measured by the number of true Normal applications misclassified as 

Malicious to the total number of Normal instances recorded during testing. This is 

complementary to the TNR given by (6). FNR is the measure of the classifier’s tendency to 

misclassify malicious applications as Normal; the FNR measure is complementary to the TPR or 

detection rate. The precision measure (A) indicates the precision of the classifier when it takes 

decision to classify a sample as Malicious. Finally, the Area under the Receiver Operating 

Characteristics (ROC) curve, (AUC) which is the total area under the plot of FPR against TPR is 

measured.  

Hence, 
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0 ≤ �C� ≤ 1 
 

Given an ROC curve, a perfect classifier will have an AUC of 1. Thus, the closer the AUC is to 

1, the greater the classifier’s predictive strength and hence the performance. We also have 

Sensitivity or recall defined as the proportion of actual positive cases which are correctly 

identified; this is given in (10). 
 

 

            Sensitivity (Sen.) = 
 #$ →28;<45

(#$ →28;<45*#+ →28;<45)             (10) 
 

Similarly, we define specificity as the proportion of actual negative cases which are correctly 

identified. This is defined in (11). 
 

Specificity (Spec.) = 
#+ →34567689:

(#$ →34567689: * #+ →34567689:)     (11) 

5. RESULTS AND DISCUSSION OF RESULTS 

 
Figure 7 shows screen shoots of HOSBAD after monitoring and detection was carried out first on 

feature vector without any malicious instance and then on feature vector with two malicious 

instances. Detail result from monitoring and detection are given in section 5.1. 

 

 
 

Figure 7: Screen Shoots for Normal and Maliciously Classified Instances 

 

5.1 Results 

 
The results obtained from the test are shown in Figure 9 and clearly tabulated and summarized in 

Table 4. These results were obtained from a single run of the detection model and are discussed 

based on the evaluation measures earlier discussed in section 4.1. 
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Figure 8: Test.arff- An Unclassified Feature Vector 
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Figure 9: Detailed Result of the Test Performed 

 

 
Figure 10: The Confusion Matrix 

 

The confusion matrix shown in figure 10 is of the form:  

 
DE F

� GH 
 

Which is a 2 x 2 matrix representing the two classes (a = Normal and b = Malicious) where the 

entries w = nN → ������; x = nN → ����
����; y = nM → ������ and z = nM → ����
����. 
 

Table 4: Summarized Test Results 

 
Class Accuracy Error Rate TPR TNR FPR FNR A AUC Recall 

Normal 0.9375 0.0625 1.000 1.000 0.154 0.154 0.905 0.996 1.000 

Malicious 0.9375 0.0625 0.846 0.846 0.000 0.000 1.000 0.996 0.846 

Sensitivity 0.9048 

Specificity 1.000 
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5.2 Discussion of Results 

 
Based on the output of the test carried out, it is obvious that the K-NN provides a very high 

accuracy of 0.9375 representing 93.75 percent (≈ 94 percent) of the samples correctly classified 

with error rate of as low as 0.0625 representing 6.25 (≈ 6 percent) percent as shown in the output 

of Figure 9 and summarized in Table 4. The TPR of the Normal and Malicious samples which is 

the same as the Recall are 1.000 and 0.846 while the precisions are 0.905 and 1.000 respectively. 

The precision of Normal classified samples and Malicious Classified samples does not vary much 

from each other meaning that the predictive capacity of the K-NN classifier is almost equal in 

both cases. The Area under Curve (AUC) of the ROC is 0.996. The AUC has a standard range 

of 0 ≤ �C� ≤ 1, which mean that the obtained value of 0.996 is a good indication of the 

performance of the K-NN classifier as a model for malware detection. As earlier stated, a perfect 

classifier will have an AUC of 1. Thus, the closer the AUC is to 1, the greater the classifier’s 

predictive strength and hence the performance, Figure 11 shows the ROC curve which is a plot of 

FPR on the X-axis against TPR on the Y-axis. The sensitivity and specificity measure of K-NN 

algorithm based on equations (10) and (11) are 0.9048 and 1.000 respectively. The sensitivity and 

specificity of the K-NN algorithm is very high as indicated. Sensitivity is the proportion of actual 

positive cases which are correctly identified while Specificity is the proportion of actual negative 

cases which are correctly identified.  

 

 
 

Figure 11: The Receiver Operating Characteristic Curve 

 

The Confusion matrix of Figure 10 shows the misclassified malicious samples and the correctly 

classified samples from the experiment, the incorrectly classified cases were due to the malicious 

class samples misclassified as being of the Normal class. We also point out from Figure 9 the 

time taken to build the model which is less than a second these results shows that the K-NN 

classification model and the current dataset yields very promising results for its applicability on 

real-time monitoring of malware infections on real Android devices.  

 
These results were in conformity with results obtained by previous researchers in their related 

works for instance, [34] in their work using J48 decision trees and Random forest classifiers 

produced accuracies of 91.6 percent and 96.7 percent respectively. Similarly, [35] in their study 

of machine learning classifiers for anomaly-based mobile botnet detection using K-NN produced 

99.9 percent accuracy. While we take cognizance of the difference in platforms, datasets, 

approaches and dimensions of their works to ours, the performance results obtained in all cases 

bear close resemblance to each other without much difference and in some cases, the K-NN 

model performs better than other classifiers like the J48 decision trees attesting to the inherent 
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high performance of the K-NN classification model. As earlier noted the performance of the 

classifier depends largely on the training set; the better the training set supplied to a classifier, the 

better the performance of that classifier. We note that the features observed for the dataset are not 

global in nature that is, features that were monitored were only obtained from the application 

layer and no feature was recorded from the kernel layer. The reason for this is that access to 

features from the kernel layer like system calls, network activities etc. is deprecated on modern 

versions of Android. Access to kernel features is not possible without rooting the device and 

rooting the device is a bridge of the security that we are trying to improve as it opens up the 

entire file system of the device making it vulnerable to more attacks. 

 

6. CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDIES 
 

6.1 Conclusions 

 
In this work, a supervised machine learning approach has been used to implement an anomaly 

detection system for Android. A K-NN machine learning model was effectively trained and used 

on test feature set to predict instances of the feature set as either Normal or Malicious. The test 

sets were obtained from monitored application features by a monitoring module implemented in 

the system using Java. In other to carry out classification task, Weka tool which is a library in 

Java was used as external jar file added to the Android project and accessed programmatically 

using Java APIs. The monitoring and feature extraction model was successfully implemented and 

the K-NN classifier in Weka was also successfully trained and integrated with the monitoring 

model to carry out anomaly detection tasks. Results showed that the performance of the K-NN 

model yields very promising results for its applicability on real-time monitoring of malware 

infections on real Android devices as it gives an accuracy of 93.75 percent and error rate of 6.25 

percent. It is also very clear that the false positive rate of the machine learning model for the 

malicious and normal samples stood as 0.000 and 0.154. This implies that there are no 

misclassified normal samples and the number of misclassified malicious samples was very 

minimal implying a very low false positive rate.  
 

From the results obtained, it is obvious that machine learning technique holds a promising future 

for its application in mobile malware detection especially anomaly based approaches. Machine 

learning models and K-NN especially can be tailored to mobile systems due to its simplicity and 

low resource requirement since mobile devices are resource poor. This research demonstrates the 

feasibility and practicability of the use of machine learning technique using the K-NN models to 

detect real malware on Android mobile systems.  

 

6.2 Suggestions for Further Studies 

 
The dataset used in this research are not global in nature that is, features that were monitored 

were only obtained from the application layer and no feature was recorded from the kernel layer. 

The reason is that access to kernel layer features are deprecated by Google Android. Access to 

low level kernel layer features would provide a better description of the system behaviours that 

can serve as true representation of the system behaviour. The means of accessing these features 

without rooting the device still remain a challenge. Furthermore, the set of applications 

behaviours studied in this paper could be extended to include other system behavious. This will 

extend the dataset which is the set of monitored features beyond SMSs, calls and device status to 

incorporate more features that will give a more general and system wide representation of the 
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behaviour of the system. This will increase the accuracy and the number of malware categories 

that would be detected beside SMS and call based malware. It is also desired to target the 

detection system to work on all mobile platforms (like iOS, Windows etc.) and not just Android 

alone. 
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