
International Journal of Network Security & Its Applications (IJNSA) Vol.8, No.3, May 2016

DOI: 10.5121/ijnsa.2016.8301 1

USING A DEEP UNDERSTANDING OF NETWORK

ACTIVITIES FOR SECURITY EVENT MANAGEMENT

Mona Lange
1
, Felix Kuhr

2
and Ralf Möller

1

1
Institute of Information Systems, Universitat zu Lubeck,

2
Technical Universitat Hamburg-Harburg, Germany

ABSTRACT

With the growing deployment of host-based and network-based intrusion detection systems in increasingly

large and complex communication networks, managing low-level alerts from these systems becomes

critically important. Probes of multiple distributed firewalls (FWs), intrusion detection systems (IDSs) or

intrusion prevention systems (IPSs) are collected throughout a monitored network such that large series of

alerts (alert streams) need to be fused. An alert indicates an abnormal behavior, which could potentially be

a sign for an ongoing cyber attack. Unfortunately, in a real data communication network, administrators

cannot manage the large number of alerts occurring per second, in particular since most alerts are false

positives. Hence, an emerging track of security research has focused on alert correlation to better identify

true positive and false positive. To achieve this goal we introduce Mission Oriented Network Analysis

(MONA). This method builds on data correlation to derive network dependencies and manage security

events by linking incoming alerts to network dependencies.

KEYWORDS

Network Dependency Analysis, Security Event Management, Data Correlation

1. INTRODUCTION

The United States intelligence community has identified malicious actors exploiting cyberspace

as a top national security threat [15].Similarly, Dell's annual threat report states a 100% increase

in SCADA attacks [16].This report is based on analysis of data gathered by Dell's global response

intelligence defense network that consists of millions of security sensors in more than 200

countries. In our daily lives, we depend on network services in many aspects (e.g., Internet

banking, email, file sharing, medical services and smart homes).Also, enterprise networks consist

of hundreds or even thousands of network services. Network services operate on distributed sets

of clients and servers and rely on supporting network services, such as Kerberos, Domain Name

System (DNS), and Active Directory. Hence, network services need to interact with each other in

order to function correctly. Engineers use the divide-and-conquer approach and often to fulfill a

task, multiple network services are required. This allows engineers to reuse network services and

not have to re-implement complex customized ones.

Some network services are used in many other network services. We define them as supporting

network services. A failure in a supporting network service leads to a failure in many other

network services. Hence, IT administrators and IT managers are interested in knowledge about

dependencies between network services. Recent efforts have lead to different approaches for

analyzing network traffic to identify dependencies between network services. �

International Journal of Network Security & Its Applications (IJNSA) Vol.8, No.3, May 2016

2

For network security it is necessary to understand a distributed system's perimeters. The criticality

of a network event or alert can only be assessed, if it's implications on the monitored systems are

understood.

Traditionally, the success of security information and event management (SIEM) is determined

by the level of protection of critical network devices and applications from attackers. Critical

network devices can be routers, servers, etc. and critical applications can compromise database

management software or tools for monitoring and controlling an infrastructure. At the same time,

it is understood that the ultimate goal of SIEMs is to protect ongoing and planned missions. Using

current methods, it is virtually impossible to determine the impact of events on the attainment of

mission objectives. Do we know which mission elements are affected? A monitored network is

built with a higher-level purpose, a mission, in mind. So why not change our focus from trying to

assess how an event reflects a potential attacker’s behavior to trying to assess its impact on a

monitored network’s ongoing network activities?

1.1. Related Work

Several researches have concentrated on how to reduce the number of alerts reported by host-

based and network intrusion detection systems, intrusion prevention systems or firewalls as well

as decrease their false positive rate [17], [18], [19]. Similarity-based alert correlation approaches

rely on features to compare the similarity of two alerts or the similarity of a single alert to a

cluster of alerts. A similarity-based alert correlation approach is proposed by Cuppens et al. [20],

and Peng et al. [21], who all cluster similar alerts to discover high-level attack scenarios. Others

focus on reducing the problem of aggregating alerts into multi-step attacks to data mining

problem [22], [23] or represent and reason with operators’ preferences regarding the events and

alerts they want analyze in priority [24].Another machine learning based approach focuses on

correlating alerts according to the information in the raw alerts without using any predefined

knowledge [23]. We use a deep understanding of network activities for security event

management. To derive a deep understanding of network activities, we rely on network

dependency analysis.

Often, different network services are required to perform a single task. If at least one service fails,

the whole task could potentially fail. Sherlock [10] introduces an inference graph to represent

dependencies between network services. The dependencies are calculated using co-occurrences

between services. Co-occurrence exists, when two services are used in a defined window. Orion

[11] is another approach to identify dependencies between network services using spike detection

analysis in delay distributions of flow pairs. Two other network-based dependency analysis

approaches are NSDMiner [12] and Rippler [13]. All mentioned approaches are based on network

traffic. Rippler actively embeds communication delays in order to identify network dependencies.

Passive approaches to identifying network dependency do not need additional software on hosts

in the network and do not need any changes of applications or systems. They are analyzing

communication between network services. Sherlock and Orion are presented as host-based

approaches, but it is possible to implement them in a network-based manner without additional

software.

2. NETWORK DEPENDENCY ANALYSIS

Network dependency analysis has the purpose of identifying complex dependencies between

network service and components that may potentially be affected. The goal is to prevent

unexpected consequences. Network dependency analysis requires analyzing network flows ina

monitored infrastructure.

International Journal of Network Security & Its Applications (IJNSA) Vol.8, No.3, May 2016

2.1.Network Flow

Figure 1. Before transmitting data from Initiator to Receiver a TCP connection has to be

initialized by a 3-way handshake (left figure). After data i

performed (right figure).

We conduct a network dependency analysis based on packet headers (e.g. IP, UDP and TCP) and

timing data in network traffic. Hence, our approach oper

with a 3-way handshake (SYN, SYN

with a 4-way handshake (FIN, ACK, FIN, ACK) or RST packet exchange. If network services

communicate frequently, they may forgo

KEEPALIVE messages to maintain a connection in idle

initialization of a TCP session and termination of initialized TCP session

messages to identify network flow boundaries. In comparison the notion of UDP flows is vague,

since UDP is a state- less protocol. This is due to the protocol not having well

for the start and end of a conversation between server and client. In the context of this wo

consider a stream of consecutive UDP packets between server and client as a UDP flow, if the

time difference between to consecutive packets is below a predefined threshold. In our analysis

we exclude all network packet that are necessary for establi

server and client. So given that addit

these end-to-end interactions between network service

The direct dependency between network services

SDEP = {(s
j
i, s

l
k) | s

j
isends a packet to s

2.2. Network Packet

The basic building blocks of our approach are

dependent network services. A network packet is exchanged by a source and destination IP

address srcIP and dstIP via source and destination port srcPort and dstPort. In addition, a network

packet relies on a specific transport laye

transport layer protocols TCP and UDP.

We define a network packet as a 6

P = (sIP, sPort, dIP, dP ort, ψ, t),

for source IP addresses sIP , a source ports sP

dPort, a transport protocol Ψ = {UDP, TCP} and timestamps t.

2.4. Network Services

Network services hosted by network devices

all network services hosed by the network device d

International Journal of Network Security & Its Applications (IJNSA) Vol.8, No.3, May 2016

Figure 1. Before transmitting data from Initiator to Receiver a TCP connection has to be

handshake (left figure). After data is transmitted, a TCP teardown is

We conduct a network dependency analysis based on packet headers (e.g. IP, UDP and TCP) and

ffic. Hence, our approach operates on network flows. A TCP flow starts

way handshake (SYN, SYN-ACK, ACK) between a client and a server and terminates

way handshake (FIN, ACK, FIN, ACK) or RST packet exchange. If network services

communicate frequently, they may forgo the cost of repetitive TCP handshakes by using

KEEPALIVE messages to maintain a connection in idle periods. Figure 1 represents the

initialization of a TCP session and termination of initialized TCP session. We also use these

low boundaries. In comparison the notion of UDP flows is vague,

less protocol. This is due to the protocol not having well-defined boundaries

for the start and end of a conversation between server and client. In the context of this wo

consider a stream of consecutive UDP packets between server and client as a UDP flow, if the

time difference between to consecutive packets is below a predefined threshold. In our analysis

we exclude all network packet that are necessary for establishing a communication between

server and client. So given that additional data is exchanged between network services

end interactions between network services as direct dependencies.

The direct dependency between network services s
j
iand sl

k is denoted as

sends a packet to s
l
k in the period under consideration} (1)

blocks of our approach are network packets exchanged between directly

dependent network services. A network packet is exchanged by a source and destination IP

address srcIP and dstIP via source and destination port srcPort and dstPort. In addition, a network

packet relies on a specific transport layer protocol. In the context of this paper we distinguish the

transport layer protocols TCP and UDP.

We define a network packet as a 6-tuple
ψ, t),

dresses sIP , a source ports sPort, destination IP addresses dIP, destination ports

 = {UDP, TCP} and timestamps t.

by network devices are related to each other. HOSTS(dj) returns a set of

all network services hosed by the network device dj. HOSTS-1(s) returns the network device

International Journal of Network Security & Its Applications (IJNSA) Vol.8, No.3, May 2016

3

Figure 1. Before transmitting data from Initiator to Receiver a TCP connection has to be

s transmitted, a TCP teardown is

We conduct a network dependency analysis based on packet headers (e.g. IP, UDP and TCP) and

ates on network flows. A TCP flow starts

ACK, ACK) between a client and a server and terminates

way handshake (FIN, ACK, FIN, ACK) or RST packet exchange. If network services

the cost of repetitive TCP handshakes by using

1 represents the

We also use these

low boundaries. In comparison the notion of UDP flows is vague,

defined boundaries

for the start and end of a conversation between server and client. In the context of this work, we

consider a stream of consecutive UDP packets between server and client as a UDP flow, if the

time difference between to consecutive packets is below a predefined threshold. In our analysis

shing a communication between

network services, we term

in the period under consideration} (1)

changed between directly

dependent network services. A network packet is exchanged by a source and destination IP

address srcIP and dstIP via source and destination port srcPort and dstPort. In addition, a network

r protocol. In the context of this paper we distinguish the

 (2)

, destination ports

) returns a set of

(s) returns the network device

International Journal of Network Security & Its Applications (IJNSA) Vol.8, No.3, May 2016

4

hosting network service s. It is possible to associate network service siwith network device dj

using the notation s
j
isuch that dj =HOSTS

-1
(s

j
i)

2.5. Communication Histogram

Let us suppose that we are mirroring network traffic from an initial time point tmin to a time

point tmax within an IT network. We are observing network packets p ∈ P, which is defined as a

6-tuple according to Equation 2. For communicating network services, we build communication
histogram with a bin size ∆t. In the context of work we set ∆t to 1 second. The number of

histogram bins is

bins = �
(tmax − tmin)

�/ ∆t, (3)

given that we want to build a communication histogram for network traffic mirrored from time

point tmin to tmax with a bin size ∆t.

Given that we are monitoring a set of S network services then the data structure for all

communication histograms is defined

H : S × S × Ψ → ({0, · ·· , bins − 1} → N0), (4)

where the communication histogram bins {0, · · · , bins − 1} are mapped to N0 . Now for every

network packets exchanged between directly dependent network services, assuming it was

received during the considered time period, the corresponding bin H(s, s
′
, ψ) in the

communication histogram is incremented. The corresponding bin in the communication
histogram is determined by (tmin − t) mod bins, (5) assuming that the network packet p contains

the time stamp t.

2.6. Indirect Dependency

Indirect dependencies are the second category of dependencies. Indirect dependencies are not

easy to identify in network traffic, as they are not as obvious as direct dependencies. A direct

dependency can be derived based on a network packet, which is exchanged by network services

hosted by network devices. It is possible to estimate indirect dependencies by using SDEP+ in a

brute force manner. This technique would overestimate indirect dependencies and does not lead

to a deeper semantic understanding of complex dependencies in networks. We are interested in a

model estimating indirect dependencies with a low rate of false positive. Therefore, we try to

identify indirect dependencies between network services by identifying similar patterns in

communication vectors of direct dependencies. There are two different types of indirect

dependencies in networks: remote-remote (RR) dependencies and local-remote (LR)

dependencies.

Example. An operator in a control center (CC) of an electrical power grid would like to send a

request to a substation’s RTU 37. First, the operator has to use human machine interface for

medium voltage substation (HMI) to specify the request and then forward it to a front end server

(FES), so that the FES sends the request to the remote terminal unit (RTU). Assuming HMI and

FES are different network devices, and the network device hosing the HMI has the name of its

FES and not the IP address. Then it is necessary that first a request is sent to the network device

hosting domain name system to get the IP address of FES. After the network device has

information about the IP address of FES it can send the operator’s request to front end server. So

there is an LR indirect dependency between network services hosted by HMI, the DNS server and

network service hosted by FES. A graphical representation is given in Figure 2.

International Journal of Network Security & Its Applications (IJNSA) Vol.8, No.3, May 2016

Figure 2.Graphical representation of Example 1: Communication between HMI, DNS, FES and RTU 37.

Assuming there exist an indirect

there exist two direct dependencies:

dependency between HMI, front

consist of a communication vector N

dependency, both communication vectors have a similar pattern.

network device dl, the communication vectors are shifted by a processing delay

Processing delay τdelay is the delay between receiving a data packet and sending a new data

packet to another network service. Two d

network services fulfill the following definition.

ISDEPRR = SDEP HOST S

If network service s
j
isends data packets to network service s

network device dl and after processing delay a network service s

service s
o
n, we have two direct dependencies. These direct dependencies encompass four

network services and represent one RR indirect dependency.

LR indirect dependencies between network services are given, if a network service requires a

supporting network service to perform a task. Therefore, we are interested in identifying local

remote indirect dependencies, too. In Example 1, an LR indirect depend

network service of the network device hosting HMI requires DNS of another network device in

order to send its request to the FES.

ISDEPLR = SDEP HOST S

Using our definitions, there might be many potential indirect dependencies. If a network has N

network devices, theoretically the total number of potential direct dependencies between network

International Journal of Network Security & Its Applications (IJNSA) Vol.8, No.3, May 2016

Graphical representation of Example 1: Communication between HMI, DNS, FES and RTU 37.

Assuming there exist an indirect dependency between network service s
j
i, s

l
k and s

exist two direct dependencies: δ(s
j
i, s

l
k) and δ(sl

m, s
o
n). In Example 1, this is the indirect

front-end server and remote terminal unit. Both direct dependencies

consist of a communication vector N
m

for δ(s
j
i,s

l
k) and δ(sl

m,s
o
n). Because of their

dependency, both communication vectors have a similar pattern. Due to a processing delay on

he communication vectors are shifted by a processing delay

is the delay between receiving a data packet and sending a new data

packet to another network service. Two direct dependencies define an indirect dependency

the following definition.

HOST S-1(2)=HOST S-1(1) SDEP

sends data packets to network service s
l
k so that the data is processed

and after processing delay a network service s
l
m sends data packets to network

, we have two direct dependencies. These direct dependencies encompass four

network services and represent one RR indirect dependency.

indirect dependencies between network services are given, if a network service requires a

supporting network service to perform a task. Therefore, we are interested in identifying local

endencies, too. In Example 1, an LR indirect dependency exists because a

network service of the network device hosting HMI requires DNS of another network device in

order to send its request to the FES.

HOST S-1(1)=HOST S-1(3) SDEP (7)

Using our definitions, there might be many potential indirect dependencies. If a network has N

network devices, theoretically the total number of potential direct dependencies between network

International Journal of Network Security & Its Applications (IJNSA) Vol.8, No.3, May 2016

5

Graphical representation of Example 1: Communication between HMI, DNS, FES and RTU 37.

and s
o
n. Then,

). In Example 1, this is the indirect

t. Both direct dependencies

). Because of their indirect

a processing delay on

he communication vectors are shifted by a processing delay τdelay.

is the delay between receiving a data packet and sending a new data

indirect dependency, if the

SDEP (6)

so that the data is processed on

sends data packets to network

, we have two direct dependencies. These direct dependencies encompass four

indirect dependencies between network services are given, if a network service requires a

supporting network service to perform a task. Therefore, we are interested in identifying local-

ists because a

network service of the network device hosting HMI requires DNS of another network device in

SDEP (7)

Using our definitions, there might be many potential indirect dependencies. If a network has N

network devices, theoretically the total number of potential direct dependencies between network

International Journal of Network Security & Its Applications (IJNSA) Vol.8, No.3, May 2016

services is N
2

· p
2
, where p is the number of maximum concurrently operating services per

network device. On most operating systems this value is 65536. Therefore, the number of

potential indirect dependencies between network services could increase polynomial in networks.

Networks containing at least 125 network devices have potentially more than one billion direct

dependencies between network services. So, we need

dependencies. The idea is to consider only potential indirect dep

of being a correct indirect dependency. In our approach, we use normalized cross correlation to

calculate a similarity-value between two communication

and δ(sl
m,so

n). Both communicat

normalized cross correlation.

In Equation (8) we present the normalized cross correla

andδ(sl
m,so

n). Normalized cross correlation

(8)where the mean values of the compared communication vectors are represented by

and , respectively.

communication vectors.

In image processing, normalized cross correlation is used to correlate an image with a

Consider for example, you have a small picture of an orange and multiple larger images of fruit

bowls. Cross correlation helps you identify, if a fruit bowl contains an orange, by matching the

template to the fruit bowl image. Sometimes the

diverging between the larger image and

influence of differing brightness

Indirect dependencies between two network services have a

Furthermore, the number of exchanged

communication histograms, although they are

effect of brightness in image processi

consider the situation that two

although the communication vectors represent an indirect dependency. Communication vectors

between indirect dependencies are not

Communication delays are caused by network latency and processing delays are due to

information being processed, before being passed on.

To obtain high rates in true positive (TP

estimation, communication vectors have to be shifted against each other.

Therefore, is the period a delay or failure in network service s

service sn on device do. To reduce the potential indirect dependencies generated by 3.1.2, we

International Journal of Network Security & Its Applications (IJNSA) Vol.8, No.3, May 2016

, where p is the number of maximum concurrently operating services per

network device. On most operating systems this value is 65536. Therefore, the number of

potential indirect dependencies between network services could increase polynomial in networks.

Networks containing at least 125 network devices have potentially more than one billion direct

dependencies between network services. So, we need a technique to reduce the number of indirect

dependencies. The idea is to consider only potential indirect dependencies with a high probability

of being a correct indirect dependency. In our approach, we use normalized cross correlation to

between two communication vector of direct dependencies

). Both communication vectors have to have the same length k to calculate the

In Equation (8) we present the normalized cross correlation for communication vectors

). Normalized cross correlationρ is derived by

where the mean values of the compared communication vectors are represented by

and are the standard deviations

In image processing, normalized cross correlation is used to correlate an image with a

Consider for example, you have a small picture of an orange and multiple larger images of fruit

bowls. Cross correlation helps you identify, if a fruit bowl contains an orange, by matching the

template to the fruit bowl image. Sometimes the brightness might differ due to

image and the template. Normalized cross correlation reduces

brightness within image and template.

Indirect dependencies between two network services have a similar pattern shift in time.

exchanged packets does not necessarily have to be

communication histograms, although they are indirectly dependent. This effect is similar to the

image processing. In our approach, we use normalized cross correlation to

consider the situation that two communication vectors diverge in the number of data packets

although the communication vectors represent an indirect dependency. Communication vectors

ect dependencies are not aligned due to communication and processing delays

Communication delays are caused by network latency and processing delays are due to

information being processed, before being passed on.

To obtain high rates in true positive (TP) and low rates in FP and FN indirect dependency

estimation, communication vectors have to be shifted against each other.

is the period a delay or failure in network service sior sk influences

. To reduce the potential indirect dependencies generated by 3.1.2, we

International Journal of Network Security & Its Applications (IJNSA) Vol.8, No.3, May 2016

6

, where p is the number of maximum concurrently operating services per

network device. On most operating systems this value is 65536. Therefore, the number of

potential indirect dependencies between network services could increase polynomial in networks.

Networks containing at least 125 network devices have potentially more than one billion direct

ber of indirect

endencies with a high probability

of being a correct indirect dependency. In our approach, we use normalized cross correlation to

vector of direct dependenciesδ(s
j
i,s

l
k)

ion vectors have to have the same length k to calculate the

tion for communication vectors δ(s
j
i,s

l
k)

where the mean values of the compared communication vectors are represented by

are the standard deviations of both

In image processing, normalized cross correlation is used to correlate an image with a template.

Consider for example, you have a small picture of an orange and multiple larger images of fruit

bowls. Cross correlation helps you identify, if a fruit bowl contains an orange, by matching the

due to illumination

template. Normalized cross correlation reduces the

similar pattern shift in time.

 identical two

. This effect is similar to the

. In our approach, we use normalized cross correlation to

of data packets

although the communication vectors represent an indirect dependency. Communication vectors

aligned due to communication and processing delays.

Communication delays are caused by network latency and processing delays are due to

) and low rates in FP and FN indirect dependency

 (9)

influences network

. To reduce the potential indirect dependencies generated by 3.1.2, we

International Journal of Network Security & Its Applications (IJNSA) Vol.8, No.3, May 2016

introduce a threshold and consider potential indirect dependency

correct identified indirect dependency if

Knowing network dependencies in a monitored

could potentially affect the overall network. For

need to be processed and linked to network dependencies.

3. ALERT PROCESSING

Probes of multiple distributed firewalls (FWs), intrusion detection systems (IDSs) or intrusion

prevention systems (IPSs) are collected throughout a monitored network such that large series of

alerts (alert streams) need to be fused.

alerts need to be normalized before being further

processing in this fashion, the goal of low

enrichment, verification, and merging.

3.1. Alert Normalization

In the overall LLC architecture, data from the above

engine [1] for real-time data processing. Due to the heterogeneous nature of data formats

provided by probes in a distributed environment, it is necessary implement a normalization

process to allow for coherent handling o

normalization for the a electrical power grid’s communication network

SYSLOG configuration as well as the set of descriptive attributes of normalized alerts is

by the Intrusion Detection Message Exchange Format (IDME

Alerts are enriched when values for required attributes are not provided by original alert sources

such that sensible default values are inserted. After normalization and enrichment, L

with alert verification. In the following we describe details on verification, using introductory

examples with normalized alerts.

3.2. Alert Verification

Alert verification is subdivided into three parts, namely alert vulnerability verification, alert

severity verification, and alert operational impact verification. We first discuss

verification, with the central idea to relate alerts with in

the network under consideration. Vulnerabilities are available from the so

inventory, listing all monitored network devices and detected

vulnerabilities nmap and openvas pe

correlation process relies on this knowledge base to link normalized alerts to the monitored

network. Normalized alerts can have many fields and in the following we focus on special cases

in order to demonstrate central ideas using several examples.

3.2.1. Alert Vulnerability Verification

Consider, as shown in Table 1, an alert with a reference to a local exploit reported by an IDS with

the analyzer ID CEDET01IDS. Local exploits take advantage of vulnerabilities or bugs. For the

example in Table 1 we assume that an IDS (CEDET01IDS) has generated an alert referring to

CVE vulnerability (for more details regarding CVE see [3]).

International Journal of Network Security & Its Applications (IJNSA) Vol.8, No.3, May 2016

introduce a threshold and consider potential indirect dependency (δ(s
j
i,s

l
k), δ(s

correct identified indirect dependency if

es in a monitored network provides a basis for verifying how alerts

could potentially affect the overall network. For this purposes a monitored infrastructure’s

need to be processed and linked to network dependencies.

Probes of multiple distributed firewalls (FWs), intrusion detection systems (IDSs) or intrusion

prevention systems (IPSs) are collected throughout a monitored network such that large series of

alerts (alert streams) need to be fused. As different alert streams could use different data formats,

alerts need to be normalized before being further processed. In order to implement fused alert

processing in this fashion, the goal of low-level correlation is to provide for alert normalization,

enrichment, verification, and merging.

In the overall LLC architecture, data from the above-mentioned probes are fed into a SYSLOG

time data processing. Due to the heterogeneous nature of data formats

provided by probes in a distributed environment, it is necessary implement a normalization

process to allow for coherent handling of alerts in subsequent processing steps. A

normalization for the a electrical power grid’s communication network test is realized by a

as well as the set of descriptive attributes of normalized alerts is

etection Message Exchange Format (IDMEF). For details on IDMEF see [

Alerts are enriched when values for required attributes are not provided by original alert sources

such that sensible default values are inserted. After normalization and enrichment, L

with alert verification. In the following we describe details on verification, using introductory

examples with normalized alerts.

Alert verification is subdivided into three parts, namely alert vulnerability verification, alert

severity verification, and alert operational impact verification. We first discuss

, with the central idea to relate alerts with information about known vulnerabilities for

the network under consideration. Vulnerabilities are available from the so-called network

inventory, listing all monitored network devices and detected vulnerabilities.

vulnerabilities nmap and openvas periodically scan the monitored network. The low

correlation process relies on this knowledge base to link normalized alerts to the monitored

network. Normalized alerts can have many fields and in the following we focus on special cases

onstrate central ideas using several examples.

2.1. Alert Vulnerability Verification

Consider, as shown in Table 1, an alert with a reference to a local exploit reported by an IDS with

ID CEDET01IDS. Local exploits take advantage of vulnerabilities or bugs. For the

example in Table 1 we assume that an IDS (CEDET01IDS) has generated an alert referring to

CVE vulnerability (for more details regarding CVE see [3]).

International Journal of Network Security & Its Applications (IJNSA) Vol.8, No.3, May 2016

7

(slm,so
n)) as a

provides a basis for verifying how alerts

monitored infrastructure’s alerts

Probes of multiple distributed firewalls (FWs), intrusion detection systems (IDSs) or intrusion

prevention systems (IPSs) are collected throughout a monitored network such that large series of

nt alert streams could use different data formats,

order to implement fused alert

level correlation is to provide for alert normalization,

e fed into a SYSLOG

time data processing. Due to the heterogeneous nature of data formats

provided by probes in a distributed environment, it is necessary implement a normalization

f alerts in subsequent processing steps. Alert

is realized by a

as well as the set of descriptive attributes of normalized alerts is inspired

F). For details on IDMEF see [2].

Alerts are enriched when values for required attributes are not provided by original alert sources

such that sensible default values are inserted. After normalization and enrichment, LLC proceeds

with alert verification. In the following we describe details on verification, using introductory

Alert verification is subdivided into three parts, namely alert vulnerability verification, alert

severity verification, and alert operational impact verification. We first discuss vulnerability

formation about known vulnerabilities for

called network

vulnerabilities. To detect

The low-level

correlation process relies on this knowledge base to link normalized alerts to the monitored

network. Normalized alerts can have many fields and in the following we focus on special cases

Consider, as shown in Table 1, an alert with a reference to a local exploit reported by an IDS with

ID CEDET01IDS. Local exploits take advantage of vulnerabilities or bugs. For the

example in Table 1 we assume that an IDS (CEDET01IDS) has generated an alert referring to

International Journal of Network Security & Its Applications (IJNSA) Vol.8, No.3, May 2016

8

Table 1. An alert issued by an IDS probe with the analyzer ID CEDET01IDS reports a local exploit.

Analyzer

ID

Alert

ID
Time Source Destination CVE ID

CEDET01I

DS
1

2016-01-24

11:02:31.20
85.1.1.8 132.8.1.5

CVE-2016-

0034

An exploit can only be successful if the respective vulnerability or bug is indeed present on the

targeted network device. Thus, alert vulnerability verification needs to check whether the

vulnerability has been detected on the targeted device by extracting respective information from

the network inventory. To continue the example, we assume that data shown in Table 2 are

available, indicating that CVE-2016-00034 is indeed associated with network device 132.8.1.5.

Table 2. Vulnerability information extracted from the network inventory.

Network Device CVE ID

132.8.1.5 CVE-2016-0034

The network inventory allows the alert vulnerability verification process to link a reported local

exploit, as shown in Table 1, to vulnerabilities detected on source or destination hosts, as shown

in Table 2.

Table 3 – A verified vulnerability alert with an added tag VULNVERIFIED.

Analyzer

ID

Alert

ID
Time Source Destination CVE ID Classification ID

CEDET0

1IDS
1

2016-01-24

11:02:31.20
85.1.1.8 132.8.1.5

CVE-2016-

0034
VULNVERIFIED

If an alert can be linked to a previously recorded vulnerability, we refer to it as a true positive

attack; otherwise it is denoted as a false negative attack. The alert vulnerability verification

process filters out false negative attacks. True positive attacks are passed on with the added

classification ID VULNVERIFIED. Table 3 shows a true positive attack alert with the added

classification ID VULNVERIFIED. In order to reduce the workload of subsequent models, in the

LLC configuration, there is an option to suppress alerts for which no vulnerability can be

identified.FW/IDS/IPS probes report on abnormal behavior occurring in a monitored network,

and not only local exploits potentially with a high impact are being detected. The level of severity

that probes assign to a reported alert is investigated by alert severity verification.

3.2.2. Alert Severity Verification

Given a sensor is certain of abnormal activity with an impact occurring, an alert with a severity

data field is issued. Should we be unable to verify an alert’s vulnerability, but there is an impact

associated with the event then we pass on the alert with an added classification ID

UNVERIFIED. An alert’s vulnerability can be unverified due to two reasons: An alert reporting

an exploit using a particular CVE ID, which the network inventory cannot be corroborated or the

network inventory detected a vulnerability on source or destination, which is not mentioned in the

alert. Consider, as shown in Table 4, for example an alert with a CVE ID “CVE-2016-0033”

severity "medium" is reported by an IDS with the analyzer ID CEDET01IDS.

International Journal of Network Security & Its Applications (IJNSA) Vol.8, No.3, May 2016

9

Table 4 – An alert issued by an IDS probe with the analyzer ID CEDET01IDS reports an abnormal activity

with a severity and CVE ID.

Analyzer ID
Alert

ID
Time Source Destination CVE ID Severity

CEDET01IDS 2
2016-01-24

11:02:31.20
85.1.1.8 132.8.1.5 CVE-2016-0033 medium

CVE-2016-033 is not a vulnerability that was detected on source or destination. Hence, the alert

does not have verified vulnerability. However, given that an alert contains a severity, this alert is

passed on for further consideration with a tag "NOTVERIFIED" as shown in Table 5.

Table 5 – A verified severity alert with an added tag NOTVERIFIED.

Analyzer ID
Alert

ID
Time Source Destination Severity Classification ID

CEDET01ID

S
2

2016-01-24

11:02:31.20

85.1.1.

8
132.8.1.5 medium NOTVERIFIED

In comparison consider an alert reports a medium severity incident with no associated

vulnerability as described in Table 6.

Table 6 –An alert issued by an IDS probe with the analyzer ID CEDET01IDS reports an abnormal activity

with a severity.

Analyzer

ID
Alert ID Time Destination Source Severity

CEDET01I

DS
2

2016-01-

24

11:02:31.2

0

132.8.1.5 85.1.1.8 medium

The network inventory lists vulnerability “CVE-2016-0034” on the destination network device.

Table 7 - Vulnerability information extracted from the network inventory.

CVE ID Network Device

CVE-2016-0034 132.8.1.5

Although the vulnerability could not be verified, the medium severity incident is passed on by the

severity verification process with an added classification ID “NOTVERIFIED”.

International Journal of Network Security & Its Applications (IJNSA) Vol.8, No.3, May 2016

10

Table 8 - A verified severity alert with an added tag NOTVERIFIED.

Analyzer

ID

Alert

ID
Time Source Destination Severity Classification ID

CEDET01I

DS
2

2016-01-24

11:02:31.20
85.1.1.8 132.8.1.5 medium NOTVERIFIED

3.2.4. Alert Fusion

FW/IDS/IPS alerts are reports of abnormal activities in a monitored network. As indicated above,

some alerts are clearly linked to an exploited vulnerability. However, the vast majority of alerts

are simply reports of abnormal activities in a network. Also, in 2015 the security company Check

Point reported that zero day attacks are rising [15]. Check Point discovered that organizations are

targeted by about 100 unknown malware attacks per hour. Thus, reporting a rate 50 times more

than the rate in 2013. As the vulnerabilities involved in, e.g., zero day attacks are unknown, the

attack paths up as false negatives in vulnerability based high-level online correlation.

Misconfiguration or insider attacks are another cause for false negatives. We attempt to address

these attacks by performing alert fusion. Generally, these more sophisticated attacks require prior

reconnaissance attacks, which cause FW/IDS/IPS alerts. Obviously, FW/IDS/IPS sensors

involved in the detection of abnormal activities do not report these alerts with a high confidence

of belonging to an ongoing attack. Combining multiple instances of abnormal activity reports

augment the confidence that a reconnaissance attack is currently occurring. As these alerts would

otherwise go unnoticed, alert fusion aims to reduce false negative alerts.

The purpose of alert fusion is to combine alerts that represent the same attack occurrence. The

LLC process maintains a tumbling alert based window of n alerts. The size of the alert processing

window n is computed as the averaged daily number of alerts occurring every second. On one

hand, this allows for fixed computation time within the low level correlation process (regardless

of how long the component is running), on the other hand, it must be taken into consideration that

alerts can only be fused if they are in the same window. However, the parameter n can be selected

in MONA’s configuration such that scalability and expressivity requirements can be fulfilled in a

particular context.

Duplicate Alert Fusion

The goal of alert fusion is to combine alerts representing an identical detection of the

same attack by FW/IDS/IPS sensor. A single FW/IDS/IPS sensor is able to produce

duplicate alerts, when an attack fits multiple rules. This phenomenon is also referred to as

alert splitting. Table 9 describes how an IDS sensor with an analyser ID CEDET01IDS

splits a port scan into two alerts. The LLC process performs duplicate alert fusion by

merging them into a meta-alert. The meta-alert averages the timestamp of both alerts and

combines all diverging data fields.

Table 9 – Example for merging duplicate alerts.

Analyzer

ID

Alert

ID
Time Source Destination Description

Classification

ID

CEDET0

1IDS
1

2016-01-24

11:02:31.10
85.1.1.8 132.8.1.5 Port scan

CEDET0

1IDS
2

2016-01-24

11:02:31.20
85.1.1.8 132.8.1.5 Port scan

CEDET0

1IDS
{1,2}

2016-01-24

11:02:31.15
85.1.1.8 132.8.1.5 DUBLIMERGE

International Journal of Network Security & Its Applications (IJNSA) Vol.8, No.3, May 2016

11

Taking the same example of port scanning, it is possible that distinct FW/IDS/IPS sensors

detect the port scan. Given source and destination with an alert are identical, the low-

level correlation processes performs alert fusion. Assume that two distinct IDS sensors

with an analyzer id CEDET01IDS and CEDET02IDS both report a port scan. The event

correlation process performs duplicate alert fusion by merging them into a meta-alert.

The meta-alert averages the timestamp of both alerts and combines all diverging data

fields.

In Table 10 there are two port scans shown from one source (1 to n). With an appropriate

classification ID a new alert that fuses both port scan alert is generated (see the last row

in Table 10).

Table 10 –Example for merging duplicate alerts with the same source address.

Analyzer

ID

Alert

ID
Time Source Destination

Descriptio

n

Classification

ID

CEDET01

IDS
4

2016-01-24

11:02:31.10
85.1.1.8 132.8.1.4 Port scan

CEDET01

IDS
5

2016-01-24

11:02:31.20
85.1.1.8 132.8.1.5 Port scan

CEDET01

IDS
{4,5}

2016-01-24

11:02:31.15
85.1.1.8

{132.8.1.4,132.8.

1.5}
 SRCMERGE

In Table 11 we show a port scans from different source to a single device. The fused alert

shown in the last row, again fusion is indicated using a specific classification ID.

Table 11 –Example for merging duplicate alerts with the same destination address.

Analyzer ID
Alert

ID
Time Source Destination Description

Classification

ID

CEDET01ID

S
6

2016-01-24

11:02:31.10
85.1.1.8 132.8.1.4 Port scan

CEDET01ID

S
7

2016-01-24

11:02:31.20
85.1.1.9 132.8.1.4 Port scan

CEDET01ID

S
{6,7}

2016-01-24

11:02:31.15
85.1.1.10 132.8.1.4 DSTMERGE

It is possible to configure LLC in such a way that original alerts are filtered and only the

meta-alerts or fused alerts are forwarded.

3.2.4. Alert Operational Impact Verification

Traditionally, the success of security information and event management (SIEM) is determined

by the level of protection of critical network devices and applications from attackers. Critical

network devices can be routers, servers, etc. and critical applications can compromise database

management software or tools for monitoring and controlling an infrastructure. In order to

understand how critical an application is for a network’s mission, a mission criticality level is

added to the network inventory. Per default, application ports that where found responding are

listed in the network inventory with a default mission criticality value low. Network operators are

International Journal of Network Security & Its Applications (IJNSA) Vol.8, No.3, May 2016

able to reclassify an applications mission criticality to medium or high.

entry from the network inventory.

Table 12 –An application’s mission criticality is added to the network inventory.

CVE ID Network Device

CVE-2016-0034 132.8.1.5

CRITIC: si→ {low, medium, high}

Hence, the set of affected indirect dependencies

OPIMPACT=SCC((∀si∈S:CRITIC

where SCC denotes the strongly connected components (SCC) of the hypergraph given as

parameter (asSet maps a tuple into a set of components).

affected indirect dependencies.

Figure 3. An example for

Operational impact lists all network services and thereby devices, which are potentially affected

by a security incident reported in form of an alert.

of threat to a mission criticality is sufficient

4. EVALUATION

A test bed based on a disaster recovery site of an energy distribution network, provided

Italian water and energy distribution company, was available for testing.

metasploit [8] was used to emulate an attack on the test bed. To allow a more extended

evaluation, a synthetic data set generator was built based on the dataset

test bed. This synthetic data set generator simply replays these attack

collected in the test bed, and is

scalability analysis. Additionally, we ar

dependent network services.

4.1. Test environment

The environment used for the evaluation is following:

• Operating System: Ubuntu Release 12.04 (precise) 64

generic

• RAM: 12 GB, 1600 MHz DDR3

• 2 CPUs: Intel(R) Xeon(R) CPU E5

International Journal of Network Security & Its Applications (IJNSA) Vol.8, No.3, May 2016

able to reclassify an applications mission criticality to medium or high. Table 12

entry from the network inventory.

application’s mission criticality is added to the network inventory.

Network Device Application Port Mission Criticality

132.8.1.5 80 High

{low, medium, high} (10)

Hence, the set of affected indirect dependencies OPIMACT is defined as

CRITIC(si),map(asSet,ISDEP))), (11)

where SCC denotes the strongly connected components (SCC) of the hypergraph given as

parameter (asSet maps a tuple into a set of components). Figure 3 gives an example for a set of

An example for indirect dependencies affected by an alert.

Operational impact lists all network services and thereby devices, which are potentially affected

by a security incident reported in form of an alert. Network operators can predetermine what level

of threat to a mission criticality is sufficient for a security incident to be reported.

based on a disaster recovery site of an energy distribution network, provided

Italian water and energy distribution company, was available for testing. To evaluate

metasploit [8] was used to emulate an attack on the test bed. To allow a more extended

evaluation, a synthetic data set generator was built based on the dataset from the attack

This synthetic data set generator simply replays these attack patterns, which

and is additionally able to provide more alerts per second for a

Additionally, we are able to replay typical network traffic patterns of

The environment used for the evaluation is following:

Operating System: Ubuntu Release 12.04 (precise) 64-bit, Kernel Linux 3.13.0

2 GB, 1600 MHz DDR3 

2 CPUs: Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz

International Journal of Network Security & Its Applications (IJNSA) Vol.8, No.3, May 2016

12

 illustrates an

application’s mission criticality is added to the network inventory.

Mission Criticality

(10)

))), (11)

where SCC denotes the strongly connected components (SCC) of the hypergraph given as

Figure 3 gives an example for a set of

Operational impact lists all network services and thereby devices, which are potentially affected

Network operators can predetermine what level

based on a disaster recovery site of an energy distribution network, provided by an

To evaluate MONA,

metasploit [8] was used to emulate an attack on the test bed. To allow a more extended

from the attacks on the

patterns, which have been

able to provide more alerts per second for a

e able to replay typical network traffic patterns of

bit, Kernel Linux 3.13.0- 32-

International Journal of Network Security & Its Applications (IJNSA) Vol.8, No.3, May 2016

4.2. Precision and Recall

True Positive (TP) represents the correctly identified indirect dependencies while

(FN) is the rate of correct indirect dependencies not identified.

identified indirect dependencies, which are no indirect dependencies. This leads to calculation of

precision and recall

Precision = TP / (TP + FP)

Recall = FP / (TP + FN)

4.3. Sensitivity Analysis

NSDMiner, Sherlock, and Orion

attractive TP and FN rates. Administrators and employees on their own networks provide the

respective ground truth for NSDMiner, Sherlock and Orion. As enterprise networks rely on third

parties to provide the respective ground truth

of all network dependencies. In fact, in our experiments, often network dependency analysis was

very often able to point out unknown network dependencies to administrators.

evaluation, a known ground truth

synthetic data set generator. Our

or other humans. For each indirect dependency between network services, our network generator

saves important details into a file. Hence, indirect and direct dependencies, size of network and

simulation duration of each generated network is known.

Figure 4 shows an evaluation of two networks. Delay distribution between network services of

indirect dependencies is randomly distributed between one and three seconds.

shows the average rate for networks with 100 network devices, 20 indirect dependencies and 60

additional communicating network devices. The right figure

bigger network containing 250 network devices, 140 indirect dependencies and 120 ad

communicating network devices. The x

a threshold in Orion’s approach. Orion makes use of mean+x·stdev to calculate the threshold to

classify potential indirect dependencies.

Figure 4.Comparison between MONA

(blue dotted line), Precision Orion (red line), Recall Orion (red dotted line)]. Left Figure

represents average rates for networks containing

average rates for networks containing 450 network

International Journal of Network Security & Its Applications (IJNSA) Vol.8, No.3, May 2016

represents the correctly identified indirect dependencies while False Negative

is the rate of correct indirect dependencies not identified. False Positive (FP)

identified indirect dependencies, which are no indirect dependencies. This leads to calculation of

Recall = FP / (TP + FN)

NSDMiner, Sherlock, and Orion conduct their experiments based on network traces and

Administrators and employees on their own networks provide the

respective ground truth for NSDMiner, Sherlock and Orion. As enterprise networks rely on third

the respective ground truth, administrators cannot be certain that they are aware

of all network dependencies. In fact, in our experiments, often network dependency analysis was

very often able to point out unknown network dependencies to administrators. For a trustworthy

evaluation, a known ground truth is essential. Hence, we conducted our experiments based on the

 ground-truth is not dependent on knowledge from administrators

or other humans. For each indirect dependency between network services, our network generator

saves important details into a file. Hence, indirect and direct dependencies, size of network and

simulation duration of each generated network is known.

shows an evaluation of two networks. Delay distribution between network services of

indirect dependencies is randomly distributed between one and three seconds. The left figure

rage rate for networks with 100 network devices, 20 indirect dependencies and 60

additional communicating network devices. The right figure shows the same experiment with a

bigger network containing 250 network devices, 140 indirect dependencies and 120 ad

communicating network devices. The x-axis represents the multiplication factor used to calculate

a threshold in Orion’s approach. Orion makes use of mean+x·stdev to calculate the threshold to

classify potential indirect dependencies.

Comparison between MONA and Orion [Precision NDA (blue line), Recall MONA

(blue dotted line), Precision Orion (red line), Recall Orion (red dotted line)]. Left Figure

represents average rates for networks containing 100 network-devices. Right Figure repre

average rates for networks containing 450 network-devices.

International Journal of Network Security & Its Applications (IJNSA) Vol.8, No.3, May 2016

13

False Negative

 rate contains

identified indirect dependencies, which are no indirect dependencies. This leads to calculation of

Recall = FP / (TP + FN) (10)

conduct their experiments based on network traces and present

Administrators and employees on their own networks provide the

respective ground truth for NSDMiner, Sherlock and Orion. As enterprise networks rely on third

t be certain that they are aware

of all network dependencies. In fact, in our experiments, often network dependency analysis was

For a trustworthy

is essential. Hence, we conducted our experiments based on the

truth is not dependent on knowledge from administrators

or other humans. For each indirect dependency between network services, our network generator

saves important details into a file. Hence, indirect and direct dependencies, size of network and

shows an evaluation of two networks. Delay distribution between network services of

The left figure

rage rate for networks with 100 network devices, 20 indirect dependencies and 60

shows the same experiment with a

bigger network containing 250 network devices, 140 indirect dependencies and 120 additional

axis represents the multiplication factor used to calculate

a threshold in Orion’s approach. Orion makes use of mean+x·stdev to calculate the threshold to

sion NDA (blue line), Recall MONA

(blue dotted line), Precision Orion (red line), Recall Orion (red dotted line)]. Left Figure

. Right Figure represents

International Journal of Network Security & Its Applications (IJNSA) Vol.8, No.3, May 2016

For an additional experiment, we expanded the experiment to include NSDMiner and Sherlock in

addition to Orion. We compare their precision and recall rate to MONA’s.

precision and recall rate of Sherlock, Orion and MONA on varying sized networks.

4.4. Comparison with Orion

Orion focuses on local-remote indirect dependencies and is not able to identify remote

indirect dependencies. A reason

approach MONA is able to identify more complex remote

compare both approaches, our evaluation is based on local

step we generate networks containing traffic between network services using our network

generator. This leads to ground

implementation of Orion and MONA to calculate indirect dependencies identified

generated networks. Orion has a high rate of TP and a low FN rate of indirect dependencies in

networks with small delays and huge amount of network communication between indirect

dependent network services. Few

one example not fulfilling the mentioned criteria. In enterprise networks, often devices are

geographically distributed in different quarters. Therefore, delays are more spread than in

networks without geographically distributed

characteristics. Furthermore, Orion’s threshold is dependent on number of network devices and

amount of network traffic involved in indirect dependencies.

Figure 5. Comparison between NDA, Orion, N

International Journal of Network Security & Its Applications (IJNSA) Vol.8, No.3, May 2016

For an additional experiment, we expanded the experiment to include NSDMiner and Sherlock in

addition to Orion. We compare their precision and recall rate to MONA’s. Figure 6 shows the

precision and recall rate of Sherlock, Orion and MONA on varying sized networks.

remote indirect dependencies and is not able to identify remote

 for this behavior is their host-based design. Our network

approach MONA is able to identify more complex remote-remote indirect dependencies. To

compare both approaches, our evaluation is based on local-remote indirect dependencies. In a first

we generate networks containing traffic between network services using our network

generator. This leads to ground-truth and networks with different characteristics.

implementation of Orion and MONA to calculate indirect dependencies identified

generated networks. Orion has a high rate of TP and a low FN rate of indirect dependencies in

networks with small delays and huge amount of network communication between indirect

dependent network services. Few networks fulfill these criteria. Data networks of power grids are

one example not fulfilling the mentioned criteria. In enterprise networks, often devices are

geographically distributed in different quarters. Therefore, delays are more spread than in

networks without geographically distributed areas. Each connection to branch offices has its own

characteristics. Furthermore, Orion’s threshold is dependent on number of network devices and

amount of network traffic involved in indirect dependencies.

. Comparison between NDA, Orion, NSDMiner and Sherlock.

International Journal of Network Security & Its Applications (IJNSA) Vol.8, No.3, May 2016

14

For an additional experiment, we expanded the experiment to include NSDMiner and Sherlock in

Figure 6 shows the

remote indirect dependencies and is not able to identify remote-remote

based design. Our network-based

remote indirect dependencies. To

remote indirect dependencies. In a first

we generate networks containing traffic between network services using our network

truth and networks with different characteristics. We use our

implementation of Orion and MONA to calculate indirect dependencies identified in the

generated networks. Orion has a high rate of TP and a low FN rate of indirect dependencies in

networks with small delays and huge amount of network communication between indirect

networks of power grids are

one example not fulfilling the mentioned criteria. In enterprise networks, often devices are

geographically distributed in different quarters. Therefore, delays are more spread than in

areas. Each connection to branch offices has its own

characteristics. Furthermore, Orion’s threshold is dependent on number of network devices and

International Journal of Network Security & Its Applications (IJNSA) Vol.8, No.3, May 2016

Figure 6. Precision and recall between MONA, Orion and Sherlock for networks with different amount of

4.5. Performance alert processing time

As a number of low-level alerts are being fired from IDS sensors at a high

sophisticated knowledge of both networking technology and infiltration techniques is required to

understand them. IDS alert correlation system tries to solve this problem by post

alert stream from one or many IDS sensors.

the alerts with vulnerability information

seconds depends on the number of simultaneously processed alerts.

exceeds one second, we would not be able to hold that pace, should it continuously occur over

multiple time windows. The results are illustrated in Figure 2. The computation time of

simultaneously processed alerts is compared with 2 virtual CPUs and 4 virtual CPUs. Th

experiment shows that MONA’s

International Journal of Network Security & Its Applications (IJNSA) Vol.8, No.3, May 2016

. Precision and recall between MONA, Orion and Sherlock for networks with different amount of

devices.

. Performance alert processing time

level alerts are being fired from IDS sensors at a high pace, a fairly

sophisticated knowledge of both networking technology and infiltration techniques is required to

understand them. IDS alert correlation system tries to solve this problem by post-processing the

m from one or many IDS sensors. They goal is to aggregate low-level alert and enrich

the alerts with vulnerability information. Assuming a time-based system, the processing time in

seconds depends on the number of simultaneously processed alerts. If the alert processing time

nd, we would not be able to hold that pace, should it continuously occur over

The results are illustrated in Figure 2. The computation time of

simultaneously processed alerts is compared with 2 virtual CPUs and 4 virtual CPUs. Th

experiment shows that MONA’s algorithm is parallelizable.

Figure 7.Alert processing time.

International Journal of Network Security & Its Applications (IJNSA) Vol.8, No.3, May 2016

15

. Precision and recall between MONA, Orion and Sherlock for networks with different amount of

pace, a fairly

sophisticated knowledge of both networking technology and infiltration techniques is required to

processing the

level alert and enrich

based system, the processing time in

If the alert processing time

nd, we would not be able to hold that pace, should it continuously occur over

The results are illustrated in Figure 2. The computation time of

simultaneously processed alerts is compared with 2 virtual CPUs and 4 virtual CPUs. This

International Journal of Network Security & Its Applications (IJNSA) Vol.8, No.3, May 2016

4.6. Performance network dependency analysis

The network dependency analysi

network dependency in a network containing 100 devices and 50 communicating network

services. Computing network dependencies requires generating potential indirect dependencies

and analyzing whether these indirect dependencies

network devices affect the performance, we conducted the same experiment with a network

containing 900 network devices. The results of this evaluation are shown in

the number of network devices d

Figure 8. Network dependency analysis in

Figure 9. Network dependency analysis in a network containing 900 network devices.

International Journal of Network Security & Its Applications (IJNSA) Vol.8, No.3, May 2016

Performance network dependency analysis

The network dependency analysis is conducted offline. Figure 8 evaluates the performance of

network dependency in a network containing 100 devices and 50 communicating network

services. Computing network dependencies requires generating potential indirect dependencies

whether these indirect dependencies actually exist. To assess, whether more

network devices affect the performance, we conducted the same experiment with a network

containing 900 network devices. The results of this evaluation are shown in Figure 9, revealing

the number of network devices does not affect the performance of network dependency analysis.

Network dependency analysis in a network containing 100 network devices.

. Network dependency analysis in a network containing 900 network devices.

International Journal of Network Security & Its Applications (IJNSA) Vol.8, No.3, May 2016

16

evaluates the performance of

network dependency in a network containing 100 devices and 50 communicating network

services. Computing network dependencies requires generating potential indirect dependencies

To assess, whether more

network devices affect the performance, we conducted the same experiment with a network

Figure 9, revealing

oes not affect the performance of network dependency analysis.

a network containing 100 network devices.

. Network dependency analysis in a network containing 900 network devices.

International Journal of Network Security & Its Applications (IJNSA) Vol.8, No.3, May 2016

17

5. CONCLUSIONS

We have demonstrated a novel approach to security event management based on a deeper

understanding of network activities. This deeper understanding was derived based on network

dependency analysis. Network dependency analysis enables deriving a deeper understanding of

network activities and leverages well data-communication networks with different numbers of

network devices and indirect dependencies. A heuristic evaluation based on a synthetic data

generator compares the precision of our proposed approach to other network dependency discover

methodologies. In addition to aggregating alerts with similar characteristics occurring in the same

time window, we extend network dependencies in order to derive the operational impact of alerts.

The proposed frame is able to link network dependencies with security events and thereby

assesses a security event’s impact on ongoing network activities.

ACKNOWLEDGMENT

The research in this paper has received funding from the PANOPTESEC project, as part of the

Seventh Framework Programme (FP7) of the European Commission (GA 610416).

REFERENCES

[1] Budai, László, https://www.balabit.com/network-security/syslog-ng, last accessed on 21/03/2016.

[2] Debar, Hervé, David A. Curry, and Benjamin S. Feinstein, "The intrusion detection message

exchange format (IDMEF)." (2007).

[3] Common Vulnerabilities and Exposures, https://www.cve.mitre.org, last accessed on 26/02/2016.

[4] Check Point Security Report, https://www.checkpoint.com/resources/2015securityreport/CheckPoint-

2015-SecurityReport.pdf, 2015.  

[5] Mona Lange, Ralf Moeller, Gregor Lang and Felix Kuhr, Event Prioritization and Correlation based

on Pattern Mining Techniques, ICMLA, 2015.

[6] Technical Report, Mona Lange, Felix Kuhr, Ralf Moeller, Using a Deep Understanding of Network

Activities for Network Vulnerability Assessment, 2016.

[7] Metasploit, https://www.metasploit.com, last accessed on 26/02/2016.

[8] Michael Larsen and Fernando Gont. Recommendations for transport-protocol port randomization.

2011.

[9] ParamvirBahl, Paul Barham, Richard Black, Ranveer Chandra, MoisesGoldszmidt, Rebecca Isaacs,

SrikanthKandula, Lun Li, John MacCormick, David A Maltz, et al. Discovering dependencies for

network management. In ACM SIGCOMM 5th Workshop on Hot Topics in Networks (Hotnets-V),

pages 97–102. ACM, 2006.

[10] Xu Chen, Ming Zhang, Zhuoqing Morley Mao, and ParamvirBahl. Automating net- work application

dependency discovery: Experiences, limitations, and new solutions. In OSDI, volume 8, pages 117–

130, 2008.

[11] ArunNatarajan, Peng Ning, Yao Liu, SushilJajodia, and Steve E Hutchinson. NS- DMiner: Automated

discovery of network service dependencies. IEEE, 2012.  

[12] Ali Zand, Giovanni Vigna, Richard Kemmerer, and Christopher Kruegel. Rippler: Delay injection for

service dependency detection. In INFOCOM, 2014 Proceedings IEEE, pages 2157–2165. IEEE, 2014.

2.2, 4.2.4

[13] Check Point Security Report, https://www.checkpoint.com/resources/

2015securityreport/CheckPoint-2015-SecurityReport.pdf, 2015, last accessed on 26/02/2016.

[14] J. R. Clapper. Statement for the record, worldwide threat assessment of the US intelligence

community.https://www.dni.gov/index.php/newsroom/testimonies/209- congressional-testimonies-

2015/1174-statement-for-the- record-worldwide-threat-assessment-of-the-u-s-ic- before-the-sasc,

2014.

[15] D. Inc. Dell security annual threat report.https://software.dell.com/docs/2015-dell-security- annual-

threat-report-white-paper-15657.pdf, 2015.

International Journal of Network Security & Its Applications (IJNSA) Vol.8, No.3, May 2016

18

[16] B. Morin, L. M ́e, H. Debar, and M. Ducass ́e. M2D2: A formal data model for IDS alert correlation.

In Recent Advances in Intrusion Detection, pages 115– 137. Springer, 2002.

[17] T. Pietraszek. Using adaptive alert classification to reduce false positives in intrusion detection. In

Recent Advances in Intrusion Detection, pages 102– 124. Springer, 2004.

[18] R. Smith, N. Japkowicz, M. Dondo, and P. Mason. Using unsupervised learning for network alert

correlation. In Advances in Artificial Intelligence, pages 308–319. Springer, 2008.

[19] F. Cuppens and A. Miege. Alert correlation in a cooperative intrusion detection framework. In

Security and Privacy, 2002. Proceedings. 2002 IEEE Symposium on, pages 202–215. IEEE, 2002.

[20] X. Peng, Y. Zhang, S. Xiao, Z. Wu, J. Cui, L. Chen, and D. Xiao. An alert correlation method based

on improved cluster algorithm. In Computational Intel- ligence and Industrial Application,

2008.PACIIA’08. Pacific-Asia Workshop on, volume 1, pages 342–347. IEEE, 2008.

[21] H. Farhadi, M. AmirHaeri, and M. Khansari. Alert correlation and prediction using data mining and

HMM.The ISC International Journal of Information Security, 3(2), 2015.

[22] M. GhasemiGol and A. Ghaemi-Bafghi. E-correlator: an entropy-based alert correlation system.

Security and Communication Networks, 8(5):822–836, 2015.

[23] K. Tabia, S. Benferhat, P. Leray, and L. M ́e. Alert correlation in intrusion detection: Combining AI-

based approaches for exploiting security operators’ knowledge and preferences. In Security and

Artificial Intelligence (SecArt), page NC, 2011.

