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ABSTRACT 
 
We have designed a hybrid approach combining rule-based and anomaly-based detection against DDoS 

attacks. In the approach, the rule-based detection has established a set of rules and the anomaly-based 

detection use one-way ANOVA test to detect possible attacks. We adopt TFN2K (Tribe Flood, the Net 2K) 

as an attack traffic generator and monitor the system resource of the victim like throughput, memory 

utilization, CPU utilization consumed by attack traffic. Target users of the proposed scheme are data 

center administrators. The types of attack traffic have been analysed and by that we develop a defense 

scheme. The experiment has demonstrated that the proposed scheme can effectively detect the attack traffic. 
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1. INTRODUCTION 

 
Distributed Denial of Service (DDoS) has caused a serious threat to network security since it has 

significantly damaged network infrastructure as well as Internet services. DDoS attacks can be 

categorized into two types: semantic and flooding attacks. Semantic attacks usually exploit some 

weakness of the target system and implant bot onto it. On the other hand, flooding attack creates a 

large number of attack network traffic, service requests and connections, and thus consuming a 

large number of victim resources, such as CPU, bandwidth and internal memory.  

 

Recently, much effort has concentrated on detection methods for flooding attacks. We may 

categorize them into four main approaches: traceback-based [1-5], rule-based [6-16], protocol-

based [17-27] and anomaly-based [28-30]. Traceback-based methods make the victim to identify 

the attack source as well as attack paths once the attack has been encountered. Among the 

available traceback methods, Deterministic Packet Marking (DPM) [4] is considered to be a 

simple and relatively effective traceback scheme. The victim employs a DPM algorithm to 

identify data marks of suspicious packets and choose the filtering probability of the marked 

packets, which is based on both arrival rate and attack paths. The data mark rate is adjusted 

dynamically based on attack frequency. Rule-based detection usually defines some rules (also 

called signatures) to set normal traffic apart from suspicious traffic. Whenever the methods 

locates incoming traffic that matches content or condition found in a rule, alert will occur. Rule-

based detection is effective in the past when only a few malware strains can be found. However, 
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as the number of malware increase dramatically, it is impossible to create and maintain this 

number of rules.  

 

Scalable detection [6] has proposed a new data structure called partial completion filters (PCFs) 

that can detect scanning attacks and partial completion attacks in the network. Not only small 

traffic volumes but also flooding traffics was used on the experiments to demonstrate how PCFs 

works to achieve high effectiveness. By using group-testing theory, Live Baiting [7] has the 

advantage of exploiting attackers within incoming traffic with the minimum number of test and 

low state overhead. The state overhead needed is in the order of number of attackers, rather than 

number of clients. Neither legitimate requests nor anomalous behaviour are required in model, 

Live Baiting scales to large services with millions of clients.   

 

Protocol-based flooding attacks can be classified into two categories based on the protocol level 

that is targeted [17]. They are network/transport-level [18-23] and application-level flooding [24-

27]. Network/transport-level flooding has been launched attacks to consume the victims’ resource 

by exploiting the bugs and the weakness of IP, TCP, UDP and ICMP protocols. Similarly, 

Application-level flooding sends faked application-level protocol requests to the large number of 

innocent servers (reflectors), which flush packets to the victims.  

 

Anomaly-based detection [28-30] usually discusses the methods for generating statistical data 

that can be used to perform detection and analysis. Rather than simply alerting whenever some 

exceptional traffic pattern is observed, an anomaly-based detection is capable of discerning 

between attack traffic and normal traffic. This type of detection is more powerful, but more 

difficult to implement.  

 

The proposed scheme combines the best properties of rule-based and anomaly-based detection. 

For the part of rule-based detection, we set up three criteria for incoming traffic. They are 

throughput, CPU utilization and memory utilization. We further identify suspicious traffic by 

examining one criteria or combination of criteria along with ANOVA test for the part of 

anomaly-based detection. In this study, we mainly focus on network/transport-level flooding 

attacks to simplify the experiment. 

 

The rest of paper can be organized as follows. Section II describes the proposed scheme and 

discusses the detection and response mechanism. In Section III, simulation and results are 

presented. Finally, we draw our conclusions in Section IV. 

 

2. THE PROPOSED SYSTEM 

 
The proposed system can be classified into two parts: detection and response, which can be 

described as follows. 

 

2.1. Detection 

 
The design principle of detection aims to identify the traffic with suspicious behaviour. Because 

no single flow may be suspicious, we perform flow aggregation with arrival rate to identify 

overloading behaviour. Assume Ft is the arrival rate measured at the receiver at time t. We have  

           (1) 

 

The receiver first checks whether ∆Ft reaches incremental rate threshold (Thf). If this does occur, 

incremental rate counter, Cf, is incremented by 1. Otherwise, Cf is decreased by 1 until it reaches 

0. We also set a counter threshold, αf, to ensure proper provisioning of QoS. When Cf grows up to 
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be αf, we may say these aggregate flows enter warning state. The Boolean variable Bf is set to be 

1. If Cf reduces to be below αf, Bf is set to be 0. The flowchart of flow identification is depicted at 

Figure 1. Legitimate traffic can be considered as attack traffic whenever they show certain 

overloading behaviour. Therefore, we need another indicator(s) to assist to identify suspicious 

traffic. Active query, like DNS amplification, usually introduces significant overhead to the 

interface loading of the victim. Query frequency is in proportion to current network utilization 

[13]. The network utilization information includes memory utilization and interface loading (CPU 

utilization), which will be examined in the following. 

 

 
 

Figure 1. Flowchart of flow identification 

 

Let Mt be memory utilization observed at the receiver at time t. We have  

        (2) 

 

We further check whether ∆Mt reaches incremental memory utilization threshold (Thm), a value 

set by experienced operator to avoid memory exhaustion by extremely high traffic volume. If so, 

the counter of incremental memory utilization, Cm, is incremented by 1. Otherwise, Cm is 

decreased by 1 until it reaches 0. We use a counter, αm, to examine the continuity of potential 

attack. When Cm increases up to αm, memory utilization enters warning state. The Boolean 

variable, Bm, is set to be 1. When Cm decreases down below αm, Bm is set to be 0. Figure 2 

represents the flowchart of memory utilization identification.  

 

Again, we set Pt to be the CPU utilization measured at the receiver at time t. We have 

 

  (3) 
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Figure 2. Flowchart of memory utilization identification 

 

Let Thp and Cp be the incremental threshold and the incremental counter of CPU utilization, 

respectively. Whenever ∆Pt  exceeds Thp, Cp is incremented by 1. Otherwise, Cp, is decreased by 1 

until it reaches 0. When Cp reaches its upper bound threshold,αp, the CPU utilization enters 

warning state. The Boolean variable Bp is set to be 1. Otherwise, Bp is initialized to be 0. Figure 3 

is the flowchart of interface loading identification. Table 1 represents the status of combination of 

three parameters, Bf, Bm and Bp. We have three status results: OK, minor warning and attack alert. 

A flow is considered to be OK if passes through all the three parameters’ examination. A flow is 

plausible if only pass one or two parameters’ tests. We may consider it as minor warning and 

need one-way ANOVA test (will be described at section 3.3) to further verify. On the other hand, 

a flow is said to be attack alert if fails all the three parameters’ tests or two parameters’ test (at 

least including parameter Bp). The reason attack alert always includes parameter Bp is that an 

increase on CPU utilization of the victim is an indication of DDoS attacks [13].  

 

Minor warning traffic should be further identified by comparing the mean and variance of the 

throughput of normal traffic. We use a one-way ANOVA (analysis of variance) to test the 

difference of k group means. In this case, k=2. The attack traffic is generated randomly by 

TFN2K (Tribe Flood, the Net 2K). We measure using a test statistic that has an F-distribution 

with (k−1, n−k) degrees of freedom. The null hypothesis will be the throughput means of two 

population, normal traffic and attack traffic, are equal, and alternative will be that the throughput 

means of two population differ from each other. We have H0: µ1 = µ2, where µ1, µ2, are the mean 

throughput of normal traffic and attack traffic, respectively.  

 

H1: µ1 ≠ µ2. 

 

The numerator (MSR) is the variability between group means. The denominator (MSE) measures 

how much individual observations vary in each group from their group mean estimates. MSR is 

the mean squared treatment and MSE is the mean squared error. MSR and MSE stands for 

Regression Sum of Squares (SSR) and Error Sum of Squares (SSE) divided by its degrees of 

freedom k−1 and n−k, respectively. If the ratio of MSR to MSE is significantly high, we can 
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conclude that the group means are significantly different from each other. The F-statistic is given 

below. 

 

, 

 

where n is total number of observations,  is the overall mean of all observations, and  and  

are the mean and the number of observations for the jth group, respectively. We assume the level 

of significance (α) is 0.05. If the P-value computed from the samples is less than the level of 

significance, α, we have evidence against the null hypothesis. That is, we reject the null 

hypothesis and say that the result is statistically significant. 

 

2.2. Response 

 
The overall procedure of our system architecture is illustrated in Figure 4. The machine 

information of symbol A-I are listed in Table 2. The scheme can be divided into three parts: 

Attacker, Monitoring Server and Victim Host. There are two main modules within the Attacker: a 

command module (tfn) and a Zombie module (td). The command module is the piece that 

controls the Zombie. The command module tells the Zombies when to attack and with what 

exploit. The Zombie runs on a machine in listening mode and waits to get commands from the 

command module. The Attacker generates randomized UDP flood, TCP/SYN flood, ICMP/PING 

flood, ICMP/SMURF flood, MIX flood (UDP/TCP/ICMP interchanged), TARGA3 flood (IP 

stack penetration). 

 

 
 

Figure 3. Flowchart of CPU utilization identification 
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Table 1. Status of combination of three parameters 

 

 Bf Bm Bsp Status 

C1 0 0 0 OK 

C2 0 0 1 minor warning 

C3 0 1 0 minor warning 

C4 0 1 1 attack alert 

C5 1 1 1 attack alert 

C6 1 0 0 minor warning 

C7 1 0 1 attack alert 

C8 1 1 0 minor warning 

 

There are three modules in the Monitoring Server. They are Control module, Mirror module and 

Statistics module. The Secure Shell (SSH) secures the remote connection to a remote machine. 

The Control module writes a shell script to SSH command(s) to firewall (Figure 4(a)). The 

Control module modifies the rule of IPTABLE based on the information provided by both Mirror 

module (Figure 4(b)) and Statistics module (Figure 4(c)). Port mirroring is used on a switch to 

send a copy of packets to the mirror module. Mirror module monitors the network traffic and 

helps the administrators to diagnosis the network performance. Statistics module collects data 

from victim host and mirror module. We use AWK to search for particular strings and modify the 

data as required. Statistics module then does plotting in gnuplot script from perl.  We use free 

command and iostat command to get the information on available RAM and interface loading in 

the victim host. The victim host output the related information to monitoring server for further 

diagnosis.  

 
 

Figure 4. System architecture 
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Table 2. Machine information  

 

Symbol Specification OS Role 

A 
Intel® Core™2 Duo E7500 

RAM: 8 GB 1066 MHz DDR3 SDRAM 

Linux 

Fedora 20 
Attacker  

B 
Intel® Core™2 Duo E7500 

RAM: 8 GB 1066 MHz DDR3 SDRAM 

Linux 

Fedora 20 
Zombie 

C DES-3200-26  Switch 

D 
Intel® Core™2 Duo E7500 

RAM: 8 GB 1066 MHz DDR3 SDRAM 

Linux 

Fedora 20 
Firewall  

E 
Intel® Core™2 Duo E7500 

RAM: 8 GB 1066 MHz DDR3 SDRAM 

Linux 

Fedora 20 

Monitorin

g Server   

F DES-1024D  Switch 

G 
Intel® Core™2 Duo E7500 

RAM: 8 GB 1066 MHz DDR3 SDRAM 

Linux 

Fedora 20 

Victim 

Host  

H 
Intel® Core™2 Duo E7500 

RAM: 8 GB 1066 MHz DDR3 SDRAM 

Linux 

Fedora 20 
Server  

I 
Intel® Core™2 Duo E7500 

RAM: 8 GB 1066 MHz DDR3 SDRAM 

Linux 

Fedora 20 
Server 

 

 

3. EXPERIMENTS AND EVALUATION 

 
In this section, we analyse which combination is appropriate and discuss to take some action to 

mitigate DDoS attack under each combination type. We implement the attack tool- TFN2K (Tribe 

Flood, the Net 2K) on the attacker and evaluate the performance of the proposed system through 

experiments based on the following criteria: 1) Comparison of resource utilization for normal 

traffic and attack traffic; 2) The minimum cost to detect the attack traffic; 3) Correction of 

detection result (false positive and false negative). We concentrate on four major DDoS attacks: 

UDP flood, TCP SYN flood, ICMP flood and MIX flood. 

 

3.1. Comparison of resource utilization for normal traffic and attack traffic 

 
We first observe the real normal traffic traces captured at the campus network. Not only low 

scale, but also large scale normal traffic are observed in the experiment. Figure 5 and Figure 6 

have shown that low scale normal traffics featuring TCP and UDP mix and large scale TCP 

traffic within 300 seconds, respectively. The throughput of TCP normal traffic drops periodically 

due to transmission completion. Continuous sending a low rate traffic is another strategy for the 

attackers to bring down a server. We found that the original TFN2K only generates constant-like 

rate attack traffic. The reason is that the implementations of rand ( ) in original TFN2K have 

serious shortcomings in the randomness, distribution and period of the sequence produced. At the 

start, we use the original TFN2K as the attacker to command one single zombie to generate 

constant-like rate attack traffic. Therefore, we may observe the stealthy behavior of the attacker. 

 

Various types of attack traffic in term of throughput, system CPU utilization and memory 

utilization are presented in Figure 7, Figure 8 and Figure 9, respectively. After the initial 30 

seconds, the throughput jumps abruptly and achieves the maximum till the end of the attack 

period (Figure 7). This is because the zombie is programed to direct attack traffic to the victim at 

its maximum capacity. In Figure 8, we found that the system CPU usage is vulnerable to ICMP 

flooding. In ICMP flooding, the attacker overwhelms the victim with ICMP echo request packets, 
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large ICMP packets, and other ICMP types to increase system CPU utilization, thereby slowing 

down the victim. We can conclude that ICMP flooding is CPU bound attack. The ideal way to 

deal with such attack is to ban zero-sized UDP packets via netfilter. On the other hand, the other 

three attacks have little effects on system CPU utilization. When flooded with DDoS attack 

messages, the victim uses up all its memory (Figure 9). The four types of attack traffic constantly 

and evenly saturate the victim's memory. The victim host is then unable to perform operations 

that need additional memory.  

 

 
Figure 5. Throughput (bit(s)/s), low scale normal traffic 

 

 

 
Figure 6. Throughput (bit(s)/s), large scale TCP normal traffic 
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Figure 7. Throughput (bit(s)/s), constant rate attack traffic 

 

 

 
Figure 8. System CPU utilization (%), constant rate attack traffic 

 

 

 
Figure 9. Memory utilization (%), constant rate attack traffic 

 
In order to simulate the real DDoS traffic, we replace rand ( ) with /dev/random in flood.c, ip.c 

and tribe.c of TFN2K. /dev/random is a special file that serves as a blocking pseudorandom 

number generator. The attacker triggers n zombies for every 1/∆ second, where n is randomly 

selected from 1 to 4. On receiving the commands from the attacker, the zombies start to forward 

the attack traffic to the victim. In Figure 10, we found that the throughput of randomized attack 



International Journal of Network Security & Its Applications (IJNSA) Vol.8, No.5, September 2016 

10 

flooding grows variably over time, which is in contrast to that of Figure 7. Therefore, we may 

conclude that the throughput on the increase (Figure 10) or a sudden change in the average 

incoming traffic (Figure 7) cannot be used as the only evidence of a DDoS attack. Figure 11 

represents resource utilization with TCP SYN flooding between 40 and 300 seconds at 1 second 

interval. TCP SYN flooding stimulates a surge of both system CPU utilization and memory 

utilization. The data shows that the memory utilization grows faster even than we have expected. 

The reason is that TCP SYN flooding exploits a memory exhaustion issue inherent in the design 

of the TCP protocol. TCP SYN flooding initiates many connections without completing three-

way handshake, until the victim is exhausted and has no memory left to track the TCP connection 

state for normal traffic.  
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Figure 10. Throughput (bit/s), randomized attack traffic flooding 

 

3.2. The minimum cost to detect the attack traffic 

 
The minimum cost here is said to be k and s. Let k be the minimum percentage of system resource 

and s be the saturation time, respectively, exhausted by the attack traffic, such that the system 

service is disrupted. Table 3-5 represents the evaluation result of parameter Thf, Thp and Thm, 

respectively, for four types of attack traffic, which are measured by system operators 10 times. 

Table 6 indicates the statistics of attack traffic. We run 1,000 samples for each trial. From Table 3, 

we can find that the lowest value of Thf, 908,874 bits/s, is for TCP SYN Flood. Therefore, we 

choose 900,000 bits/s as the recommended value of Thf. Similarly, the lowest value of Thp, 

2.6x10-3 %, is for TCP SYN Flood (Table 4) and the lowest value of Thm, 1,096 bits/s, is for UDP 

Flood (Table 5). We choose 3.0x10-3 % and 1,000 bits/s as the recommended value of Thp and 

Thm, individually. 
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Table 3. Evaluation result of parameter Thf, attack traffic 

 

Type of Attack Thf (packets/s) Thf (bits/s) 

TCP SYN Flood 17,149 908,874 

UDP Flood 32,504 1,415,646 

ICMP Flood 45,509 4,647,782 

Mix Flood 26,131 1,762,852 

 
Table 4. Evaluation result of parameter Thp, attack traffic 

 

Type of Attack Thp (%) k (%) Saturation time (s) 

TCP SYN Flood 2.6x10
-3

 0.7 38,571 

UDP Flood 4.4x10-3 1.2 22,500 

ICMP Flood 6.1 x10
-2

 16.6 1,627 

Mix Flood 4.1x10-3 1.1 24,545 

 
Table 5. Evaluation result of parameter Thm, attack traffic 

 

Type of Attack Thm (bits/s) k (%) Saturation time (s) 

TCP SYN Flood 1,781 7 40 

UDP Flood 1,096 7 65 

ICMP Flood 6,995 11 16 

Mix Flood 4,578 9 20 

 

3.3. Correction of detection result 
 

Suspicious traffic should be further identified by comparing the mean x and variance D of the 

throughput of normal traffic. d is represented as the standard deviation. Table 6 and 7 indicates 

statistics of large scale normal traffic and attack traffic on 10 trials, respectively. The large scale 

normal traffic are for data obtained in 10-second interval at every o’clock from 8 AM to 5 PM. 

The attack traffic is generated randomly by TFN2K. We use 360 samples (6/min × 60 min(s)/hour) 

for each trial. We measure using a test statistic that has an F-distribution with (k−1, n−k) degrees 

of freedom. In this case, k=2 and n=360. If the P-value computed from the samples is less than 

the level of significance, α, we have evidence against the null hypothesis. That is, we reject the 

null hypothesis and say that the result is statistically significant. From Table 8, we can find that 

only the P-value of trial 3 is great than 0.05, we do not reject the null hypothesis. That is, the 

throughput means of normal traffic and attack traffic is not statistically significant.  

 
Table 6. Throughput statistics of normal traffic on 10 trials 

 

Trial # Mean (x) 

(1.0e+008 * b/s) 

Standard deviation (s) 

(1.0e+008 * b/s) 

Variance (D) 

(1.0e+008 * b/s) 

1 0.0652 0.0204 4.1695 

2 0.0639 0.0203 4.1309 

3 0.0649 0.0203 4.1032 

4 0.0651 0.0202 4.0728 

5 0.0644 0.0206 4.2405 

6 0.0655 0.0202 4.0630 

7 0.0653 0.0197 3.8744 

8 0.0653 0.0204 4.1675 

9 0.0649 0.0204 4.1805 

10 0.0655 0.0199 3.9488 
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 Table 7. Throughput statistics of randomized attack traffic on 10 trials 

 

Trial # Mean  (x) 

(1.0e+010 * b/s)  

Standard deviation (s) 

(1.0e+010 * b/s) 

Variance (D) 

(1.0e+010 * b/s) 

1 0.0581 0.0468 2.1873 

2 0.0511 0.0407 1.6578 

3 0.0517 0.0419 1.7575 

4 0.0460 0.0366 1.3377 

5 0.0589 0.0467 2.1822 

6 0.0506 0.0410 1.6798 

7 0.0468 0.0388 1.5028 

8 0.0485 0.0400 1.5964 

9 0.0482 0.0388 1.5018 

10 0.0570 0.0463 2.1429 

 
Table 8. One-way ANOVA statistics on 10 trials 

 

Trial # F P-value 

1 19.21 1.42197e-05 

2 58.86 8.45398e-14 

3 2.90 0.0893 

4 48.55 9.81709e-12 

5 34.45 7.82179e-09 

6 40.55 4.23702e-10 

7 8.66 0.0034 

8 4.21 0.0407 

9 26.01 4.77702e-07 

10 37.93 1.47365e-09 

 
In this section, we validate and tune the model to find the optimal value of parameter αf, αm and 

αp. False negative rate (FNR) is the possibilities of identifying attack traffic as non-defective, 

while false positive rate (FPR) is the possibilities of recognizing normal traffic as defective. We 

estimate FNR and FPR in the presence of both attacks traffic and normal traffic. Figure 11(a) 

represents the FNR and FPR for the counter threshold of throughput, αf, respectively. FNR grows 

as the value of αf increases. We found that FNR becomes stable in case of αf  >6. On the other 

hand, FPR declines slightly in the beginning and remains steady in case of αf >6. Both FNR and 

FPR are so high because they mistake attack traffic for benign traffic, and mistake high-rate 

normal traffic for attack traffic as well. However, if we use one-way ANOVA to further test 

group variation by considering time-of-day variation of normal traffic, both of the FNR and FPR 

decrease dramatically (Figure 11(b)). Combing one-way ANOVA is shown to be more effective 

to differentiate between attack traffic and normal traffic.  
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Figure 11(a). FNR and FPR for the counter threshold of throughput (αf) 
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Figure 11(b). FNR and FPR for the counter threshold of throughput (αf) with AVOVA test 
 
Figure 12(a) shows both of the FNR and FPR for the counter threshold of memory utilization, αm. 

FNR surges as αm rises up to 25. However, FPR plummets more than 50 % as αm grows up to 50. 

A lower αm is fast to detect attack traffic, but may cause erroneous detection of normal traffic as 

attack traffic (causing higher FPR). On the flip side, a higher threshold value is needed to take 

time to detect the attack traffic, and thus is easily to identify the attack traffic as the normal traffic 

erroneously (causing higher FNR). Both of FNR and FPR drop significantly when introducing 

one-way ANOVA test to further discriminate the normal traffic and the attack traffic (Figure 

12(b)).  
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Figure 12(a). FNR and FPR for the counter threshold of memory utilization (αm) 

 

 
 

Figure 12(b). FNR and FPR for the counter threshold of memory utilization (αm) with AVOVA test 

 

Figure 13(a) has shown the FNR and FPR for evaluating the counter threshold of system CPU 

utilization (αp). As we can see, increasing the value of αp does not have high impact on FPR in 

case of αp>3. On the other hand, the FNR increases gradually when αp exceeds 1.5. As mentioned 

above, both of the FNR and FPR drop significantly if additionally running one-way ANOVA test 

(Figure 13(b)). We consider αp=2.5 as an optimal value since it keeps FNR and FPR at low value 

at the same time.  
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Figure 13(a). FNR and FPR for the counter threshold of system CPU utilization (αp) 

 
Figure 13(b). FNR and FPR for the counter threshold of system CPU utilization (αp) with AVOVA test 

 

In the following, we compare the proposed scheme with the other two− Scalable detection [6] and 

Live bait [7] by studying effectiveness in terms of FPR and FNR.  In order to detect attackers in 

an effective way, we have to choose the detection threshold properly, which can be derived from 

the results of above mentioned experiments. We pick αf =1, αm=25 and αp=3 as the optimal value 

of the proposed scheme. As shown in Figure 14(a), the FPR increases as the increasing number of 

zombies for all of three schemes. The proposed scheme has better performance than the other two 

since it further analyzes performance in terms of throughput, CPU utilization and memory 

utilization. Scalable detection has much higher FPR in the presence of a large number of zombies, 

which cause a higher number of imbalance counter of bad flows [6]. Figure 14(b) has shown that 
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FNR increases as the number of zombies grows for Live Bait while remains constant for both of 

the proposed and Scalable detection. The reason is that Live Bait does not effectively deal with 

increasing number of attackers, which generate low-rate request as legitimate traffic [7]. As 

mentioned above, the proposed scheme can effectively detect DDoS attacks with additional 

consideration of ANOVA test.  
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Figure 14(a). FPR comparison  

 

 
 

Figure 14(b). FNR comparison 
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4. CONCLUSIONS 

 
In the paper, we has proposed a novel rule-based DDoS detection scheme along with ANOVA 

test, in which three types of system resource usage are examined. The strength of this paper is 

that it makes use of real traffic traces captured at the east campus of Pingtung University. 

Furthermore, we analyse the performance of the proposed system under the conditions imposed 

by both of the normal traffic and the TFN2K attack. Secondly, we find the minimum cost, such as 

the saturation time and critical point, for attack traffic to saturate the victim. Thirdly, a thorough 

investigation on comparison of the proposed scheme and the other well-known schemes is 

presented. Our analysis and experiments demonstrate that the proposed scheme can work very 

well with suitable combination and fine tuning of threshold value. In the future, we would like to 

implement the real-time traffic detection in a high-speed network. 
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