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ABSTRACT 
 

Feature extraction and feature selection are the first tasks in pre-processing of input logs in order to detect 
cyber security threats and attacks while utilizing machine learning. When it comes to the analysis of 
heterogeneous data derived from different sources, these tasks are found to be time-consuming and difficult 
to be managed efficiently. In this paper, we present an approach for handling feature extraction and 
feature selection for security analytics of heterogeneous data derived from different network sensors. The 
approach is implemented in Apache Spark, using its python API, named pyspark. 
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1. INTRODUCTION 
 

Today, a perimeter-only security model in communication system is insufficient. With the Bring 

Your Own Device (BYOD) and IoT, data now move beyond the perimeter. For example, threats 

to the intellectual property and generally to sensitive data of an organization, are related either to 

insider attacks, outsider targeted attacks, combined forms of internal and external attacks or 

attacks, performed over a long period. Adversaries can be either criminal organizations, care- less 

employees, compromised employees, leaving employees or state-sponsored cyber espionage [6]. 
 

The augmentation of cyber security attacks during the last years emerges the need for automated 

traffic log analysis over a long period of time at every level of the enterprise or organizations 
information system. Unstructured, semi- structured or structured data in time-series with respect 

to security-related events from users, services and the underlying network infrastructure usually 

present a high level of large dimensionality and non-stationarity.  
 

There is a plethora of examples in the literature as well as in open-source or commercial threat 

detection tools where machine learning algorithms are used to correlate events and to apply 

predictive analytics in the cyber security landscape.  
 

Incident correlation refers to the process of comparing different events, often from multiple data 

sources in order to identify patterns and relationships enabling identification of events belonging 

to one attack or, indicative of broader malicious activity. It allows us to better understand the 

nature of an event, to reduce the workload needed to handle incidents, to automate the 

classification and forwarding of incidents only relevant to a particular consistency and to allow 

analysis to identify and reduce potential false positives.  
 

Predictive Analytics, using pattern analysis, deals with the prediction of future events based on 

previously observed historical data, by applying methods such as Machine Learning [9]. For 

example, a supervised learning method can build a predictive model from training data to make 

predictions about new observations as it is presented in [7].  
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We need to build autonomous systems that could act in response to an attack in an early stage. 

Intelligent machines could implement algorithms designed to identify patterns and behaviors 
related to cyber threats in real time and provide an instantaneous response with respect to their 

reliability, privacy, trust and overall security policy framework.  
 

By utilizing Artificial Intelligence (AI) techniques leveraged by machine learning and data 

mining methods, a learning engine enables the consumption of seemingly unrelated disparate 

datasets, to discover correlated patterns that result in consistent outcomes with respect to the 

access behavior of users, network devices and applications involved in risky abnormal actions, 

and thus reducing the amount of security noise and false positives. Machine learning algorithms 

can be used to examine, for example, statistical features or domain and IP reputation as it 

proposed in [1] and [12].  
 

Along with history- and user-related data, network log data are exploited to identify abnormal 

behavior concerning targeted attacks against the underlying network infrastructure as well as 

attack forms such as man-in-the-middle and DDoS attacks [3] [9].  
 

Data acquisition and data mining methods, with respect to different types of attacks such as 

targeted and indiscriminate attacks, provide a perspective of the threat landscape. It is crucial to 

extract and select the right data for our analysis, among the plethora of information produced 

daily by the information system of a company, enterprise or an organization [8]. Enhanced log 

data are then analyzed for new attack patterns and the outcome, e.g. in the form of behavioral risk 

scores and historical baseline profiles of normal behavior is forwarded to update the learning 

engine. Any unusual or suspected behavior can then be identified as an anomaly or an outlier in 

real or near real-time [11]. 
 

We propose an approach to automate the tasks of feature extraction and feature selection using 

machine learning methods, as the first stages of a modular approach for the detection and/or 

prediction of cybersecurity attacks. For the needs of our experiments we employed the Spark 

framework and more specifically its python API, pyspark. 
 

Section 2 explains the difficulties of these tasks especially while working with heterogeneous data 

taken from different sources and of different formats. In section 3 we explain the difference 

between two common approaches in feature extraction by utilizing machine learning techniques. 

Section 4 deals with the task of extracting data from logs of increased data complexity. In section 

5 we propose methods for the task of feature selection, while our conclusions are presented in 

section 6. 
 

2. EXTRACTING AND SELECTING FEATURES FROM HETEROGENEOUS DATA 
 

In our experiments, we examine the case where we have logs of records derived as the result of an 

integration of logs produced by different network tools and sensors (heterogeneous data from 

different resources). Each one of them monitors and records a view of the system in the form of 

records of different attributes and/or of different structure, implying thus an increased level of 

interoperability problems in a multi-level, multi-dimensional feature space; each network 

monitoring tool produces its own schema of attributes.  
 

In such cases, it is typical that the number of attributes is not constant across the records, while 

the number of complex attributes varies as well [8]. On the other hand, there are attributes, e.g., 

dates, expressed in several formats, or other attributes referred to the same piece of information 

by using slightly different attribute names. Most of them are categorical, in a string format while 

the inner datatype varies from nested dictionaries, linked lists or arrays of further complex 

structure; each one of them may present its own multi-level structure which increases the level of 

complexity. In such cases, a clear strategy has to be followed for feature extraction. Therefore, we 

have to deal with flattening 1 and interoperability solving processes (Figure 1). 
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In our experiments, we used as input data an integrated log of recorded events produced by a 

number of different network tools, applied on 

stage was used a single server of 2xCPUs, 8cores/CPU, 64GB RAM, running an 

installation v2.7 with Apache Spark v2.1.0

as a low-cost configuration for handling data exploration when dealing with huge amount of 

inputs; raw data volumes, for batch analysis, were approximately 
 

 

Figure 1.  Logs from different input sources
 

3. GLOBAL FLATTENING V
 

The first question to be answered is related to the ability to define an optimal way to handle such 

complex inputs. Potential solutions may include:
 

• use the full number of dimensions (i.e. all the available features in each record), defined 

as global flattening 

• decomposing initial logs into distinct baseline structures derived by each sensor/tool, 

defined as local flattening 
 

3.1. LOOKING FOR THREATS 
 

In order to answer to these questions, we should

next steps. While working with the analysis of heterogeneous data taken from different sources, 

pre-process procedures, such as 

need to be carefully designed in order not to miss any security

tasks are usually time-consuming producing thus significant delays to the overall time of th

analysis.  
 

That is our main motivation in this work: to reduce the time needed for feature extraction in data 

exploration analysis by automating the process. In order to achieve it, we 
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we used as input data an integrated log of recorded events produced by a 

tools, applied on a telco network. For the pre-processing analysis 

stage was used a single server of 2xCPUs, 8cores/CPU, 64GB RAM, running an Apache Hadoo
installation v2.7 with Apache Spark v2.1.0 as a Standalone Cluster Mode, which can be regarded 

cost configuration for handling data exploration when dealing with huge amount of 

; raw data volumes, for batch analysis, were approximately 16TBytes. 

Figure 1.  Logs from different input sources 

VS. LOCAL FLATTENING 

The first question to be answered is related to the ability to define an optimal way to handle such 

complex inputs. Potential solutions may include: 

the full number of dimensions (i.e. all the available features in each record), defined 

decomposing initial logs into distinct baseline structures derived by each sensor/tool, 

defined as local flattening  

HREATS AND ATTACKS IN A KILL CHAIN 

In order to answer to these questions, we should also take into account the rationale behind the 

next steps. While working with the analysis of heterogeneous data taken from different sources, 

edures, such as feature extraction, feature selection and feature transformation, 

need to be carefully designed in order not to miss any security-related significant events. These 

consuming producing thus significant delays to the overall time of th

That is our main motivation in this work: to reduce the time needed for feature extraction in data 

exploration analysis by automating the process. In order to achieve it, we utilize the data model 
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abstractions and we keep to a minimum any access to the actual data. The key characteristics of 

data inputs follow:  
 

• logs derived from different sources 

• heterogeneous data 

• high-level of complexity 

• information is usually hidden in multi-level complex structures  
 

In the next stage, features will be transformed, indexed and scaled to overcome skewness, by 

following usually a normal distribution under a common metric space, in the form of vectors. As 

in our experiments we processed mainly un-labelled data (i.e. lack of any labels or any indication 

of a suspicious threat/attack), clustering techniques will be used to define baseline behavioural 

profiles and to detect outliers [1]. The latter may correspond to rare, sparse anomalies, that can be 

found by either first-class detection of novelties,n-gram analysis of nested attributes and pattern 

analysis using Indicators of Compromise (IoCs) [8] [6]. A survey on unsupervised learning 

outlier detection algorithms is presented in [14]. Finally, semi-supervised or/and supervised 

analysis can be further employed by using cluster labels, anomalous clusters, or experts feedback 

(using active learning methods), in order to detect and/or predict threats and attacks in near- and 

real-time analysis [3]. 
 

Outliers in time-series are expected to be found for a: 
 

• single network sensor or pen-tester 

• a subset of those, or 

• by taking into account the complete available set of sensors and network monitoring tools 
 

These time-series are defined in terms of either: 
 

• time spaces as the contextual attributes  

• date attributes will be decomposed to time windows such as year, month, day of a 

week, hour and minute, following the approach proposed in [13] � 

• statistics will be calculated either for batch or online mode and then will be stored 

in HIVE tables, or in temporary views for ad-hoc temporal real-time analysis. 

• a single time space (e.g. a specific day) 

• a stable window time space (e.g. all days for a specific month) 

• a user-defined variable window time space � 
 

Our approach serves as an adaptation of the kill-chain model. The kill chain model [2] is an 

intelligence-driven, threat-focused approach to study intrusions from the adversaries’ perspective. 

The fundamental element is the indicator which corresponds to any piece of information that can 

describe a threat or an attack. Indicators can be either atomic such as IP or email addresses, 

computed such as hash values or regular expressions, or behavioral which are collections of 

computed and atomic indicators such as statements.  
 

Thus, in our proposal, contextual attributes represent either time-spaces in time-series, as the first 

level of interest, single attributes (e.g. a specific network protocol, or a user or any other atomic 

indicator), computed attributes (e.g. hash values or regular expressions), or even behavioral 

attributes of inner structure (e.g. collections of single and computed attributes in the form of 

statements or nested records). Then, outliers can be defined for multiple levels of interest for the 

remain behavioral attributes, by looking into single vector values [4], or by looking for the 

covariance and pairwise correlation (e.g. Pearson correlation) in a subset of the selected features 

or the complete set of features [5]. 
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Experiments with data received from different network monitoring tools regarding the system of a 

telco enterprise, at the exploratory data stage revealed that the number of single feature attributes 

in this log were between a range of 7 (the smallest number of attributes of a distinct feature space) 

up to 99 attributes (corresponding to the total number of the overall available feature space). A 

fact, that led us to carry on with feature extraction by focusing on flattening multi-nested records 

separately for each different structure (under a number of 13 different baseline structures). 

Thus, the main keys in the proposed approach for feature extraction are: 
 

• extract the right data  

• correlation of the ’right data’ can reveal long-term APTs � 

• re-usable patterns and trend lines as probabilities are indications of zero-day 

attacks  

• trend lines may also be used to detect DDoS attacks � 

• handle interoperability issues � 

• handle time inconsistencies, date formats, different names for the same piece �of 

information, by extending the NLP python library [2] 
 

3.2. GLOBAL FLATTENING OF INPUT DATA 
 

By following this approach, we achieve a full-view of entities behavior as each row is represented 

by the full set of dimensions. On the other hand, the majority of the columns do not have a value 

or it is set to Null. A candidate solution would be to use sparse vectors in the next stage of feature 

transformation, which in turn demands special care for NaN and Null values (for example, 

replace them either with the mean, the median, or with a special value). Most of the data in this 

stage are categorical. We need to convert them into numerical in the next stages, as in Spark, 

statistical analytics are available only for data in the form of a Vector or of the DoubleType.  
 

This solution performs efficiently for a rather small number of dimensions while it suffers from 

the well-known phenomenon of the curse of dimensionality for a high number of dimensions, 

where data appear to be sparse and dissimilar in several ways, which prevents common data 

modelling strategies from being efficient. 
 

3.3. LOCAL FLATTENING OF INPUT DATA 
 

By following this approach, we identify all the different schemas in input data. First, it is a 

bottom-up analysis by re-sythesing results to answer to either simple of complex questions. In the 

same time, we can define hypotheses to the full set of our input data (i.e. top-down analysis) thus, 

it is a complete approach in data analytics, by allowing data to tell their story, in a concrete way, 

following a minimum number of steps. In this way, we are able to: 
 

• keep the number of assumptions to a minimum   

• look for misconfigurations and data correlations into the abstract dataframes definitions  

• keep access to the actual data to a minimum   

• provide solutions in interoperability problems, such as: 

• different representations of date attributes 

• namespace inconsistencies (e.g. attributes with names such as prot, protocol, 

connectionProtocol)   

• cope with complex structures of different number of inner levels   

• deal with event ordering and time-inconsistencies (as it is described in [10]) 
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4. FEATURE EXTRACTION 
 

In Apache Spark, data are organized

relational tables: there are columns (aka attributes or features or dimensions) and rows (i.e. events 

recorded, for example, by a network sensor, or 

corresponded datatypes define the schema of a dataframe. In each dataframe, its columns and 

rows i.e. its schema is unchangeable. Thus, an example of a schema could be the following:

DataFrame[id: string, @timestamp: string, honeypot: string, payloadCommand: string]

A sample of recorded events of this dataframe schema is shown in Figure 2:
 

 

Figure 2. A sample of recorded events, having 4 columns/dimensions
 

The following steps refer to the case in which logs/datasets are ingested i

approach examines the data structures on their top

synthesis of previous and new dataframes, in an automatic way. Access to the actual data is only 

taken place when there is a need to find schemas in 

the records (thus, even if we have a dataframe of million/billions of events, we only examine the 

schema of the first record/event).

data: a data frame column. 
 

1) load the log file in a spark data

2) find and remove all single-valued attributes 

section) 

3) flatten complex structures 

a) find and flatten all columns of complex structure (th

the lowest complex attribute of the hierarchy of complex attributes)

i) e.g. struct, nested dictionaries, linked

their value is of Row

b) remove all the original columns o

4) convert all time-columns into timestamps, using distinct time features in the data

5) integrate similar features in the list of data
 

Each attribute of a complex structure, such as of a 

array, is handled in such way, which

the elements of an array, a dictionary, a list, etc.) will be

way, we manage to transform the schema of the

each one corresponding to a schema that refers to a single network sensor or other input data 

source, as it is illustrated in the following figures (Figures 3, 4,

different cases follow: 

• struct – RowType 

• use the leaf column at the last level of this struct

column 

• list: add list elements as new columns
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organized in the form of dataframes, which resemble the well

relational tables: there are columns (aka attributes or features or dimensions) and rows (i.e. events 

recorded, for example, by a network sensor, or a specific device). The list of columns and their 

fine the schema of a dataframe. In each dataframe, its columns and 

rows i.e. its schema is unchangeable. Thus, an example of a schema could be the following:

DataFrame[id: string, @timestamp: string, honeypot: string, payloadCommand: string] 

corded events of this dataframe schema is shown in Figure 2: 

Figure 2. A sample of recorded events, having 4 columns/dimensions 

The following steps refer to the case in which logs/datasets are ingested in json

approach examines the data structures on their top-level, focusing on abstract schemas and re

synthesis of previous and new dataframes, in an automatic way. Access to the actual data is only 

taken place when there is a need to find schemas in dictionaries and only by retrieving just one of 

the records (thus, even if we have a dataframe of million/billions of events, we only examine the 

vent). The words field, attribute or column refer to the same piece of 

file in a spark data frame, in json format 

valued attributes (this step applies also to the feature selectio

find and flatten all columns of complex structure (the steps are run recursively, down to 

the lowest complex attribute of the hierarchy of complex attributes) 

uct, nested dictionaries, linked lists, arrays, etc. (i.e. currently those which 

their value is of Row Type) 

remove all the original columns of complex structure 

columns into timestamps, using distinct time features in the data

features in the list of data frames 

Each attribute of a complex structure, such as of a struct, nested dictionary, linked
, is handled in such way, which ensures that all single attributes of the lowest data level (i.e. 

the elements of an array, a dictionary, a list, etc.) will be flattened and expressed in 2

way, we manage to transform the schema of the original dataframe to a number of dataframes, 

each one corresponding to a schema that refers to a single network sensor or other input data 

source, as it is illustrated in the following figures (Figures 3, 4, 5 and 6). The steps, for

use the leaf column at the last level of this struct-column to add it as a new 

add list elements as new columns 
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relational tables: there are columns (aka attributes or features or dimensions) and rows (i.e. events 

a specific device). The list of columns and their 

fine the schema of a dataframe. In each dataframe, its columns and 

rows i.e. its schema is unchangeable. Thus, an example of a schema could be the following: 

 

json format. Our 

level, focusing on abstract schemas and re-

synthesis of previous and new dataframes, in an automatic way. Access to the actual data is only 

dictionaries and only by retrieving just one of 

the records (thus, even if we have a dataframe of million/billions of events, we only examine the 

refer to the same piece of 

feature selection 

e steps are run recursively, down to 

lists, arrays, etc. (i.e. currently those which 

columns into timestamps, using distinct time features in the data frames 

linked list or an 

ensures that all single attributes of the lowest data level (i.e. 

flattened and expressed in 2-D.In this 

original dataframe to a number of dataframes, 

each one corresponding to a schema that refers to a single network sensor or other input data 

The steps, for these 

column to add it as a new 
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• array: split array’s elements and add the relevant new columns

• dictionary - steps: 

• find all inner schemas for attributes of type Dict, as a list

• add the schemaType as an ind

• create a list of dataframes, where each one has its own distinct schema

• flatten all dictionary

the list of dataframes by adding them as new columns
 

In Figure 3, in the left-hand schema

value is given by the inner-level attribute

the actual date value can be searched in the inner

$oid and $date are extracted in the form of two new columns, named 

original attributes _id and timestamp are then de

side, Schema#2. In this way, we achieved to reduce the complexity of the original input schema to 

a new one of lower complexity. 
 

 

Figure 3. Transforming complex fields (i) 
 

In Figure 3, the exploratory analysis has revealed that the 

dictionary as a list of multi-nested dictionaries; each one of the latter present a complex structure 

with further levels. These different schemas found in payload are presented in Figure 4.
 

 

Figure 4
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split array’s elements and add the relevant new columns 

find all inner schemas for attributes of type Dict, as a list 

add the schemaType as an index to the original dataframe 

create a list of dataframes, where each one has its own distinct schema

ionary attributes, according to their schemas, in each dataframe of 

dataframes by adding them as new columns 

hand schemaSchema#1, attributes _id is of the datatype struct
level attribute, $oid. The same stands for the outer attribute 

the actual date value can be searched in the inner-level attribute $date. In both cases, attributes 

are extracted in the form of two new columns, named _id_ and 

original attributes _id and timestamp are then deleted, having thus a new schema on the right

. In this way, we achieved to reduce the complexity of the original input schema to 

 

Figure 3. Transforming complex fields (i) – attributes _id and timestamp are of the datatype 

In Figure 3, the exploratory analysis has revealed that the payload attribute represents actually a 

nested dictionaries; each one of the latter present a complex structure 

e different schemas found in payload are presented in Figure 4.

Figure 4. Different schemas in the payload attribute 
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create a list of dataframes, where each one has its own distinct schema 

each dataframe of 

struct. The actual 

ribute timestamp: 

. In both cases, attributes 

and dateOut; the 

leted, having thus a new schema on the right-

. In this way, we achieved to reduce the complexity of the original input schema to 

 

are of the datatype struct 

represents actually a 

nested dictionaries; each one of the latter present a complex structure 

e different schemas found in payload are presented in Figure 4. 
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In Figure 5, we illustrate the new

schemas of the payload attribute in Figure 4. By following this approach, data are easier to be 

handled: in the next stages, they will be cleaned, transformed from categorical to numerical and 

then they will be further analyzed in order to detect anomalies in entities 
 

The dataframe schema in Figure 6

payload attribute (Figure 5) into its inner

an array. By applying consecutive transformations automatically, we manage to extract all inner 

attributes, which simplifies the process of correlating data in the next stage. Thus, by looking into 

the raw_sig column, we identify inner v

new features derived by the inner levels, as it is depicted e.g. for column 

be further split by leading to two new columns (e.g. with values 

process is recursive and automated; special care is given how we name the new columns, in order 

to follow the different paths of attributes decomposition.
 

Figure 5. The new-created dataframes which correspond
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In Figure 5, we illustrate the new-created dataframes schemas which correspond to the different 

schemas of the payload attribute in Figure 4. By following this approach, data are easier to be 

handled: in the next stages, they will be cleaned, transformed from categorical to numerical and 

rther analyzed in order to detect anomalies in entities behavior. 

The dataframe schema in Figure 6 is the second of the dataframes derived by flattening the 

attribute (Figure 5) into its inner-level attributes. Here, feature raw_sig is in the form of 

an array. By applying consecutive transformations automatically, we manage to extract all inner 

attributes, which simplifies the process of correlating data in the next stage. Thus, by looking into 

column, we identify inner values separated by ‘:’, which further are decomposed into 

new features derived by the inner levels, as it is depicted e.g. for column attsCol5; the latter could 

be further split by leading to two new columns (e.g. with values 1024 and 0, respectively), as 

process is recursive and automated; special care is given how we name the new columns, in order 

to follow the different paths of attributes decomposition. 

 

created dataframes which correspond to the different schemas in payload
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schemas which correspond to the different 

schemas of the payload attribute in Figure 4. By following this approach, data are easier to be 

handled: in the next stages, they will be cleaned, transformed from categorical to numerical and 

flattening the 

is in the form of 

an array. By applying consecutive transformations automatically, we manage to extract all inner 

attributes, which simplifies the process of correlating data in the next stage. Thus, by looking into 

, which further are decomposed into 

; the latter could 

, respectively), as this 

process is recursive and automated; special care is given how we name the new columns, in order 

 

payload 
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Figure 6. Transforming complex fields (ii

 

5. FEATURE SELECTION 
 

The process of feature selection 

3.1, our motivation in our approach is to 

reduction of the time needed for applying security analytics in un

ultimately to detect anomalies as strong form 

such as, to increase accuracy and

need to select the data that are more related to our questions. 

significant role in complex event processing, especially when d

sources and different forms. 
 

We present four methods to achieve this goal:
 

1. Leave-out single-value attributes

2. Namespace correlation 

3. Data correlation using the actual values

4. FS in case of having a relative small number of 
 

5.1. LEAVE-OUT SINGLE-VALUE 
 

The first method is quite simple: all single

dataframe. For example, consider the 

datatype Boolean takes the value 

drop the relevant column, which leads to a new dataframe schema.
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. Transforming complex fields (iii) – attributes raw_sig is of the datatype array

 

The process of feature selection (FS) is crucial for the next analysis steps. As was explained in 

3.1, our motivation in our approach is to reduce data complexity in parallel with a significant 

reduction of the time needed for applying security analytics in un-labelled data. As we are aiming 

ultimately to detect anomalies as strong form of outliers in order to improve quantitative metrics 

accuracy and detection rates or to decrease security noise to a minimum

need to select the data that are more related to our questions. Dimensionality reduction can play a 

significant role in complex event processing, especially when data are coming from different 

We present four methods to achieve this goal: 

value attributes 

Data correlation using the actual values 

FS in case of having a relative small number of categories 

ALUE ATTRIBUTES 

The first method is quite simple: all single-valued attributes are removed from the original 

example, consider the dataframe schema in Figure 7. Attribute normalized
takes the value True for all the events in our integrated log and therefore we 

drop the relevant column, which leads to a new dataframe schema. 
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array 

is crucial for the next analysis steps. As was explained in 

reduce data complexity in parallel with a significant 

labelled data. As we are aiming 

in order to improve quantitative metrics 

detection rates or to decrease security noise to a minimum, we 

Dimensionality reduction can play a 

ata are coming from different 

valued attributes are removed from the original 

normalized of 

for all the events in our integrated log and therefore we 
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Figure 7. Attribute normalized
 

5.2. NAMESPACE CORRELATION
 

It is quite common when data inputs are coming from different sources to deal with entity 

attributes which refer to the same piece of information although their names are slightly different.

For example, attributes proto and 

communication channel. Different tools used by experts to monitor network traffic do not follow 

a unified namespace scheme. This fact, could lead to misinterpretations, information redundancy 

and misconfigurations in data modelling, among other obstacles in data exploration stage; all 

these refer mainly to problems in interoperability, as can be seen in Figure 8. By solving such 

inconsistencies, we achieve to further reduce data complexity as well as to reduce
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i.e. numberOfCategories<= 4, we propose the following steps in order to achieve a further 

feature reduction. We distinguish the case

a security-related event) and the case where some or all the labels are available
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highly-unbalanced data (i.e. where only few instances of the rare/anomalous class are available).

Working with un-labelled data: 
 

• For the set of these features, select each one of them as the feature

either: 
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number of the dimensions (by following one or more of the aforementioned techniques)

• Create 2n sub-dataframes with respect to the number of categories

• Calculate features importance using a 

• Use an ensemble technique in the form of a 

classifier, running a combination of the above techniques to optimize results in the next 

levels of the analysis (e.g. to further optimize detection rates)
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nced data (i.e. where only few instances of the rare/anomalous class are available).

For the set of these features, select each one of them as the feature-label attribute and then 

Use a decision tree with a multi-class classification evaluator to further reduce the 

number of the dimensions (by following one or more of the aforementioned techniques)

dataframes with respect to the number of categories 

Calculate features importance using a Random Forest classifier 

technique in the form of a Combiner e.g. a neural network
, running a combination of the above techniques to optimize results in the next 

levels of the analysis (e.g. to further optimize detection rates) 
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Working with labelled data: 
 

• Select features using the Chi-Square test of independencies. In our experiments, with 

respect to the input data, we have used four different statistical methods, available in 

Spark ML library: 

• The number of top features 

• A fraction of the top features 

• p-values below a threshold to control the false positive rate 

• p-values with false discovery rate below a threshold 
 

6. CONCLUSIONS 
 

We have presented an approach to handle efficiently the tasks of feature extraction and feature 

selection while working with security analytics by utilizing machine learning techniques. It is an 

automated solution to handle interoperability problems. It is based on a continuous transformation 

of the abstract definitions of the data inputs. 
 

In the case of feature extraction, access to the actual data is limited to a minimum read actions of 

the first record of a dataframe and only when it is needed to extract the inner schema of a 

dictionary-based attribute. In the case of feature selection, the actual data are accessed only to 

find correlations between them, before we apply clustering or any other method for threat 

detection. 
 

By following the proposed approach, we managed to achieve our primary objectives: reduce 

computational time, reduce data complexity and provide solutions to interoperability issues, while 

analyzing vast amount of heterogeneous data from different sources. 

The approach can be formalized in the next steps by utilizing novel structures derived from the 

theory of categories as it has been presented in [10] towards an overall optimization, in terms of 

quantitative and qualitative metrics. 
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