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ABSTRACT 

 
With the growing deployment of host-based and network-based intrusion detection systems in increasingly 

large and complex communication networks, managing low-level alerts from these systems becomes 

critically important. Probes of multiple distributed firewalls (FWs), intrusion detection systems (IDSs) or 

intrusion prevention systems (IPSs) are collected throughout a monitored network such that large series of 

alerts (alert streams) need to be fused. An alert indicates an abnormal behavior, which could potentially be 

a sign for an ongoing cyber attack. Unfortunately, in a real data communication network, administrators 

cannot manage the large number of alerts occurring per second, in particular since most alerts are false 

positives. Hence, an emerging track of security research has focused on alert correlation to better identify 

true positive and false positive. To achieve this goal we introduce Mission Oriented Network Analysis 

(MONA). This method builds on data correlation to derive network dependencies and manage security 

events by linking incoming alerts to network dependencies. 
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1. INTRODUCTION 
 
The United States intelligence community has identified malicious actors exploiting cyberspace 

as a top national security threat [15].Similarly, Dell's annual threat report states a 100% increase 

in SCADA attacks [16].This report is based on analysis of data gathered by Dell's global response 

intelligence defense network that consists of millions of security sensors in more than 200 

countries. In our daily lives, we depend on network services in many aspects (e.g., Internet 

banking, email, file sharing, medical services and smart homes).Also, enterprise networks consist 

of hundreds or even thousands of network services. Network services operate on distributed sets 

of clients and servers and rely on supporting network services, such as Kerberos, Domain Name 

System (DNS), and Active Directory. Hence, network services need to interact with each other in 

order to function correctly. Engineers use the divide-and-conquer approach and often to fulfill a 

task, multiple network services are required. This allows engineers to reuse network services and 

not have to re-implement complex customized ones. 

 

Some network services are used in many other network services. We define them as supporting 

network services. A failure in a supporting network service leads to a failure in many other 

network services. Hence, IT administrators and IT managers are interested in knowledge about 

dependencies between network services. Recent efforts have lead to different approaches for 

analyzing network traffic to identify dependencies between network services. � 
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For network security it is necessary to understand a distributed system's perimeters. The criticality 

of a network event or alert can only be assessed, if it's implications on the monitored systems are 

understood. 

 

Traditionally, the success of security information and event management (SIEM) is determined 

by the level of protection of critical network devices and applications from attackers. Critical 

network devices can be routers, servers, etc. and critical applications can compromise database 

management software or tools for monitoring and controlling an infrastructure. At the same time, 

it is understood that the ultimate goal of SIEMs is to protect ongoing and planned missions. Using 

current methods, it is virtually impossible to determine the impact of events on the attainment of 

mission objectives. Do we know which mission elements are affected? A monitored network is 

built with a higher-level purpose, a mission, in mind. So why not change our focus from trying to 

assess how an event reflects a potential attacker’s behavior to trying to assess its impact on a 

monitored network’s ongoing network activities?  

 

1.1. Related Work 

 
Several researches have concentrated on how to reduce the number of alerts reported by host-

based and network intrusion detection systems, intrusion prevention systems or firewalls as well 

as decrease their false positive rate [17], [18], [19]. Similarity-based alert correlation approaches 

rely on features to compare the similarity of two alerts or the similarity of a single alert to a 

cluster of alerts. A similarity-based alert correlation approach is proposed by Cuppens et al. [20], 

and Peng et al. [21], who all cluster similar alerts to discover high-level attack scenarios.  Others 

focus on reducing the problem of aggregating alerts into multi-step attacks to data mining 

problem [22], [23] or represent and reason with operators’ preferences regarding the events and 

alerts they want analyze in priority [24].Another machine learning based approach focuses on 

correlating alerts according to the information in the raw alerts without using any predefined 

knowledge [23]. We use a deep understanding of network activities for security event 

management. To derive a deep understanding of network activities, we rely on network 

dependency analysis.  

 

Often, different network services are required to perform a single task. If at least one service fails, 

the whole task could potentially fail. Sherlock [10] introduces an inference graph to represent 

dependencies between network services. The dependencies are calculated using co-occurrences 

between services. Co-occurrence exists, when two services are used in a defined window. Orion 

[11] is another approach to identify dependencies between network services using spike detection 

analysis in delay distributions of flow pairs. Two other network-based dependency analysis 

approaches are NSDMiner [12] and Rippler [13]. All mentioned approaches are based on network 

traffic. Rippler actively embeds communication delays in order to identify network dependencies. 

Passive approaches to identifying network dependency do not need additional software on hosts 

in the network and do not need any changes of applications or systems. They are analyzing 

communication between network services. Sherlock and Orion are presented as host-based 

approaches, but it is possible to implement them in a network-based manner without additional 

software.  

 

2. NETWORK DEPENDENCY ANALYSIS 

 
Network dependency analysis has the purpose of identifying complex dependencies between 

network service and components that may potentially be affected. The goal is to prevent 

unexpected consequences. Network dependency analysis requires analyzing network flows ina 

monitored infrastructure. 
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2.1.Network Flow 

 

Figure 1. Before transmitting data from Initiator to Receiver a TCP connection has to be 

initialized by a 3-way handshake (left figure). After data i

performed (right figure). 

 

We conduct a network dependency analysis based on packet headers (e.g. IP, UDP and TCP) and 

timing data in network traffic. Hence, our approach oper

with a 3-way handshake (SYN, SYN

with a 4-way handshake (FIN, ACK, FIN, ACK) or RST packet exchange. If network services 

communicate frequently, they may forgo 

KEEPALIVE messages to maintain a connection in idle 

initialization of a TCP session and termination of initialized TCP session

messages to identify network flow boundaries. In comparison the notion of UDP flows is vague, 

since UDP is a state- less protocol. This is due to the protocol not having well

for the start and end of a conversation between server and client. In the context of this wo

consider a stream of consecutive UDP packets between server and client as a UDP flow, if the 

time difference between to consecutive packets is below a predefined threshold. In our analysis 

we exclude all network packet that are necessary for establi

server and client. So given that addit

these end-to-end interactions between network service

The direct dependency between network services 

SDEP = {(s
j
i, s

l
k) | s

j
isends a packet to s

 

2.2. Network Packet 

 
The basic building blocks of our approach are

dependent network services. A network packet is exchanged by a source and destination IP 

address srcIP and dstIP via source and destination port srcPort and dstPort. In addition, a network 

packet relies on a specific transport laye

transport layer protocols TCP and UDP. 

 

We define a network packet as a 6

P = (sIP, sPort, dIP, dP ort, ψ, t),                                                                              

for source IP addresses sIP , a source ports sP

dPort, a transport protocol Ψ = {UDP, TCP} and timestamps t. 

 

2.4. Network Services 

 
Network services hosted by network devices

all network services hosed by the network device d
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Figure 1. Before transmitting data from Initiator to Receiver a TCP connection has to be 

handshake (left figure). After data is transmitted, a TCP teardown is 

We conduct a network dependency analysis based on packet headers (e.g. IP, UDP and TCP) and 

ffic. Hence, our approach operates on network flows. A TCP flow starts 

way handshake (SYN, SYN-ACK, ACK) between a client and a server and terminates 

way handshake (FIN, ACK, FIN, ACK) or RST packet exchange. If network services 

communicate frequently, they may forgo the cost of repetitive TCP handshakes by using 

KEEPALIVE messages to maintain a connection in idle periods. Figure 1 represents the 

initialization of a TCP session and termination of initialized TCP session. We also use these 

low boundaries. In comparison the notion of UDP flows is vague, 

less protocol. This is due to the protocol not having well-defined boundaries 

for the start and end of a conversation between server and client. In the context of this wo

consider a stream of consecutive UDP packets between server and client as a UDP flow, if the 

time difference between to consecutive packets is below a predefined threshold. In our analysis 

we exclude all network packet that are necessary for establishing a communication between 

server and client. So given that additional data is exchanged between network services

end interactions between network services as direct dependencies.  

The direct dependency between network services s
j
iand sl

k is denoted as  

sends a packet to s
l
k in the period under consideration}                       (1) 

blocks of our approach are network packets exchanged between directly 

dependent network services. A network packet is exchanged by a source and destination IP 

address srcIP and dstIP via source and destination port srcPort and dstPort. In addition, a network 

packet relies on a specific transport layer protocol. In the context of this paper we distinguish the 

transport layer protocols TCP and UDP.  

We define a network packet as a 6-tuple  
ψ, t),                                                                                                

dresses sIP , a source ports sPort, destination IP addresses dIP, destination ports 

 = {UDP, TCP} and timestamps t.  

by network devices are related to each other. HOSTS(dj) returns a set of 

all network services hosed by the network device dj. HOSTS-1(s) returns the network device 
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hosting network service s. It is possible to associate network service siwith network device dj 

using the notation s
j
isuch that dj =HOSTS

-1
(s

j
i)  

 

2.5. Communication Histogram 

 
Let us suppose that we are mirroring network traffic from an initial time point tmin to a time 

point tmax within an IT network. We are observing network packets p ∈ P, which is defined as a 

6-tuple according to Equation 2. For communicating network services, we build communication 
histogram with a bin size ∆t. In the context of work we set ∆t to 1 second. The number of 

histogram bins is  

bins = �
(tmax − tmin)

�/ ∆t, (3)  

given that we want to build a communication histogram for network traffic mirrored from time 

point tmin to tmax with a bin size ∆t.  

 

Given that we are monitoring a set of S network services then the data structure for all 

communication histograms is defined  

H : S × S × Ψ → ({0, · ··  , bins − 1} → N0), (4)  

where the communication histogram bins {0, · · ·  , bins − 1} are mapped to N0 . Now for every 

network packets exchanged between directly dependent network services, assuming it was 

received during the considered time period, the corresponding bin H(s, s
′
, ψ) in the 

communication histogram is incremented. The corresponding bin in the communication 
histogram is determined by (tmin − t) mod bins, (5) assuming that the network packet p contains 

the time stamp t.  

 

2.6. Indirect Dependency 

 
Indirect dependencies are the second category of dependencies. Indirect dependencies are not 

easy to identify in network traffic, as they are not as obvious as direct dependencies. A direct 

dependency can be derived based on a network packet, which is exchanged by network services 

hosted by network devices. It is possible to estimate indirect dependencies by using SDEP+ in a 

brute force manner. This technique would overestimate indirect dependencies and does not lead 

to a deeper semantic understanding of complex dependencies in networks. We are interested in a 

model estimating indirect dependencies with a low rate of false positive. Therefore, we try to 

identify indirect dependencies between network services by identifying similar patterns in 

communication vectors of direct dependencies. There are two different types of indirect 

dependencies in networks: remote-remote (RR) dependencies and local-remote (LR) 

dependencies.  

 

Example. An operator in a control center (CC) of an electrical power grid would like to send a 

request to a substation’s RTU 37. First, the operator has to use human machine interface for 

medium voltage substation (HMI) to specify the request and then forward it to a front end server 

(FES), so that the FES sends the request to the remote terminal unit (RTU). Assuming HMI and 

FES are different network devices, and the network device hosing the HMI has the name of its 

FES and not the IP address. Then it is necessary that first a request is sent to the network device 

hosting domain name system to get the IP address of FES. After the network device has 

information about the IP address of FES it can send the operator’s request to front end server. So 

there is an LR indirect dependency between network services hosted by HMI, the DNS server and 

network service hosted by FES. A graphical representation is given in Figure 2.  
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Figure 2.Graphical representation of Example 1: Communication between HMI, DNS, FES and RTU 37.
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there exist two direct dependencies: 
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network device dl, the communication vectors are shifted by a processing delay 

Processing delay τdelay is the delay between receiving a data packet and sending a new data 

packet to another network service. Two d

network services fulfill the following definition. 
 

ISDEPRR = SDEP HOST S

 

If network service s
j
isends data packets to network service s

network device dl and after processing delay a network service s

service s
o
n, we have two direct dependencies. These direct dependencies encompass four 

network services and represent one RR indirect dependency. 

 

LR indirect dependencies between network services are given, if a network service requires a 

supporting network service to perform a task. Therefore, we are interested in identifying local

remote indirect dependencies, too. In Example 1, an LR indirect depend

network service of the network device hosting HMI requires DNS of another network device in 

order to send its request to the FES. 

 

ISDEPLR = SDEP HOST S

 

Using our definitions, there might be many potential indirect dependencies. If a network has N 

network devices, theoretically the total number of potential direct dependencies between network 
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l
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l
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indirect dependencies between network services are given, if a network service requires a 

supporting network service to perform a task. Therefore, we are interested in identifying local

endencies, too. In Example 1, an LR indirect dependency exists because a 

network service of the network device hosting HMI requires DNS of another network device in 

order to send its request to the FES.  
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services is N
2 

·  p
2
, where p is the number of maximum concurrently operating services per 

network device. On most operating systems this value is 65536. Therefore, the number of 

potential indirect dependencies between network services could increase polynomial in networks. 

Networks containing at least 125 network devices have potentially more than one billion direct 

dependencies between network services. So, we need

dependencies. The idea is to consider only potential indirect dep

of being a correct indirect dependency. In our approach, we use normalized cross correlation to 

calculate a similarity-value between two communication

and δ(sl
m,so

n). Both communicat

normalized cross correlation.  
 

In Equation (8) we present the normalized cross correla

andδ(sl
m,so

n). Normalized cross correlation

(8)where the mean values of the compared communication vectors are represented by

and , respectively.

communication vectors. 

 
In image processing, normalized cross correlation is used to correlate an image with a 

Consider for example, you have a small picture of an orange and multiple larger images of fruit 

bowls. Cross correlation helps you identify, if a fruit bowl contains an orange, by matching the 

template to the fruit bowl image. Sometimes the 

diverging between the larger image and

influence of differing brightness 

 

Indirect dependencies between two network services have a 

Furthermore, the number of exchanged

communication histograms, although they are 

effect of brightness in image processi

consider the situation that two 

although the communication vectors represent an indirect dependency. Communication vectors 

between indirect dependencies are not 

Communication delays are caused by network latency and processing delays are due to 

information being processed, before being passed on.

 

To obtain high rates in true positive (TP

estimation, communication vectors have to be shifted against each other. 

 

Therefore, is the period a delay or failure in network service s

service sn on device do. To reduce the potential indirect dependencies generated by 3.1.2, we 
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, where p is the number of maximum concurrently operating services per 

network device. On most operating systems this value is 65536. Therefore, the number of 

potential indirect dependencies between network services could increase polynomial in networks. 

Networks containing at least 125 network devices have potentially more than one billion direct 

dependencies between network services. So, we need a technique to reduce the number of indirect 

dependencies. The idea is to consider only potential indirect dependencies with a high probability 

of being a correct indirect dependency. In our approach, we use normalized cross correlation to 

between two communication vector of direct dependencies

). Both communication vectors have to have the same length k to calculate the 

In Equation (8) we present the normalized cross correlation for communication vectors 

). Normalized cross correlationρ is derived by 

where the mean values of the compared communication vectors are represented by

and  are the standard deviations

In image processing, normalized cross correlation is used to correlate an image with a 

Consider for example, you have a small picture of an orange and multiple larger images of fruit 

bowls. Cross correlation helps you identify, if a fruit bowl contains an orange, by matching the 

template to the fruit bowl image. Sometimes the brightness might differ due to

image and the template. Normalized cross correlation reduces 

brightness within image and template.  

Indirect dependencies between two network services have a similar pattern shift in time. 

exchanged packets does not necessarily have to be 

communication histograms, although they are indirectly dependent. This effect is similar to the 

image processing. In our approach, we use normalized cross correlation to 

consider the situation that two communication vectors diverge in the number of data packets 

although the communication vectors represent an indirect dependency. Communication vectors 

ect dependencies are not aligned due to communication and processing delays

Communication delays are caused by network latency and processing delays are due to 

information being processed, before being passed on. 

To obtain high rates in true positive (TP) and low rates in FP and FN indirect dependency 

estimation, communication vectors have to be shifted against each other.  

                                       

is the period a delay or failure in network service sior sk influences 

. To reduce the potential indirect dependencies generated by 3.1.2, we 
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In image processing, normalized cross correlation is used to correlate an image with a template. 

Consider for example, you have a small picture of an orange and multiple larger images of fruit 

bowls. Cross correlation helps you identify, if a fruit bowl contains an orange, by matching the 

due to illumination 

template. Normalized cross correlation reduces the 

similar pattern shift in time. 

 identical two 

. This effect is similar to the 

. In our approach, we use normalized cross correlation to 

of data packets 

although the communication vectors represent an indirect dependency. Communication vectors 

aligned due to communication and processing delays. 

Communication delays are caused by network latency and processing delays are due to 

) and low rates in FP and FN indirect dependency 

                                       (9) 

influences network 

. To reduce the potential indirect dependencies generated by 3.1.2, we 
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introduce a threshold and consider potential indirect dependency 

correct identified indirect dependency if 

 

Knowing network dependencies in a monitored 

could potentially affect the overall network.  For 

need to be processed and linked to network dependencies.

 

3. ALERT PROCESSING 

 
Probes of multiple distributed firewalls (FWs), intrusion detection systems (IDSs) or intrusion 

prevention systems (IPSs) are collected throughout a monitored network such that large series of 

alerts (alert streams) need to be fused.

alerts need to be normalized before being further 

processing in this fashion, the goal of low

enrichment, verification, and merging.

 

3.1. Alert Normalization 

 
In the overall LLC architecture, data from the above

engine [1] for real-time data processing. Due to the heterogeneous nature of data formats 

provided by probes in a distributed environment, it is necessary implement a normalization 

process to allow for coherent handling o

normalization for the a electrical power grid’s communication network 

SYSLOG configuration as well as the set of descriptive attributes of normalized alerts is

by the Intrusion Detection Message Exchange Format (IDME

Alerts are enriched when values for required attributes are not provided by original alert sources 

such that sensible default values are inserted. After normalization and enrichment, L

with alert verification. In the following we describe details on verification, using introductory 

examples with normalized alerts.

 

3.2. Alert Verification 
 
Alert verification is subdivided into three parts, namely alert vulnerability verification, alert 

severity verification, and alert operational impact verification.  We first discuss 

verification, with the central idea to relate alerts with in

the network under consideration. Vulnerabilities are available from the so

inventory, listing all monitored network devices and detected

vulnerabilities nmap and openvas pe

correlation process relies on this knowledge base to link normalized alerts to the monitored 

network. Normalized alerts can have many fields and in the following we focus on special cases 

in order to demonstrate central ideas using several examples.

 

3.2.1. Alert Vulnerability Verification

 

Consider, as shown in Table 1, an alert with a reference to a local exploit reported by an IDS with 

the analyzer ID CEDET01IDS. Local exploits take advantage of vulnerabilities or bugs. For the 

example in Table 1 we assume that an IDS (CEDET01IDS) has generated an alert referring to 

CVE vulnerability (for more details regarding CVE see [3]).
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introduce a threshold and consider potential indirect dependency (δ(s
j
i,s

l
k), δ(s

correct identified indirect dependency if  

es in a monitored network provides a basis for verifying how alerts 

could potentially affect the overall network.  For this purposes a monitored infrastructure’s

need to be processed and linked to network dependencies. 

Probes of multiple distributed firewalls (FWs), intrusion detection systems (IDSs) or intrusion 

prevention systems (IPSs) are collected throughout a monitored network such that large series of 

alerts (alert streams) need to be fused. As different alert streams could use different data formats, 

alerts need to be normalized before being further processed. In order to implement fused alert 

processing in this fashion, the goal of low-level correlation is to provide for alert normalization, 

enrichment, verification, and merging. 

In the overall LLC architecture, data from the above-mentioned probes are fed into a SYSLOG 

time data processing. Due to the heterogeneous nature of data formats 

provided by probes in a distributed environment, it is necessary implement a normalization 

process to allow for coherent handling of alerts in subsequent processing steps. A

normalization for the a electrical power grid’s communication network test is realized by a

as well as the set of descriptive attributes of normalized alerts is

etection Message Exchange Format (IDMEF). For details on IDMEF see [

Alerts are enriched when values for required attributes are not provided by original alert sources 

such that sensible default values are inserted. After normalization and enrichment, L

with alert verification. In the following we describe details on verification, using introductory 

examples with normalized alerts. 

Alert verification is subdivided into three parts, namely alert vulnerability verification, alert 

severity verification, and alert operational impact verification.  We first discuss 

, with the central idea to relate alerts with information about known vulnerabilities for 

the network under consideration. Vulnerabilities are available from the so-called network 

inventory, listing all monitored network devices and detected vulnerabilities.

vulnerabilities nmap and openvas periodically scan the monitored network. The low

correlation process relies on this knowledge base to link normalized alerts to the monitored 

network. Normalized alerts can have many fields and in the following we focus on special cases 

onstrate central ideas using several examples. 

2.1. Alert Vulnerability Verification 

Consider, as shown in Table 1, an alert with a reference to a local exploit reported by an IDS with 

ID CEDET01IDS. Local exploits take advantage of vulnerabilities or bugs. For the 

example in Table 1 we assume that an IDS (CEDET01IDS) has generated an alert referring to 

CVE vulnerability (for more details regarding CVE see [3]). 
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Alerts are enriched when values for required attributes are not provided by original alert sources 

such that sensible default values are inserted. After normalization and enrichment, LLC proceeds 

with alert verification. In the following we describe details on verification, using introductory 

Alert verification is subdivided into three parts, namely alert vulnerability verification, alert 

severity verification, and alert operational impact verification.  We first discuss vulnerability 

formation about known vulnerabilities for 

called network 

vulnerabilities. To detect 

The low-level 

correlation process relies on this knowledge base to link normalized alerts to the monitored 

network. Normalized alerts can have many fields and in the following we focus on special cases 

Consider, as shown in Table 1, an alert with a reference to a local exploit reported by an IDS with 

ID CEDET01IDS. Local exploits take advantage of vulnerabilities or bugs. For the 

example in Table 1 we assume that an IDS (CEDET01IDS) has generated an alert referring to 



International Journal of Network Security & Its Applications (IJNSA) Vol.8, No.3, May 2016 

8 

Table 1.  An alert issued by an IDS probe with the analyzer ID CEDET01IDS reports a local exploit. 

 

Analyzer 

ID 

Alert 

ID 
Time Source Destination CVE ID 

CEDET01I

DS 
1 

2016-01-24 

11:02:31.20 
85.1.1.8 132.8.1.5 

CVE-2016-

0034 

 
An exploit can only be successful if the respective vulnerability or bug is indeed present on the 

targeted network device. Thus, alert vulnerability verification needs to check whether the 

vulnerability has been detected on the targeted device by extracting respective information from 

the network inventory. To continue the example, we assume that data shown in Table 2 are 

available, indicating that CVE-2016-00034 is indeed associated with network device 132.8.1.5. 

 
Table 2.  Vulnerability information extracted from the network inventory. 

 

Network Device CVE ID  

132.8.1.5 CVE-2016-0034 

 
The network inventory allows the alert vulnerability verification process to link a reported local 

exploit, as shown in Table 1, to vulnerabilities detected on source or destination hosts, as shown 

in Table 2.  

 
Table 3 – A verified vulnerability alert with an added tag VULNVERIFIED. 

 

Analyzer 

ID 

Alert 

ID 
Time Source Destination CVE ID Classification ID 

CEDET0

1IDS 
1 

2016-01-24 

11:02:31.20 
85.1.1.8 132.8.1.5 

CVE-2016-

0034 
VULNVERIFIED 

 
If an alert can be linked to a previously recorded vulnerability, we refer to it as a true positive 

attack; otherwise it is denoted as a false negative attack.  The alert vulnerability verification 

process filters out false negative attacks. True positive attacks are passed on with the added 

classification ID VULNVERIFIED. Table 3 shows a true positive attack alert with the added 

classification ID VULNVERIFIED. In order to reduce the workload of subsequent models, in the 

LLC configuration, there is an option to suppress alerts for which no vulnerability can be 

identified.FW/IDS/IPS probes report on abnormal behavior occurring in a monitored network, 

and not only local exploits potentially with a high impact are being detected. The level of severity 

that probes assign to a reported alert is investigated by alert severity verification. 

 

3.2.2. Alert Severity Verification 

 
Given a sensor is certain of abnormal activity with an impact occurring, an alert with a severity 

data field is issued.  Should we be unable to verify an alert’s vulnerability, but there is an impact 

associated with the event then we pass on the alert with an added classification ID 

UNVERIFIED. An alert’s vulnerability can be unverified due to two reasons: An alert reporting 

an exploit using a particular CVE ID, which the network inventory cannot be corroborated or the 

network inventory detected a vulnerability on source or destination, which is not mentioned in the 

alert. Consider, as shown in Table 4, for example an alert with a CVE ID “CVE-2016-0033” 

severity "medium" is reported by an IDS with the analyzer ID CEDET01IDS. 
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Table 4 – An alert issued by an IDS probe with the analyzer ID CEDET01IDS reports an abnormal activity 

with a severity and CVE ID. 

 

Analyzer ID 
Alert 

ID 
Time Source Destination CVE ID Severity 

CEDET01IDS 2 
2016-01-24 

11:02:31.20 
85.1.1.8 132.8.1.5 CVE-2016-0033 medium 

 

CVE-2016-033 is not a vulnerability that was detected on source or destination. Hence, the alert 

does not have verified vulnerability. However, given that an alert contains a severity, this alert is 

passed on for further consideration with a tag "NOTVERIFIED" as shown in Table 5. 

 
Table 5 – A verified severity alert with an added tag NOTVERIFIED. 

 

Analyzer ID 
Alert 

ID 
Time Source Destination Severity Classification ID 

CEDET01ID

S 
2 

2016-01-24 

11:02:31.20 

85.1.1.

8 
132.8.1.5 medium NOTVERIFIED 

 

In comparison consider an alert reports a medium severity incident with no associated 

vulnerability as described in Table 6. 

 
Table 6 –An alert issued by an IDS probe with the analyzer ID CEDET01IDS reports an abnormal activity 

with a severity. 

 

Analyzer 

ID  
Alert ID  Time  Destination  Source  Severity  

CEDET01I

DS  
2  

2016-01-

24 

11:02:31.2

0  

132.8.1.5  85.1.1.8  medium 

 

The network inventory lists vulnerability “CVE-2016-0034” on the destination network device. 

 
Table 7 - Vulnerability information extracted from the network inventory. 

 

CVE ID  Network Device 

CVE-2016-0034 132.8.1.5 

 

Although the vulnerability could not be verified, the medium severity incident is passed on by the 

severity verification process with an added classification ID “NOTVERIFIED”. 
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Table 8 - A verified severity alert with an added tag NOTVERIFIED. 

 

Analyzer 

ID  

Alert 

ID  
Time  Source  Destination  Severity  Classification ID  

CEDET01I

DS  
2  

2016-01-24 

11:02:31.20  
85.1.1.8  132.8.1.5  medium NOTVERIFIED  

 

3.2.4. Alert Fusion 
 

FW/IDS/IPS alerts are reports of abnormal activities in a monitored network. As indicated above, 

some alerts are clearly linked to an exploited vulnerability. However, the vast majority of alerts 

are simply reports of abnormal activities in a network. Also, in 2015 the security company Check 

Point reported that zero day attacks are rising [15]. Check Point discovered that organizations are 

targeted by about 100 unknown malware attacks per hour. Thus, reporting a rate 50 times more 

than the rate in 2013. As the vulnerabilities involved in, e.g., zero day attacks are unknown, the 

attack paths up as false negatives in vulnerability based high-level online correlation. 

Misconfiguration or insider attacks are another cause for false negatives. We attempt to address 

these attacks by performing alert fusion. Generally, these more sophisticated attacks require prior 

reconnaissance attacks, which cause FW/IDS/IPS alerts. Obviously, FW/IDS/IPS sensors 

involved in the detection of abnormal activities do not report these alerts with a high confidence 

of belonging to an ongoing attack. Combining multiple instances of abnormal activity reports 

augment the confidence that a reconnaissance attack is currently occurring. As these alerts would 

otherwise go unnoticed, alert fusion aims to reduce false negative alerts. 
 

The purpose of alert fusion is to combine alerts that represent the same attack occurrence. The 

LLC process maintains a tumbling alert based window of n alerts. The size of the alert processing 

window n is computed as the averaged daily number of alerts occurring every second. On one 

hand, this allows for fixed computation time within the low level correlation process (regardless 

of how long the component is running), on the other hand, it must be taken into consideration that 

alerts can only be fused if they are in the same window. However, the parameter n can be selected 

in MONA’s configuration such that scalability and expressivity requirements can be fulfilled in a 

particular context.  
 

Duplicate Alert Fusion 
 

The goal of alert fusion is to combine alerts representing an identical detection of the 

same attack by FW/IDS/IPS sensor. A single FW/IDS/IPS sensor is able to produce 

duplicate alerts, when an attack fits multiple rules. This phenomenon is also referred to as 

alert splitting. Table 9 describes how an IDS sensor with an analyser ID CEDET01IDS 

splits a port scan into two alerts. The LLC process performs duplicate alert fusion by 

merging them into a meta-alert. The meta-alert averages the timestamp of both alerts and 

combines all diverging data fields. 

 
Table 9 – Example for merging duplicate alerts. 

 

Analyzer 

ID  

Alert

ID  
Time  Source  Destination  Description 

Classification 

ID  

CEDET0

1IDS  
1  

2016-01-24 

11:02:31.10  
85.1.1.8  132.8.1.5  Port scan   

CEDET0

1IDS  
2  

2016-01-24 

11:02:31.20  
85.1.1.8  132.8.1.5  Port scan   

CEDET0

1IDS  
{1,2}  

2016-01-24 

11:02:31.15  
85.1.1.8  132.8.1.5   DUBLIMERGE  
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Taking the same example of port scanning, it is possible that distinct FW/IDS/IPS sensors 

detect the port scan. Given source and destination with an alert are identical, the low-

level correlation processes performs alert fusion. Assume that two distinct IDS sensors 

with an analyzer id CEDET01IDS and CEDET02IDS both report a port scan. The event 

correlation process performs duplicate alert fusion by merging them into a meta-alert. 

The meta-alert averages the timestamp of both alerts and combines all diverging data 

fields. 

 

In Table 10 there are two port scans shown from one source (1 to n). With an appropriate 

classification ID a new alert that fuses both port scan alert is generated (see the last row 

in Table 10). 

 
Table 10 –Example for merging duplicate alerts with the same source address. 

 

Analyzer 

ID  

Alert 

ID  
Time  Source  Destination  

Descriptio

n 

Classification 

ID  

CEDET01

IDS  
4  

2016-01-24 

11:02:31.10  
85.1.1.8  132.8.1.4  Port scan   

CEDET01

IDS  
5  

2016-01-24 

11:02:31.20  
85.1.1.8  132.8.1.5  Port scan   

CEDET01

IDS  
{4,5}  

2016-01-24 

11:02:31.15  
85.1.1.8  

{132.8.1.4,132.8.

1.5}  
 SRCMERGE  

 

In Table 11 we show a port scans from different source to a single device. The fused alert 

shown in the last row, again fusion is indicated using a specific classification ID. 

 
Table 11 –Example for merging duplicate alerts with the same destination address. 

 

Analyzer ID 
Alert 

ID  
Time  Source  Destination  Description  

Classification 

ID  

CEDET01ID

S  
6  

2016-01-24 

11:02:31.10  
85.1.1.8  132.8.1.4  Port scan   

CEDET01ID

S  
7  

2016-01-24 

11:02:31.20  
85.1.1.9  132.8.1.4  Port scan   

CEDET01ID

S  
{6,7}  

2016-01-24 

11:02:31.15  
85.1.1.10  132.8.1.4   DSTMERGE  

 
It is possible to configure LLC in such a way that original alerts are filtered and only the 

meta-alerts or fused alerts are forwarded. 

 
3.2.4. Alert Operational Impact Verification 

 
Traditionally, the success of security information and event management (SIEM) is determined 

by the level of protection of critical network devices and applications from attackers. Critical 

network devices can be routers, servers, etc. and critical applications can compromise database 

management software or tools for monitoring and controlling an infrastructure. In order to 

understand how critical an application is for a network’s mission, a mission criticality level is 

added to the network inventory. Per default, application ports that where found responding are 

listed in the network inventory with a default mission criticality value low. Network operators are 
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able to reclassify an applications mission criticality to medium or high.

entry from the network inventory.

 
Table 12 –An application’s mission criticality is added to the network inventory.

CVE ID Network Device

CVE-2016-0034 132.8.1.5

 

CRITIC: si→ {low, medium, high}                                                                                

Hence, the set of affected indirect dependencies 

OPIMPACT=SCC((∀si∈S:CRITIC

 

where SCC denotes the strongly connected components (SCC) of the hypergraph given as 

parameter (asSet maps a tuple into a set of components).

affected indirect dependencies. 

Figure 3. An example for

 

Operational impact lists all network services and thereby devices, which are potentially affected 

by a security incident reported in form of an alert. 

of threat to a mission criticality is sufficient 

 

4. EVALUATION 

 
A test bed based on a disaster recovery site of an energy distribution network, provided

Italian water and energy distribution company, was available for testing.

metasploit [8] was used to emulate an attack on the test bed. To allow a more extended 

evaluation, a synthetic data set generator was built based on the dataset

test bed. This synthetic data set generator simply replays these attack 

collected in the test bed, and is 

scalability analysis. Additionally, we ar

dependent network services. 

 

4.1. Test environment 

 
The environment used for the evaluation is following: 

 

• Operating System: Ubuntu Release 12.04 (precise) 64

generic 

• RAM: 12 GB, 1600 MHz DDR3

• 2 CPUs: Intel(R) Xeon(R) CPU E5
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able to reclassify an applications mission criticality to medium or high. Table 12 

entry from the network inventory. 

application’s mission criticality is added to the network inventory.

 

Network Device Application Port Mission Criticality

132.8.1.5 80 High 

{low, medium, high}                                                                                (10) 

Hence, the set of affected indirect dependencies OPIMACT is defined as  

CRITIC(si),map(asSet,ISDEP))),                                                 (11) 

where SCC denotes the strongly connected components (SCC) of the hypergraph given as 

parameter (asSet maps a tuple into a set of components). Figure 3 gives an example for a set of 

 
An example for indirect dependencies affected by an alert. 

Operational impact lists all network services and thereby devices, which are potentially affected 

by a security incident reported in form of an alert. Network operators can predetermine what level 

of threat to a mission criticality is sufficient for a security incident to be reported. 

based on a disaster recovery site of an energy distribution network, provided

Italian water and energy distribution company, was available for testing. To evaluate 

metasploit [8] was used to emulate an attack on the test bed. To allow a more extended 

evaluation, a synthetic data set generator was built based on the dataset from the attack

This synthetic data set generator simply replays these attack patterns, which

and is additionally able to provide more alerts per second for a 

Additionally, we are able to replay typical network traffic patterns of 

The environment used for the evaluation is following:  

Operating System: Ubuntu Release 12.04 (precise) 64-bit, Kernel Linux 3.13.0

2 GB, 1600 MHz DDR3   

2 CPUs: Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz  
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 illustrates an 

application’s mission criticality is added to the network inventory. 

Mission Criticality 

(10)  

))),                                                 (11)  

where SCC denotes the strongly connected components (SCC) of the hypergraph given as 

Figure 3 gives an example for a set of 

Operational impact lists all network services and thereby devices, which are potentially affected 

Network operators can predetermine what level 

based on a disaster recovery site of an energy distribution network, provided by an 

To evaluate MONA, 

metasploit [8] was used to emulate an attack on the test bed. To allow a more extended 

from the attacks on the 

patterns, which have been 

able to provide more alerts per second for a 

e able to replay typical network traffic patterns of 

bit, Kernel Linux 3.13.0- 32-
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4.2. Precision and Recall 

 
True Positive (TP) represents the correctly identified indirect dependencies while 

(FN) is the rate of correct indirect dependencies not identified. 

identified indirect dependencies, which are no indirect dependencies. This leads to calculation of 

precision and recall  

 

Precision = TP / (TP + FP) 

Recall = FP / (TP + FN)                                                                                                      

 

4.3. Sensitivity Analysis  
 
NSDMiner, Sherlock, and Orion 

attractive TP and FN rates. Administrators and employees on their own networks provide the 

respective ground truth for NSDMiner, Sherlock and Orion. As enterprise networks rely on third 

parties to provide the respective ground truth

of all network dependencies. In fact, in our experiments, often network dependency analysis was 

very often able to point out unknown network dependencies to administrators.

evaluation, a known ground truth

synthetic data set generator. Our 

or other humans. For each indirect dependency between network services, our network generator 

saves important details into a file. Hence, indirect and direct dependencies, size of network and 

simulation duration of each generated network is known.

 

Figure 4 shows an evaluation of two networks. Delay distribution between network services of 

indirect dependencies is randomly distributed between one and three seconds. 

shows the average rate for networks with 100 network devices, 20 indirect dependencies and 60 

additional communicating network devices. The right figure 

bigger network containing 250 network devices, 140 indirect dependencies and 120 ad

communicating network devices. The x

a threshold in Orion’s approach. Orion makes use of mean+x·stdev to calculate the threshold to 

classify potential indirect dependencies. 

 

 

Figure 4.Comparison between MONA

(blue dotted line), Precision Orion (red line), Recall Orion (red dotted line)]. Left Figure 

represents average rates for networks containing 

average rates for networks containing 450 network
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represents the correctly identified indirect dependencies while False Negative 

is the rate of correct indirect dependencies not identified. False Positive (FP) 

identified indirect dependencies, which are no indirect dependencies. This leads to calculation of 

Recall = FP / (TP + FN)                                                                                                      

NSDMiner, Sherlock, and Orion conduct their experiments based on network traces and 

Administrators and employees on their own networks provide the 

respective ground truth for NSDMiner, Sherlock and Orion. As enterprise networks rely on third 

the respective ground truth, administrators cannot be certain that they are aware 

of all network dependencies. In fact, in our experiments, often network dependency analysis was 

very often able to point out unknown network dependencies to administrators. For a trustworthy 

evaluation, a known ground truth is essential. Hence, we conducted our experiments based on the 

 ground-truth is not dependent on knowledge from administrators 

or other humans. For each indirect dependency between network services, our network generator 

saves important details into a file. Hence, indirect and direct dependencies, size of network and 

simulation duration of each generated network is known. 

shows an evaluation of two networks. Delay distribution between network services of 

indirect dependencies is randomly distributed between one and three seconds. The left figure 

rage rate for networks with 100 network devices, 20 indirect dependencies and 60 

additional communicating network devices. The right figure shows the same experiment with a 

bigger network containing 250 network devices, 140 indirect dependencies and 120 ad

communicating network devices. The x-axis represents the multiplication factor used to calculate 

a threshold in Orion’s approach. Orion makes use of mean+x·stdev to calculate the threshold to 

classify potential indirect dependencies.  

Comparison between MONA and Orion [Precision NDA (blue line), Recall MONA

(blue dotted line), Precision Orion (red line), Recall Orion (red dotted line)]. Left Figure 

represents average rates for networks containing 100 network-devices. Right Figure repre

average rates for networks containing 450 network-devices.  
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False Negative 

 rate contains 

identified indirect dependencies, which are no indirect dependencies. This leads to calculation of 

Recall = FP / (TP + FN)                                                                                                             (10) 

conduct their experiments based on network traces and present 

Administrators and employees on their own networks provide the 

respective ground truth for NSDMiner, Sherlock and Orion. As enterprise networks rely on third 

t be certain that they are aware 

of all network dependencies. In fact, in our experiments, often network dependency analysis was 

For a trustworthy 

is essential. Hence, we conducted our experiments based on the 

truth is not dependent on knowledge from administrators 

or other humans. For each indirect dependency between network services, our network generator 

saves important details into a file. Hence, indirect and direct dependencies, size of network and 

shows an evaluation of two networks. Delay distribution between network services of 

The left figure 

rage rate for networks with 100 network devices, 20 indirect dependencies and 60 

shows the same experiment with a 

bigger network containing 250 network devices, 140 indirect dependencies and 120 additional 

axis represents the multiplication factor used to calculate 

a threshold in Orion’s approach. Orion makes use of mean+x·stdev to calculate the threshold to 

 

sion NDA (blue line), Recall MONA 

(blue dotted line), Precision Orion (red line), Recall Orion (red dotted line)]. Left Figure 

. Right Figure represents 
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For an additional experiment, we expanded the experiment to include NSDMiner and Sherlock in 

addition to Orion. We compare their precision and recall rate to MONA’s.

precision and recall rate of Sherlock, Orion and MONA on varying sized networks.

 

4.4. Comparison with Orion  

 

Orion focuses on local-remote indirect dependencies and is not able to identify remote

indirect dependencies. A reason 

approach MONA is able to identify more complex remote

compare both approaches, our evaluation is based on local

step we generate networks containing traffic between network services using our network 

generator. This leads to ground

implementation of Orion and MONA to calculate indirect dependencies identified 

generated networks. Orion has a high rate of TP and a low FN rate of indirect dependencies in 

networks with small delays and huge amount of network communication between indirect 

dependent network services. Few

one example not fulfilling the mentioned criteria. In enterprise networks, often devices are 

geographically distributed in different quarters. Therefore, delays are more spread than in 

networks without geographically distributed

characteristics. Furthermore, Orion’s threshold is dependent on number of network devices and 

amount of network traffic involved in indirect dependencies. 

 

Figure 5. Comparison between NDA, Orion, N
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For an additional experiment, we expanded the experiment to include NSDMiner and Sherlock in 

addition to Orion. We compare their precision and recall rate to MONA’s. Figure 6 shows the 

precision and recall rate of Sherlock, Orion and MONA on varying sized networks. 

remote indirect dependencies and is not able to identify remote

 for this behavior is their host-based design. Our network

approach MONA is able to identify more complex remote-remote indirect dependencies. To 

compare both approaches, our evaluation is based on local-remote indirect dependencies. In a first 

we generate networks containing traffic between network services using our network 

generator. This leads to ground-truth and networks with different characteristics. 

implementation of Orion and MONA to calculate indirect dependencies identified 

generated networks. Orion has a high rate of TP and a low FN rate of indirect dependencies in 

networks with small delays and huge amount of network communication between indirect 

dependent network services. Few networks fulfill these criteria. Data networks of power grids are 

one example not fulfilling the mentioned criteria. In enterprise networks, often devices are 

geographically distributed in different quarters. Therefore, delays are more spread than in 

networks without geographically distributed areas. Each connection to branch offices has its own 

characteristics. Furthermore, Orion’s threshold is dependent on number of network devices and 

amount of network traffic involved in indirect dependencies.  

 
 

. Comparison between NDA, Orion, NSDMiner and Sherlock. 
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For an additional experiment, we expanded the experiment to include NSDMiner and Sherlock in 

Figure 6 shows the 

remote indirect dependencies and is not able to identify remote-remote 

based design. Our network-based 

remote indirect dependencies. To 

remote indirect dependencies. In a first 

we generate networks containing traffic between network services using our network 

truth and networks with different characteristics. We use our 

implementation of Orion and MONA to calculate indirect dependencies identified in the 

generated networks. Orion has a high rate of TP and a low FN rate of indirect dependencies in 

networks with small delays and huge amount of network communication between indirect 

networks of power grids are 

one example not fulfilling the mentioned criteria. In enterprise networks, often devices are 

geographically distributed in different quarters. Therefore, delays are more spread than in 

areas. Each connection to branch offices has its own 

characteristics. Furthermore, Orion’s threshold is dependent on number of network devices and 
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Figure 6. Precision and recall between MONA, Orion and Sherlock for networks with different amount of 

 

4.5. Performance alert processing time

 
As a number of low-level alerts are being fired from IDS sensors at a high 

sophisticated knowledge of both networking technology and infiltration techniques is required to 

understand them. IDS alert correlation system tries to solve this problem by post

alert stream from one or many IDS sensors.

the alerts with vulnerability information

seconds depends on the number of simultaneously processed alerts.

exceeds one second, we would not be able to hold that pace, should it continuously occur over 

multiple time windows. The results are illustrated in Figure 2. The computation time of 

simultaneously processed alerts is compared with 2 virtual CPUs and 4 virtual CPUs. Th

experiment shows that MONA’s 
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. Precision and recall between MONA, Orion and Sherlock for networks with different amount of 

devices. 

. Performance alert processing time 

level alerts are being fired from IDS sensors at a high pace, a fairly 

sophisticated knowledge of both networking technology and infiltration techniques is required to 

understand them. IDS alert correlation system tries to solve this problem by post-processing the 

m from one or many IDS sensors. They goal is to aggregate low-level alert and enrich

the alerts with vulnerability information. Assuming a time-based system, the processing time in 

seconds depends on the number of simultaneously processed alerts. If the alert processing time 

nd, we would not be able to hold that pace, should it continuously occur over 

The results are illustrated in Figure 2. The computation time of 

simultaneously processed alerts is compared with 2 virtual CPUs and 4 virtual CPUs. Th

experiment shows that MONA’s algorithm is parallelizable.  

 
Figure 7.Alert processing time. 
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. Precision and recall between MONA, Orion and Sherlock for networks with different amount of 

pace, a fairly 

sophisticated knowledge of both networking technology and infiltration techniques is required to 

processing the 

level alert and enrich 

based system, the processing time in 

If the alert processing time 

nd, we would not be able to hold that pace, should it continuously occur over 

The results are illustrated in Figure 2. The computation time of 

simultaneously processed alerts is compared with 2 virtual CPUs and 4 virtual CPUs. This 
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4.6. Performance network dependency analysis

 
The network dependency analysi

network dependency in a network containing 100 devices and 50 communicating network 

services. Computing network dependencies requires generating potential indirect dependencies 

and analyzing whether these indirect dependencies

network devices affect the performance, we conducted the same experiment with a network 

containing 900 network devices. The results of this evaluation are shown in 

the number of network devices d

 

Figure 8.  Network dependency analysis in

 

Figure 9.  Network dependency analysis in a network containing 900 network devices.
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Performance network dependency analysis 

The network dependency analysis is conducted offline. Figure 8 evaluates the performance of 

network dependency in a network containing 100 devices and 50 communicating network 

services. Computing network dependencies requires generating potential indirect dependencies 

whether these indirect dependencies actually exist. To assess, whether more 

network devices affect the performance, we conducted the same experiment with a network 

containing 900 network devices. The results of this evaluation are shown in Figure 9, revealing 

the number of network devices does not affect the performance of network dependency analysis.

 
Network dependency analysis in a network containing 100 network devices.

 

 
.  Network dependency analysis in a network containing 900 network devices.
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evaluates the performance of 

network dependency in a network containing 100 devices and 50 communicating network 

services. Computing network dependencies requires generating potential indirect dependencies 

To assess, whether more 

network devices affect the performance, we conducted the same experiment with a network 

Figure 9, revealing 

oes not affect the performance of network dependency analysis. 

a network containing 100 network devices. 

.  Network dependency analysis in a network containing 900 network devices. 



International Journal of Network Security & Its Applications (IJNSA) Vol.8, No.3, May 2016 

17 

5. CONCLUSIONS 

 
We have demonstrated a novel approach to security event management based on a deeper 

understanding of network activities. This deeper understanding was derived based on network 

dependency analysis. Network dependency analysis enables deriving a deeper understanding of 

network activities and leverages well data-communication networks with different numbers of 

network devices and indirect dependencies. A heuristic evaluation based on a synthetic data 

generator compares the precision of our proposed approach to other network dependency discover 

methodologies. In addition to aggregating alerts with similar characteristics occurring in the same 

time window, we extend network dependencies in order to derive the operational impact of alerts. 

The proposed frame is able to link network dependencies with security events and thereby 

assesses a security event’s impact on ongoing network activities. 
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