
International Journal of Network Security & Its Applications (IJNSA) Vol.9, No.6, November 2017

DOI: 10.5121/ijnsa.2017.9604 39

FEATURE EXTRACTION AND FEATURE SELECTION:

REDUCING DATA COMPLEXITY WITH APACHE

SPARK

Dimitrios Sisiaridis and Olivier Markowitch

QualSec Research Group, Departement d’Informatique, Université Libre de Bruxelles

ABSTRACT

Feature extraction and feature selection are the first tasks in pre-processing of input logs in order to detect
cyber security threats and attacks while utilizing machine learning. When it comes to the analysis of
heterogeneous data derived from different sources, these tasks are found to be time-consuming and difficult
to be managed efficiently. In this paper, we present an approach for handling feature extraction and
feature selection for security analytics of heterogeneous data derived from different network sensors. The
approach is implemented in Apache Spark, using its python API, named pyspark.

KEYWORDS

Machine learning, feature extraction, feature selection, security analytics, Apache Spark

1. INTRODUCTION

Today, a perimeter-only security model in communication system is insufficient. With the Bring

Your Own Device (BYOD) and IoT, data now move beyond the perimeter. For example, threats

to the intellectual property and generally to sensitive data of an organization, are related either to

insider attacks, outsider targeted attacks, combined forms of internal and external attacks or

attacks, performed over a long period. Adversaries can be either criminal organizations, care- less

employees, compromised employees, leaving employees or state-sponsored cyber espionage [6].

The augmentation of cyber security attacks during the last years emerges the need for automated

traffic log analysis over a long period of time at every level of the enterprise or organizations
information system. Unstructured, semi- structured or structured data in time-series with respect

to security-related events from users, services and the underlying network infrastructure usually

present a high level of large dimensionality and non-stationarity.

There is a plethora of examples in the literature as well as in open-source or commercial threat

detection tools where machine learning algorithms are used to correlate events and to apply

predictive analytics in the cyber security landscape.

Incident correlation refers to the process of comparing different events, often from multiple data

sources in order to identify patterns and relationships enabling identification of events belonging

to one attack or, indicative of broader malicious activity. It allows us to better understand the

nature of an event, to reduce the workload needed to handle incidents, to automate the

classification and forwarding of incidents only relevant to a particular consistency and to allow

analysis to identify and reduce potential false positives.

Predictive Analytics, using pattern analysis, deals with the prediction of future events based on

previously observed historical data, by applying methods such as Machine Learning [9]. For

example, a supervised learning method can build a predictive model from training data to make

predictions about new observations as it is presented in [7].

International Journal of Network Security & Its Applications (IJNSA) Vol.9, No.6, November 2017

40

We need to build autonomous systems that could act in response to an attack in an early stage.

Intelligent machines could implement algorithms designed to identify patterns and behaviors
related to cyber threats in real time and provide an instantaneous response with respect to their

reliability, privacy, trust and overall security policy framework.

By utilizing Artificial Intelligence (AI) techniques leveraged by machine learning and data

mining methods, a learning engine enables the consumption of seemingly unrelated disparate

datasets, to discover correlated patterns that result in consistent outcomes with respect to the

access behavior of users, network devices and applications involved in risky abnormal actions,

and thus reducing the amount of security noise and false positives. Machine learning algorithms

can be used to examine, for example, statistical features or domain and IP reputation as it

proposed in [1] and [12].

Along with history- and user-related data, network log data are exploited to identify abnormal

behavior concerning targeted attacks against the underlying network infrastructure as well as

attack forms such as man-in-the-middle and DDoS attacks [3] [9].

Data acquisition and data mining methods, with respect to different types of attacks such as

targeted and indiscriminate attacks, provide a perspective of the threat landscape. It is crucial to

extract and select the right data for our analysis, among the plethora of information produced

daily by the information system of a company, enterprise or an organization [8]. Enhanced log

data are then analyzed for new attack patterns and the outcome, e.g. in the form of behavioral risk

scores and historical baseline profiles of normal behavior is forwarded to update the learning

engine. Any unusual or suspected behavior can then be identified as an anomaly or an outlier in

real or near real-time [11].

We propose an approach to automate the tasks of feature extraction and feature selection using

machine learning methods, as the first stages of a modular approach for the detection and/or

prediction of cybersecurity attacks. For the needs of our experiments we employed the Spark

framework and more specifically its python API, pyspark.

Section 2 explains the difficulties of these tasks especially while working with heterogeneous data

taken from different sources and of different formats. In section 3 we explain the difference

between two common approaches in feature extraction by utilizing machine learning techniques.

Section 4 deals with the task of extracting data from logs of increased data complexity. In section

5 we propose methods for the task of feature selection, while our conclusions are presented in

section 6.

2. EXTRACTING AND SELECTING FEATURES FROM HETEROGENEOUS DATA

In our experiments, we examine the case where we have logs of records derived as the result of an

integration of logs produced by different network tools and sensors (heterogeneous data from

different resources). Each one of them monitors and records a view of the system in the form of

records of different attributes and/or of different structure, implying thus an increased level of

interoperability problems in a multi-level, multi-dimensional feature space; each network

monitoring tool produces its own schema of attributes.

In such cases, it is typical that the number of attributes is not constant across the records, while

the number of complex attributes varies as well [8]. On the other hand, there are attributes, e.g.,

dates, expressed in several formats, or other attributes referred to the same piece of information

by using slightly different attribute names. Most of them are categorical, in a string format while

the inner datatype varies from nested dictionaries, linked lists or arrays of further complex

structure; each one of them may present its own multi-level structure which increases the level of

complexity. In such cases, a clear strategy has to be followed for feature extraction. Therefore, we

have to deal with flattening 1 and interoperability solving processes (Figure 1).

International Journal of Network Security & Its Applications (IJNSA) Vol.9, No.6, November 2017

In our experiments, we used as input data an integrated log of recorded events produced by a

number of different network tools, applied on

stage was used a single server of 2xCPUs, 8cores/CPU, 64GB RAM, running an

installation v2.7 with Apache Spark v2.1.0

as a low-cost configuration for handling data exploration when dealing with huge amount of

inputs; raw data volumes, for batch analysis, were approximately

Figure 1. Logs from different input sources

3. GLOBAL FLATTENING V

The first question to be answered is related to the ability to define an optimal way to handle such

complex inputs. Potential solutions may include:

• use the full number of dimensions (i.e. all the available features in each record), defined

as global flattening

• decomposing initial logs into distinct baseline structures derived by each sensor/tool,

defined as local flattening

3.1. LOOKING FOR THREATS

In order to answer to these questions, we should

next steps. While working with the analysis of heterogeneous data taken from different sources,

pre-process procedures, such as

need to be carefully designed in order not to miss any security

tasks are usually time-consuming producing thus significant delays to the overall time of th

analysis.

That is our main motivation in this work: to reduce the time needed for feature extraction in data

exploration analysis by automating the process. In order to achieve it, we

onal Journal of Network Security & Its Applications (IJNSA) Vol.9, No.6, November 2017

we used as input data an integrated log of recorded events produced by a

tools, applied on a telco network. For the pre-processing analysis

stage was used a single server of 2xCPUs, 8cores/CPU, 64GB RAM, running an Apache Hadoo
installation v2.7 with Apache Spark v2.1.0 as a Standalone Cluster Mode, which can be regarded

cost configuration for handling data exploration when dealing with huge amount of

; raw data volumes, for batch analysis, were approximately 16TBytes.

Figure 1. Logs from different input sources

VS. LOCAL FLATTENING

The first question to be answered is related to the ability to define an optimal way to handle such

complex inputs. Potential solutions may include:

the full number of dimensions (i.e. all the available features in each record), defined

decomposing initial logs into distinct baseline structures derived by each sensor/tool,

defined as local flattening

HREATS AND ATTACKS IN A KILL CHAIN

In order to answer to these questions, we should also take into account the rationale behind the

next steps. While working with the analysis of heterogeneous data taken from different sources,

edures, such as feature extraction, feature selection and feature transformation,

need to be carefully designed in order not to miss any security-related significant events. These

consuming producing thus significant delays to the overall time of th

That is our main motivation in this work: to reduce the time needed for feature extraction in data

exploration analysis by automating the process. In order to achieve it, we utilize the data model

onal Journal of Network Security & Its Applications (IJNSA) Vol.9, No.6, November 2017

41

we used as input data an integrated log of recorded events produced by a

processing analysis

Apache Hadoop

, which can be regarded

cost configuration for handling data exploration when dealing with huge amount of

The first question to be answered is related to the ability to define an optimal way to handle such

the full number of dimensions (i.e. all the available features in each record), defined

decomposing initial logs into distinct baseline structures derived by each sensor/tool,

tionale behind the

next steps. While working with the analysis of heterogeneous data taken from different sources,

tion, feature selection and feature transformation,

nt events. These

consuming producing thus significant delays to the overall time of the data

That is our main motivation in this work: to reduce the time needed for feature extraction in data

the data model

International Journal of Network Security & Its Applications (IJNSA) Vol.9, No.6, November 2017

42

abstractions and we keep to a minimum any access to the actual data. The key characteristics of

data inputs follow:

• logs derived from different sources

• heterogeneous data

• high-level of complexity

• information is usually hidden in multi-level complex structures

In the next stage, features will be transformed, indexed and scaled to overcome skewness, by

following usually a normal distribution under a common metric space, in the form of vectors. As

in our experiments we processed mainly un-labelled data (i.e. lack of any labels or any indication

of a suspicious threat/attack), clustering techniques will be used to define baseline behavioural

profiles and to detect outliers [1]. The latter may correspond to rare, sparse anomalies, that can be

found by either first-class detection of novelties,n-gram analysis of nested attributes and pattern

analysis using Indicators of Compromise (IoCs) [8] [6]. A survey on unsupervised learning

outlier detection algorithms is presented in [14]. Finally, semi-supervised or/and supervised

analysis can be further employed by using cluster labels, anomalous clusters, or experts feedback

(using active learning methods), in order to detect and/or predict threats and attacks in near- and

real-time analysis [3].

Outliers in time-series are expected to be found for a:

• single network sensor or pen-tester

• a subset of those, or

• by taking into account the complete available set of sensors and network monitoring tools

These time-series are defined in terms of either:

• time spaces as the contextual attributes

• date attributes will be decomposed to time windows such as year, month, day of a

week, hour and minute, following the approach proposed in [13] �

• statistics will be calculated either for batch or online mode and then will be stored

in HIVE tables, or in temporary views for ad-hoc temporal real-time analysis.

• a single time space (e.g. a specific day)

• a stable window time space (e.g. all days for a specific month)

• a user-defined variable window time space �

Our approach serves as an adaptation of the kill-chain model. The kill chain model [2] is an

intelligence-driven, threat-focused approach to study intrusions from the adversaries’ perspective.

The fundamental element is the indicator which corresponds to any piece of information that can

describe a threat or an attack. Indicators can be either atomic such as IP or email addresses,

computed such as hash values or regular expressions, or behavioral which are collections of

computed and atomic indicators such as statements.

Thus, in our proposal, contextual attributes represent either time-spaces in time-series, as the first

level of interest, single attributes (e.g. a specific network protocol, or a user or any other atomic

indicator), computed attributes (e.g. hash values or regular expressions), or even behavioral

attributes of inner structure (e.g. collections of single and computed attributes in the form of

statements or nested records). Then, outliers can be defined for multiple levels of interest for the

remain behavioral attributes, by looking into single vector values [4], or by looking for the

covariance and pairwise correlation (e.g. Pearson correlation) in a subset of the selected features

or the complete set of features [5].

International Journal of Network Security & Its Applications (IJNSA) Vol.9, No.6, November 2017

43

Experiments with data received from different network monitoring tools regarding the system of a

telco enterprise, at the exploratory data stage revealed that the number of single feature attributes

in this log were between a range of 7 (the smallest number of attributes of a distinct feature space)

up to 99 attributes (corresponding to the total number of the overall available feature space). A

fact, that led us to carry on with feature extraction by focusing on flattening multi-nested records

separately for each different structure (under a number of 13 different baseline structures).

Thus, the main keys in the proposed approach for feature extraction are:

• extract the right data

• correlation of the ’right data’ can reveal long-term APTs �

• re-usable patterns and trend lines as probabilities are indications of zero-day

attacks

• trend lines may also be used to detect DDoS attacks �

• handle interoperability issues �

• handle time inconsistencies, date formats, different names for the same piece �of

information, by extending the NLP python library [2]

3.2. GLOBAL FLATTENING OF INPUT DATA

By following this approach, we achieve a full-view of entities behavior as each row is represented

by the full set of dimensions. On the other hand, the majority of the columns do not have a value

or it is set to Null. A candidate solution would be to use sparse vectors in the next stage of feature

transformation, which in turn demands special care for NaN and Null values (for example,

replace them either with the mean, the median, or with a special value). Most of the data in this

stage are categorical. We need to convert them into numerical in the next stages, as in Spark,

statistical analytics are available only for data in the form of a Vector or of the DoubleType.

This solution performs efficiently for a rather small number of dimensions while it suffers from

the well-known phenomenon of the curse of dimensionality for a high number of dimensions,

where data appear to be sparse and dissimilar in several ways, which prevents common data

modelling strategies from being efficient.

3.3. LOCAL FLATTENING OF INPUT DATA

By following this approach, we identify all the different schemas in input data. First, it is a

bottom-up analysis by re-sythesing results to answer to either simple of complex questions. In the

same time, we can define hypotheses to the full set of our input data (i.e. top-down analysis) thus,

it is a complete approach in data analytics, by allowing data to tell their story, in a concrete way,

following a minimum number of steps. In this way, we are able to:

• keep the number of assumptions to a minimum  

• look for misconfigurations and data correlations into the abstract dataframes definitions

• keep access to the actual data to a minimum  

• provide solutions in interoperability problems, such as:

• different representations of date attributes

• namespace inconsistencies (e.g. attributes with names such as prot, protocol,

connectionProtocol)  

• cope with complex structures of different number of inner levels  

• deal with event ordering and time-inconsistencies (as it is described in [10])

International Journal of Network Security & Its Applications (IJNSA) Vol.9, No.6, November 2017

4. FEATURE EXTRACTION

In Apache Spark, data are organized

relational tables: there are columns (aka attributes or features or dimensions) and rows (i.e. events

recorded, for example, by a network sensor, or

corresponded datatypes define the schema of a dataframe. In each dataframe, its columns and

rows i.e. its schema is unchangeable. Thus, an example of a schema could be the following:

DataFrame[id: string, @timestamp: string, honeypot: string, payloadCommand: string]

A sample of recorded events of this dataframe schema is shown in Figure 2:

Figure 2. A sample of recorded events, having 4 columns/dimensions

The following steps refer to the case in which logs/datasets are ingested i

approach examines the data structures on their top

synthesis of previous and new dataframes, in an automatic way. Access to the actual data is only

taken place when there is a need to find schemas in

the records (thus, even if we have a dataframe of million/billions of events, we only examine the

schema of the first record/event).

data: a data frame column.

1) load the log file in a spark data

2) find and remove all single-valued attributes

section)

3) flatten complex structures

a) find and flatten all columns of complex structure (th

the lowest complex attribute of the hierarchy of complex attributes)

i) e.g. struct, nested dictionaries, linked

their value is of Row

b) remove all the original columns o

4) convert all time-columns into timestamps, using distinct time features in the data

5) integrate similar features in the list of data

Each attribute of a complex structure, such as of a

array, is handled in such way, which

the elements of an array, a dictionary, a list, etc.) will be

way, we manage to transform the schema of the

each one corresponding to a schema that refers to a single network sensor or other input data

source, as it is illustrated in the following figures (Figures 3, 4,

different cases follow:

• struct – RowType

• use the leaf column at the last level of this struct

column

• list: add list elements as new columns

onal Journal of Network Security & Its Applications (IJNSA) Vol.9, No.6, November 2017

XTRACTION IN APACHE SPARK

organized in the form of dataframes, which resemble the well

relational tables: there are columns (aka attributes or features or dimensions) and rows (i.e. events

recorded, for example, by a network sensor, or a specific device). The list of columns and their

fine the schema of a dataframe. In each dataframe, its columns and

rows i.e. its schema is unchangeable. Thus, an example of a schema could be the following:

DataFrame[id: string, @timestamp: string, honeypot: string, payloadCommand: string]

corded events of this dataframe schema is shown in Figure 2:

Figure 2. A sample of recorded events, having 4 columns/dimensions

The following steps refer to the case in which logs/datasets are ingested in json

approach examines the data structures on their top-level, focusing on abstract schemas and re

synthesis of previous and new dataframes, in an automatic way. Access to the actual data is only

taken place when there is a need to find schemas in dictionaries and only by retrieving just one of

the records (thus, even if we have a dataframe of million/billions of events, we only examine the

vent). The words field, attribute or column refer to the same piece of

file in a spark data frame, in json format

valued attributes (this step applies also to the feature selectio

find and flatten all columns of complex structure (the steps are run recursively, down to

the lowest complex attribute of the hierarchy of complex attributes)

uct, nested dictionaries, linked lists, arrays, etc. (i.e. currently those which

their value is of Row Type)

remove all the original columns of complex structure

columns into timestamps, using distinct time features in the data

features in the list of data frames

Each attribute of a complex structure, such as of a struct, nested dictionary, linked
, is handled in such way, which ensures that all single attributes of the lowest data level (i.e.

the elements of an array, a dictionary, a list, etc.) will be flattened and expressed in 2

way, we manage to transform the schema of the original dataframe to a number of dataframes,

each one corresponding to a schema that refers to a single network sensor or other input data

source, as it is illustrated in the following figures (Figures 3, 4, 5 and 6). The steps, for

use the leaf column at the last level of this struct-column to add it as a new

add list elements as new columns

onal Journal of Network Security & Its Applications (IJNSA) Vol.9, No.6, November 2017

44

, which resemble the well-known

relational tables: there are columns (aka attributes or features or dimensions) and rows (i.e. events

a specific device). The list of columns and their

fine the schema of a dataframe. In each dataframe, its columns and

rows i.e. its schema is unchangeable. Thus, an example of a schema could be the following:

json format. Our

level, focusing on abstract schemas and re-

synthesis of previous and new dataframes, in an automatic way. Access to the actual data is only

dictionaries and only by retrieving just one of

the records (thus, even if we have a dataframe of million/billions of events, we only examine the

refer to the same piece of

feature selection

e steps are run recursively, down to

lists, arrays, etc. (i.e. currently those which

columns into timestamps, using distinct time features in the data frames

linked list or an

ensures that all single attributes of the lowest data level (i.e.

flattened and expressed in 2-D.In this

original dataframe to a number of dataframes,

each one corresponding to a schema that refers to a single network sensor or other input data

The steps, for these

column to add it as a new

International Journal of Network Security & Its Applications (IJNSA) Vol.9, No.6, November 2017

• array: split array’s elements and add the relevant new columns

• dictionary - steps:

• find all inner schemas for attributes of type Dict, as a list

• add the schemaType as an ind

• create a list of dataframes, where each one has its own distinct schema

• flatten all dictionary

the list of dataframes by adding them as new columns

In Figure 3, in the left-hand schema

value is given by the inner-level attribute

the actual date value can be searched in the inner

$oid and $date are extracted in the form of two new columns, named

original attributes _id and timestamp are then de

side, Schema#2. In this way, we achieved to reduce the complexity of the original input schema to

a new one of lower complexity.

Figure 3. Transforming complex fields (i)

In Figure 3, the exploratory analysis has revealed that the

dictionary as a list of multi-nested dictionaries; each one of the latter present a complex structure

with further levels. These different schemas found in payload are presented in Figure 4.

Figure 4

onal Journal of Network Security & Its Applications (IJNSA) Vol.9, No.6, November 2017

split array’s elements and add the relevant new columns

find all inner schemas for attributes of type Dict, as a list

add the schemaType as an index to the original dataframe

create a list of dataframes, where each one has its own distinct schema

ionary attributes, according to their schemas, in each dataframe of

dataframes by adding them as new columns

hand schemaSchema#1, attributes _id is of the datatype struct
level attribute, $oid. The same stands for the outer attribute

the actual date value can be searched in the inner-level attribute $date. In both cases, attributes

are extracted in the form of two new columns, named _id_ and

original attributes _id and timestamp are then deleted, having thus a new schema on the right

. In this way, we achieved to reduce the complexity of the original input schema to

Figure 3. Transforming complex fields (i) – attributes _id and timestamp are of the datatype

In Figure 3, the exploratory analysis has revealed that the payload attribute represents actually a

nested dictionaries; each one of the latter present a complex structure

e different schemas found in payload are presented in Figure 4.

Figure 4. Different schemas in the payload attribute

onal Journal of Network Security & Its Applications (IJNSA) Vol.9, No.6, November 2017

45

create a list of dataframes, where each one has its own distinct schema

each dataframe of

struct. The actual

ribute timestamp:

. In both cases, attributes

and dateOut; the

leted, having thus a new schema on the right-

. In this way, we achieved to reduce the complexity of the original input schema to

are of the datatype struct

represents actually a

nested dictionaries; each one of the latter present a complex structure

e different schemas found in payload are presented in Figure 4.

International Journal of Network Security & Its Applications (IJNSA) Vol.9, No.6, November 2017

In Figure 5, we illustrate the new

schemas of the payload attribute in Figure 4. By following this approach, data are easier to be

handled: in the next stages, they will be cleaned, transformed from categorical to numerical and

then they will be further analyzed in order to detect anomalies in entities

The dataframe schema in Figure 6

payload attribute (Figure 5) into its inner

an array. By applying consecutive transformations automatically, we manage to extract all inner

attributes, which simplifies the process of correlating data in the next stage. Thus, by looking into

the raw_sig column, we identify inner v

new features derived by the inner levels, as it is depicted e.g. for column

be further split by leading to two new columns (e.g. with values

process is recursive and automated; special care is given how we name the new columns, in order

to follow the different paths of attributes decomposition.

Figure 5. The new-created dataframes which correspond

onal Journal of Network Security & Its Applications (IJNSA) Vol.9, No.6, November 2017

In Figure 5, we illustrate the new-created dataframes schemas which correspond to the different

schemas of the payload attribute in Figure 4. By following this approach, data are easier to be

handled: in the next stages, they will be cleaned, transformed from categorical to numerical and

rther analyzed in order to detect anomalies in entities behavior.

The dataframe schema in Figure 6 is the second of the dataframes derived by flattening the

attribute (Figure 5) into its inner-level attributes. Here, feature raw_sig is in the form of

an array. By applying consecutive transformations automatically, we manage to extract all inner

attributes, which simplifies the process of correlating data in the next stage. Thus, by looking into

column, we identify inner values separated by ‘:’, which further are decomposed into

new features derived by the inner levels, as it is depicted e.g. for column attsCol5; the latter could

be further split by leading to two new columns (e.g. with values 1024 and 0, respectively), as

process is recursive and automated; special care is given how we name the new columns, in order

to follow the different paths of attributes decomposition.

created dataframes which correspond to the different schemas in payload

onal Journal of Network Security & Its Applications (IJNSA) Vol.9, No.6, November 2017

46

schemas which correspond to the different

schemas of the payload attribute in Figure 4. By following this approach, data are easier to be

handled: in the next stages, they will be cleaned, transformed from categorical to numerical and

flattening the

is in the form of

an array. By applying consecutive transformations automatically, we manage to extract all inner

attributes, which simplifies the process of correlating data in the next stage. Thus, by looking into

, which further are decomposed into

; the latter could

, respectively), as this

process is recursive and automated; special care is given how we name the new columns, in order

payload

International Journal of Network Security & Its Applications (IJNSA) Vol.9, No.6, November 2017

Figure 6. Transforming complex fields (ii

5. FEATURE SELECTION

The process of feature selection

3.1, our motivation in our approach is to

reduction of the time needed for applying security analytics in un

ultimately to detect anomalies as strong form

such as, to increase accuracy and

need to select the data that are more related to our questions.

significant role in complex event processing, especially when d

sources and different forms.

We present four methods to achieve this goal:

1. Leave-out single-value attributes

2. Namespace correlation

3. Data correlation using the actual values

4. FS in case of having a relative small number of

5.1. LEAVE-OUT SINGLE-VALUE

The first method is quite simple: all single

dataframe. For example, consider the

datatype Boolean takes the value

drop the relevant column, which leads to a new dataframe schema.

onal Journal of Network Security & Its Applications (IJNSA) Vol.9, No.6, November 2017

. Transforming complex fields (iii) – attributes raw_sig is of the datatype array

The process of feature selection (FS) is crucial for the next analysis steps. As was explained in

3.1, our motivation in our approach is to reduce data complexity in parallel with a significant

reduction of the time needed for applying security analytics in un-labelled data. As we are aiming

ultimately to detect anomalies as strong form of outliers in order to improve quantitative metrics

accuracy and detection rates or to decrease security noise to a minimum

need to select the data that are more related to our questions. Dimensionality reduction can play a

significant role in complex event processing, especially when data are coming from different

We present four methods to achieve this goal:

value attributes

Data correlation using the actual values

FS in case of having a relative small number of categories

ALUE ATTRIBUTES

The first method is quite simple: all single-valued attributes are removed from the original

example, consider the dataframe schema in Figure 7. Attribute normalized
takes the value True for all the events in our integrated log and therefore we

drop the relevant column, which leads to a new dataframe schema.

onal Journal of Network Security & Its Applications (IJNSA) Vol.9, No.6, November 2017

47

array

is crucial for the next analysis steps. As was explained in

reduce data complexity in parallel with a significant

labelled data. As we are aiming

in order to improve quantitative metrics

detection rates or to decrease security noise to a minimum, we

Dimensionality reduction can play a

ata are coming from different

valued attributes are removed from the original

normalized of

for all the events in our integrated log and therefore we

International Journal of Network Security & Its Applications (IJNSA) Vol.9, No.6, November 2017

Figure 7. Attribute normalized

5.2. NAMESPACE CORRELATION

It is quite common when data inputs are coming from different sources to deal with entity

attributes which refer to the same piece of information although their names are slightly different.

For example, attributes proto and

communication channel. Different tools used by experts to monitor network traffic do not follow

a unified namespace scheme. This fact, could lead to misinterpretations, information redundancy

and misconfigurations in data modelling, among other obstacles in data exploration stage; all

these refer mainly to problems in interoperability, as can be seen in Figure 8. By solving such

inconsistencies, we achieve to further reduce data complexity as well as to reduce

for data analysis. In [10] we have presented an approach to

utilizing means derived by the theory of categories.

Figure 8. Attributes proto

5.3. USING PEARSON CORRELATION

As long as data inputs, in the for

into their corresponding numerical values, and before the process of forming the actual

vectors that will be used in clustering, by using data correlation, we are able to achieve a further

reduction of the dimensions that will be used for the actual security

The outcome of applying this technique, using

Attributes highly correlated may be omitted while defining the relevant clusters; the choice of the

particular attribute to be left out is strongly related to the actual research of interest. For example,

onal Journal of Network Security & Its Applications (IJNSA) Vol.9, No.6, November 2017

normalized is left out as it presents a constant value of True in all records

ORRELATION

It is quite common when data inputs are coming from different sources to deal with entity

attributes which refer to the same piece of information although their names are slightly different.

and connection protocol refer to the actual protocol used in a

Different tools used by experts to monitor network traffic do not follow

a unified namespace scheme. This fact, could lead to misinterpretations, information redundancy

tions in data modelling, among other obstacles in data exploration stage; all

these refer mainly to problems in interoperability, as can be seen in Figure 8. By solving such

inconsistencies, we achieve to further reduce data complexity as well as to reduce the overa

] we have presented an approach to handle such interoperability issues by

utilizing means derived by the theory of categories.

proto and connection_protocol refer to the same piece of data

ORRELATION TO REDUCE THE NUMBER OF DIMENSIONS

in the form of dataframes, are cleaned, transformed, indexed and scaled

into their corresponding numerical values, and before the process of forming the actual

vectors that will be used in clustering, by using data correlation, we are able to achieve a further

reduction of the dimensions that will be used for the actual security analytics.

The outcome of applying this technique, using Pearson correlation, is presented in Figure 9.

Attributes highly correlated may be omitted while defining the relevant clusters; the choice of the

particular attribute to be left out is strongly related to the actual research of interest. For example,

onal Journal of Network Security & Its Applications (IJNSA) Vol.9, No.6, November 2017

48

in all records

It is quite common when data inputs are coming from different sources to deal with entity

attributes which refer to the same piece of information although their names are slightly different.

refer to the actual protocol used in a

Different tools used by experts to monitor network traffic do not follow

a unified namespace scheme. This fact, could lead to misinterpretations, information redundancy

tions in data modelling, among other obstacles in data exploration stage; all

these refer mainly to problems in interoperability, as can be seen in Figure 8. By solving such

the overall time

handle such interoperability issues by

refer to the same piece of data

IMENSIONS

m of dataframes, are cleaned, transformed, indexed and scaled

into their corresponding numerical values, and before the process of forming the actual feature

vectors that will be used in clustering, by using data correlation, we are able to achieve a further

, is presented in Figure 9.

Attributes highly correlated may be omitted while defining the relevant clusters; the choice of the

particular attribute to be left out is strongly related to the actual research of interest. For example,

International Journal of Network Security & Its Applications (IJNSA) Vol.9, No.6, November 2017

we are interested to monitor the

patterns of normal behavior.

Figure 9. Applying Pearson correlation to indexed and scaled data for feature selection

5.4. FEATURE SELECTION IN

CATEGORIES

In case where we deal with categorical attributes presenting a relative small number of categories,

i.e. numberOfCategories<= 4, we propose the following steps in order to achieve a further

feature reduction. We distinguish the case

a security-related event) and the case where some or all the labels are available

mention that in real scenarios,

highly-unbalanced data (i.e. where only few instances of the rare/anomalous class are available).

Working with un-labelled data:

• For the set of these features, select each one of them as the feature

either:

• Use a decision tree with a

number of the dimensions (by following one or more of the aforementioned techniques)

• Create 2n sub-dataframes with respect to the number of categories

• Calculate features importance using a

• Use an ensemble technique in the form of a

classifier, running a combination of the above techniques to optimize results in the next

levels of the analysis (e.g. to further optimize detection rates)

onal Journal of Network Security & Its Applications (IJNSA) Vol.9, No.6, November 2017

nitor the behavior in local hosts and to detect any anomalies deviate by

Figure 9. Applying Pearson correlation to indexed and scaled data for feature selection

N CASE OF HAVING A RELATIVE SMALL N

In case where we deal with categorical attributes presenting a relative small number of categories,

, we propose the following steps in order to achieve a further

feature reduction. We distinguish the cases where data are un-labelled (lack of any indication f

related event) and the case where some or all the labels are available.

mention that in real scenarios, usually we need to cope with either fully un-labelled data or

nced data (i.e. where only few instances of the rare/anomalous class are available).

For the set of these features, select each one of them as the feature-label attribute and then

Use a decision tree with a multi-class classification evaluator to further reduce the

number of the dimensions (by following one or more of the aforementioned techniques)

dataframes with respect to the number of categories

Calculate features importance using a Random Forest classifier

technique in the form of a Combiner e.g. a neural network
, running a combination of the above techniques to optimize results in the next

levels of the analysis (e.g. to further optimize detection rates)

onal Journal of Network Security & Its Applications (IJNSA) Vol.9, No.6, November 2017

49

in local hosts and to detect any anomalies deviate by

Figure 9. Applying Pearson correlation to indexed and scaled data for feature selection

NUMBER OF

In case where we deal with categorical attributes presenting a relative small number of categories,

, we propose the following steps in order to achieve a further

labelled (lack of any indication for

. We need to

labelled data or

nced data (i.e. where only few instances of the rare/anomalous class are available).

label attribute and then

to further reduce the

number of the dimensions (by following one or more of the aforementioned techniques)

l network or a Bayes
, running a combination of the above techniques to optimize results in the next

International Journal of Network Security & Its Applications (IJNSA) Vol.9, No.6, November 2017

50

Working with labelled data:

• Select features using the Chi-Square test of independencies. In our experiments, with

respect to the input data, we have used four different statistical methods, available in

Spark ML library:

• The number of top features

• A fraction of the top features

• p-values below a threshold to control the false positive rate

• p-values with false discovery rate below a threshold

6. CONCLUSIONS

We have presented an approach to handle efficiently the tasks of feature extraction and feature

selection while working with security analytics by utilizing machine learning techniques. It is an

automated solution to handle interoperability problems. It is based on a continuous transformation

of the abstract definitions of the data inputs.

In the case of feature extraction, access to the actual data is limited to a minimum read actions of

the first record of a dataframe and only when it is needed to extract the inner schema of a

dictionary-based attribute. In the case of feature selection, the actual data are accessed only to

find correlations between them, before we apply clustering or any other method for threat

detection.

By following the proposed approach, we managed to achieve our primary objectives: reduce

computational time, reduce data complexity and provide solutions to interoperability issues, while

analyzing vast amount of heterogeneous data from different sources.

The approach can be formalized in the next steps by utilizing novel structures derived from the

theory of categories as it has been presented in [10] towards an overall optimization, in terms of

quantitative and qualitative metrics.

REFERENCES

[1] C. C. Aggarwal and C. K. Reddy, Data clustering: algorithms and applications. CRC press, 2013.

[2] S. Bird, E. Klein, and E. Loper, Natural language processing with Python: analyzing text with the

naturallanguage toolkit. ” O’Reilly Media, Inc.”, 2009.

[3] P. Duessel, C. Gehl, U. Flegel, S. Dietrich, and M. Meier, “Detecting zero-day attacks using context-

aware anomaly detection at the application-layer,” International Journal of Information Security, pp.

1– 16, 2016.

[4] N. Goix, “How to evaluate the quality of unsupervised anomaly detection algorithms?” arXiv preprint

arXiv:1607.01152, 2016.

[5] E. M. Hutchins, M. J. Cloppert, and R. M. Amin, “Intelligence-driven computer network defense in-

formed by analysis of adversary campaigns and intrusion kill chains,” Leading Issues in Information

Warfare & Security Research, vol. 1, no. 1, p. 80, 2011.

[6] V. N. Inukollu, S. Arsi, and S. R. Ravuri, “Security issues associated with big data in cloud

computing,” International Journal of Network Security & Its Applications, vol. 6, no. 3, p. 45, 2014.

[7] S. P. Kasiviswanathan, P. Melville, A. Banerjee, and V. Sindhwani, “Emerging topic detection using

dictionary learning,” in Proceedings of the 20th ACM international conference on Information and

knowledge management, pp. 745–754, ACM, 2011.

[8] M. Lange, F. Kuhr, and R. M ̈oller, “Using a deep understanding of network activities for security

event management,” International Journal of Network Security & Its Applications (IJNSA), 2016.

International Journal of Network Security & Its Applications (IJNSA) Vol.9, No.6, November 2017

51

[9] M.-L. Shyu, Z. Huang, and H. Luo, “Efficient mining and detection of sequential intrusion patterns

for network intrusion detection systems,” in Machine Learning in Cyber Trust, pp. 133–154, Springer,

2009.

[10] D. Sisiaridis, V. Kuchta, and O. Markowitch, “A categorical approach in handling event-ordering in

distributed systems,” in Parallel and Distributed Systems (ICPADS), 2016 IEEE 22nd International

Conference on, pp. 1145–1150, IEEE, 2016.

[11] D. Sisiaridis, F. Carcillo, and O. Markowitch, “A framework for threat detection in communication

systems,” in Proceedings of the 20th Pan-Hellenic Conference on Informatics, p. 68, ACM, 2016.

[12] M. Talabis, R. McPherson, I. Miyamoto, and J. Martin, Information Security Analytics: Finding Secu-

rity Insights, Patterns, and Anomalies in Big Data. Syngress, 2014.

[13] K. Veeramachaneni, I. Arnaldo, V. Korrapati, C. Bassias, and K. Li, “Aiˆ 2: training a big data

machine to defend,” in Big Data Security on Cloud (BigDataSecurity), IEEE International Conference

on High Performance and Smart Computing (HPSC), and IEEE International Conference on

Intelligent Data and Security (IDS), 2016 IEEE 2nd International Conference on, pp. 49–54, IEEE,

2016.

[14] A. Zimek, E. Schubert, and H.-P. Kriegel, “A survey on unsupervised outlier detection in high-

dimensional numerical data,” Statistical Analysis and Data Mining: The ASA Data Science Journal,

vol. 5, no. 5, pp. 363–387, 2012.

AUTHORS

Dimitrios Sisiaridis received his BSc in Information Engineering by ATEI of

Thessaloniki. He received his MSc in Computing (advanced databases) and PhD in

applied maths and security by Northumbria University in Newcastle. He is a member of

the Qualsec Research Group, in Université Libre de Bruxelles, working as a researcher

in projects related to big data security analytics

Prof. Olivier Markowitch is associated Professor of the Departement d’ Informatique,

in Université Libre de Bruxelles. He is a member of the QualSec Research Group,

working on the design and analysis of security protocols and digital signature schemes

