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ABSTRACT 
 

Application of Artificial Neural Network Committee Machine (ANNCM) for the inversion of magnetic 

anomalies caused by a long-2D horizontal circular cylinder is presented. Although, the subsurface targets 

are of arbitrary shape, they are assumed to be regular geometrical shape for convenience of mathematical 

analysis. ANNCM inversion extract the parameters of the causative subsurface targets include depth to the 

centre of the cylinder (Z), the inclination of magnetic vector(Ɵ)and the constant term (A)comprising the 
radius(R)and the intensity of the magnetic field(I). The method of inversion is demonstrated over a 

theoretical model with and without random noise in order to study the effect of noise on the technique and 

then extended to real field data. It is noted that the method under discussion ensures fairly accurate results 

even in the presence of noise. ANNCM analysis of vertical magnetic anomaly near Karimnagar, Telangana, 

India, has shown satisfactory results in comparison with other inversion techniques that are in vogue.The 

statistics of the predicted parameters relative to the measured data, show lower sum error (<9.58%) and 

higher correlation coefficient (R>91%) indicating that good matching and correlation is achieved between 

the measured and predicted parameters. 
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1. INTRODUCTION 
 

In quantitative interpretation, the gravity and magnetic anomalies over a mineralized zone or 

geological structure can be approximated to simple geometrical shapes. Quantitativeinterpretation 
of the magnetic and gravity anomalies due to anticlines and synclines is accomplished by 

approximating them to two-dimensional, long horizontal circular cylinder. Linear concentrations 

of the mineral magnetite in a mineralized zone may be approximated some times to a horizontal 
cylinder. There are several methods of analyzing magnetic anomalies due to cylindrical 

structure.Parker Gay(1965) presented a set of master curves for the interpretation of the magnetic 

anomalies due to cylindrical bodies [25]. Rao et al. (1973) have developed direct methods for 

carrying out such interpretations [28]. Murthyand Mishra (1980) have proposed spectral 
approaches[23]. 
 

Mohan et al. (1990) used the Mellin transform in interpreting magnetic anomalies due to some 

two dimensional bodies [21].Sundararajan et al. (1985, 1989) interpreted the magnetic anomalies 
of various components due to thin infinite dyke and spherical source by using Hilbert 

transform([34], [35]). Srinivas(1998) used the modified Hilbert transform to interpret magnetic 

anomalies caused by 2-D horizontal circular cylindrical structures [32].During 1999-2013, 
different methods Wavelet transform([22], [16]), Displacement of the maximum and minimum by 
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upward continuation [9], Euler deconvolution [12], Fraser filter [5], Hartley transform [18] and 

Direct analytic signal [6] were used for inversion of magnetic data. 
 

TDX is a normalized version of the horizontal derivative filter and can recognize the edges of the 
shallow and deep bodies simultaneously. This filter is commonly used in the edge detection of 

potential field data.Alamdar et al. (2015) used combination of this balanced edge detection filter 

and Euler deconvolution to real magnetic data from Soork iron ore mine in Iran to estimate source 

location [1].Tavakoli et al. (2016) used singular value decomposition method for the 
interpretation of magnetic anomalies by 3D inversion [38]. Very fast simulated annealing global 

optimization technique is used for interpretation of gravity and magnetic anomaly over thin sheet-

type structure byArkoprovo Biswas (2016) [3]. Recently, YunusLeventEkinci et al. (2017) used 
differential evolution algorithm for amplitude inversion of the 2D analytic signal of magnetic 

anomalies [39].In the recent years, soft computing tools like Artificial neural network (ANN), 

Fuzzy logic, Genetic algorithm gained great importance in geophysical data inversion([17], [33], 

[30], [14], [10], [26], [2]). 
 

A committee machine consists of a group of intelligent systems named experts (ANN) and a 

combiner which combines the outputs of each expert[8].Its advantages aremore accuracy in 

prediction,speed learningand better generalization.If the combination of experts in committee 
machine were replaced by a single neural network, one would have a network with a 

correspondingly large number of adjustable weight parameters. The training time for such a large 

network is likely to be longer than for the case of a set of experts trained in parallel. Moreover, 
the risk of over fitting the data increases when the number of adjustable weight parameters is 

large compared to size of the set of the training data.  
 

In this paper, the analysis of vertical magnetic anomalies due to a 2-D horizontal circular cylinder 
is carried out using ANN-based committee machine.The method is illustrated with the study of 

theoretical model and validity of procedure is tested with the addition of random noise to the 

source data. Further, the technique is exemplified with magneticanomaly over a narrow band of 
quartz magnetic nearKarimnagar, Telangana, India [32]. Both the theoretical as well as field data 

yield reasonably good resultsand are compared with other methods that are in vogue. 
 

2. ARTIFICIAL NEURAL NETWORKS 
 
 

An artificial neural network is a computing system which consists of massively parallel 

interconnection of large number of neurons. It is capable of capturing and representing complex 
input/output relationships and is an abstract simulation of a human brain. It learns incrementally 

from environment (data). On this basis it provides reliable predictions for new situations 

containing even noisy and partial information. ANN has two main components, namely the 
processing elements and the connections between them. The processing elements are called 

neurons and connection between two neurons is called a link. Every link has a weight parameter 

associated with it. A neuron ( j ) computes a single output ( )ja from multiple inputs

01 2( , , ... , )Sx x x by forming linear combination according to its input weights 

01 2( , , ... .. ., , )j j jS jw w w b and then possibly putting the output through some activation function (

(.)f ) and is shown in Figure (1)([20], [29], [8]), where 0S is the number of inputs. Activation 

functions such as sigmoid are commonly used since they are nonlinear and continuously 

differentiable([11], [31]).The neurons take input data and perform simple operations on the data. 

The result of these operations is passed to other neurons. ANNs are capable of learning, which 
takes place by altering weight values. 
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Multi-layer perceptron (MLP) is a feed forward artificial neural network with one or more layers 

between input and output layers.Figure (2) shows a two-layer feedforward network.The net input 

to a neuron j  in layer 1k  is given by [7]: 

 

1 1 1

1

 +      
kS

k k k k

j ji i j

i

w a bn   




    

….. (1) 

 

The output of neuron j  will be  

 
1 1 1( )     k k k

j j ja f n   where  0,1k  ,          …...(2) 

 

where
1k

jiw 
represents the weight associated with the ' thi  input to neuron j  in layer 1k  ,

1k

jb 
 is 

a bias to neuron j and
1kS 
is the number of neurons in the  layer 1k  .It has

1 0 2 1( ( 1) ( 1))S S S S      weights. One may observe that if 
0

0 0 0

1 2  [     ...  ...   ]T

Sx a a a  is 

presented to the network and ( )AN x  is the output of MLP, then  

 

2

2 2 2

1 2( ) [     ...  ]T

SAN x a a a
     

…… (3) 

 

where 
2

ja ’s are given by Eq. (2). 

 

 

 
 

Figure 1 A model of an artificial neuron 
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Figure 2 A two-Layer feed forward network (Multilayer perceptron) 
 
MLP learns the problem behavior through a process called training and it would be taught with 

measured/simulated samples from a training setsay 1 1 2 2{( , ),( , ),...,( , )}P PT x t x t x t . The 

performance (Perf) of MLP is calculated using the following error function:   

 

   
1 1

1 1
( ) ( ) ( )

2 2

P P
T

T

p pp p p p

p p

E w t AN x t AN x e e
 

    
….. (4)

 

 

where ( )pAN x is the output of network,  w  is the weight vector containing all the weights of the 

network, pt - target, pe - error and P -total number of training samples. The goal of the training is 

to find the weights that will impact the output from MLP to match the targets as closely as 

possible.If the outputs of MLP come as close as possible to match the targets for all the samples, 

then performance function ( )E w of network is minimized.Levenberg-Marquardt back-

propagation algorithm ([15], [19], [7]) is one of the numerical optimization techniques that 

minimizes ( )E w . It is fast with stable convergence. Levenberg-Marquardtalgorithm(LMA)[4] is 

given by: 
 

 
1

( 1) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )T Tw n w n J w n J w n I J w n e w n


     …..(5)
 

 

where 1 2( ) [ ( )  ( ) ...  ...  ( )]T

Pe w e w e w e w
   

  is the error vector comprising the errorsfor all the 

training samples, ( )( )J w n  is a Jacobian matrix, n is an iteration number and  is a damping 

parameter.  
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Figure 3 Flow-chart of Implementation of the LM algorithm 

 

When   is large, the method takes a small step in the gradient direction. As the method nears a 

solution,   is chosen to be small and the method converges quickly via the Gauss Newton 

method. The flowchart of implementation of the LM algorithm during training a network is 

shown in Figure (3). A method for calculation of ( 1)w n   using Eq. (5) requires both forward 

and backward calculations. First, feed forward calculations which are made to determine the error 
at the output layer. The elements of the Jacobian matrix are then obtained by propagating this 

error back through the network which can be computed by a simple modification to the standard 

backpropagation algorithm[7]. The backpropagation process has to be repeated for every output 

separately in order to obtain consecutive rows of the Jacobian matrix.  
 

2.1. Artificial Neural Network Committee Machine (ANNCM) 
 

Committee machines with static structure, the outputs of several predictors (expert) are combined 
by a mechanism that does not involve the input signal with ensemble and boosting methods. 

Figure (4) shows a number of differently trained neural networks (i.e., experts), which share a 

common input and whose individual outputs are combined using rules such as averaging, voting 
etc., to produce an overall output. Such a technique is referred to as anensemble averaging 

method. This method is most popular [24]. Ensemble averaging creates a group of networks 

(experts); each with low bias and high variance, then combines them to a new network with low 

bias and low variance. Further the idea behind such network is to fuse knowledge acquired by 
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experts in order to arrive at an overall decision that is superior to that of any of the individual 

experts ([13], [24], [8]). 

 

 
 

Figure 4 Artificial Neural Network Committee Machine 

 

3. MAGNETIC EFFECT DUE TO A 2-D HORIZONTAL CIRCULAR CYLINDER 
 

The vertical magnetic effect ( )V x  due to a 2-D horizontal circular cylinder extending infinitely 

along the Y-axis with its normal section parallel to the X-Z plane (Figure(5)) at a point ' 'x is 

givenby [37]: 

 
2 2

2 2 2

( )sin 2 cos
( )

( )

z x xz
V x A

x z

   
  

 
….. (6) 

where, 
 

z- is the depth to the centre of the cylinder, 
 

 - is the inclination of magnetic vector, 
 

 A-is the constant term comprising the radius ( )R and the intensity of the magnetic field

( )I and is given as
22A R I . 

 

 
 

Figure 5 Geometry of the 2D Horizontal Circular Cylinder 
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The inversion of magnetic effect due to a 2-D horizontal circular cylinder is achieved by 

ANNCM which consists of phase-I and phase-IIand is discussed in the following subsections. In 

phase-I coarse values of parameters are obtained whereas in phase-II fine values of parameters are 

obtained. We call, phase-I and phase-II as coarse and fine application.Flow chart of phase-I and 
phase-II is shown in Figure(6). 
 

3.1. Phase-I 
 

In phase-I, a trial and error method is implemented for the analysis of magnetic anomaly 

 ( )V x X  generated with the model parameters ( , , )o o oz A . The trial and error method 

assumes (i.e. trial) an initial set of parameter range, ( , , )i i iz A  (where i = 1,2,3, …..) and  

computes the magnetic model responses  iY   and compares them with  X  and then the mean 

square error (E) between iY  and X  are estimated. For a particular value of “ i ”, the parameters 

( , , )z A that result E<  may be considered as the appropriate set of parameters of magnetic 

anomaly X , where   is a small positive real number. Selection of an initial set of parameters 

range is based on Hilbert transform analysis in which case it  may narrow  down the choice  

although  the initial set of parameters  may also given randomly. 
 

Let  be appropriate values of parameters obtained by trial and error method. These 

parameterswill be carried to phase-II in order to increase their accuracy. 
 

 

 
 

Realization of an inversion estimation of parameters of the anomaly  X  is achieved by training 

an ANNCMwith the models ( ,  ),p

pV t  where ( ,  ) ,p

pV t T ( 1,2,....., )p P . 

 

Step-2:In this step, first design an artificial neural network committee machine with suitable 

number of experts (MLPs)and in turn each will be trained in batch mode with themodels ( ,  )p

pV t

, ( 1,2,....., )p P  using LM algorithm.  
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Figure 6 Flow-chart of implementation of the Phase-I and Phase-II 

 

3.3. Hilbert and modified Hilbert Transform 
 

Selection of a range of initial set of parameters is based on the procedure of Hilbert and/or 

modified Hilbert transforms as briefed below. 
 

The Hilbert transform ( )H x  and the modified Hilbert transform ( )MH x  of the vertical 

magnetic anomaly ( )V x due to an inclined sheet are computed by [32]:  
 

2 2

2 2 2

( )cos 2 sin
( )

( )

z x xz
H x A

x z

   
   

    

….. (8) 

 

2 2

2 2 2

( )cos 2 sin
( )

( )

z x xz
MH x A

x z

   
   

 
  ..… (9) 

 

Sundararajan and Srinivas[36] reported in literature that the Hilbert transform and its modified 
version intersect exactly over the origin (centre of the subsurface target). From the equations of 
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vertical magnetic anomaly ( )V x  and the modified Hilbert transform ( )MH x , the depth to the top 

of the sheet ( )z , the inclination ( )  and the constant term ( )A  are given as: 

 

  1 2

2

x x
z


           ….. (10)  

 

  

2 2
-1

2 2

2 ( ) - ( ) ( )
tan

( ) ( ) - 2 ( )

zxMH x z x V x

z x MH x zxV x


 
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    

…... (11) 

 

2 2 2(0) (0)A z V MH 
    

….. (12),  

 

where
1x and 

2x  are the abscissa of the points of intersection of ( )V x  and ( ).MH x  

 

4. THEORETICAL MODELS 
 

The vertical magnetic anomaly ( )V x  due to a 2D horizontal circular cylinder of theoretical 

model-I is generated using Eq. (6) with input parameters ( 12,z  40 and 800)A  

consisting of 51 samples with 2 units as sampling. Parameters ranges used in trial and error 

method during phase- I are given in Table (1). The selection of parameter ranges are based on the 
results obtained by modified Hilbert transformand they are given in Table (1). The appropriate 

values of parameters obtained in phase-I are:  The range 

of parameters and number of steps that were used in phase-II to generate ANN models ( ,  )p

pV t

are given in Table (2). The ANNCM with fiveMLPs(Figure(4)) of same topology (i.e., number of 
layers, number of neurons in each layer are same) with different initial weightsis used to invert 

the model-I by assigning 51 samples 1 51( )  ...  ...  ...  ( )
T

p p pV V x V x    to the input layer. Ten 

neurons with hyperbolic tangent transfer functions are used for hidden layer. Threeneurons with 

linear transfer functionsare used for output layer to extract the required parameters  , , .z A Each 

MLP has 553 weights (10 (51 1) 3 (10 1))     . While training the networks the set 
1 2

1 2{( , ), ( , ),..., ( , )}P

PT V t V t V t  is randomly divided into three subsets namely training, 

validation and testing sets,each are containing 70%, 15% and 15% models respectively. A 

training set is one that is used for computing the gradient and updating the network weights and 
biases in the ANN to produce desired outcome.  On the other hand, validation test is used to find 

out the best ANN configuration and training parameters. The error on validation set is monitored 

during training process. The validation error normally decreases during the initial phase of 

training. However, when the network begins to over fit the data, the error on the validation set 
typically begins to rise. The network weights and biases are saved at the minimum of the 

validation set error. But, a test set is used only to evaluate the fully trained ANN. The test set 

error is not used during training, but it is used to compare different models. It is also useful to plot 
the test set error during the training process. If the error on the test set reaches a minimum at a 

significantly different number of iterations than the validation set error, this might indicate a poor 

division of the data set [40].The performance of each MLP is calculated using Eq. (4) and weights 
are adjusted according to Eq. (5). Outputs of ANNCM are computed by ensemble averaging 

method and given in Table (3). The vertical magnetic anomaly ( )V x  and the ANNCM inversion 

response are shown in Figure (7). The Hilbert transform ( )H x  and the modified Hilbert transform 

( )MH x of the vertical magnetic anomaly ( )V x using Eq. (8)-(9) are computed and shown in 
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Figure (8). The well trained network can invert any data that falls within the training range in 

almost no time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1. Effect of Random Noise 
 

Ten percent of Gaussian random noise is added to the vertical magnetic anomaly ( )V x  of model-

I [Figure (7)] and is shown in Figure (9).  As in the case of noise free analysis, of magnetic 

anomalies, the values of parameters obtained during phase-I are  and

 Modified Hilbert transform results and parameters ranges that are used in trial and 

error method during phase- I are given in Table (1). The range of parameters, number of steps and 

the number of ANN models that are generated in phase-IIare given in Table (2). The ANNCM 

inversion response is shown in Figure (9). The Hilbert transform ( )H x and the modified Hilbert 

 Theoretical Examples 

          MODEL-I 

 

Figure 7 Vertical magnetic anomaly V(x) and ANNCM inversion response of 

model-I 
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Figure 8 Vertical magnetic anomaly V(x), the Hilbert transform H(x) and modified 

Hilbert transform MH(x)
 
of model-I 
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transform ( )MH x of the noisy vertical magnetic anomaly ( )V x are computed and shown in 

Figure (10). The result of the ANNCM inversion parameters is given in Table (3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Figure 10 Vertical magnetic anomaly V(x), the Hilbert transform H(x) and modified 

Hilbert transform MH(x) of model-II. 
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Figure 9 Noisy vertical magnetic anomaly V(x) and ANNCM inversion response 

of model-II 
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Table 1   Initial set of parameters to Phase-I 

 

Examples 

 

  

z  

 

  

 

A  

 

 
Model-I 

 

 

Range 

 

1 – 20 

 

20o – 60o 

 

 

350 – 650 
  

By modified HT 

 

 

8.96 

 

36.24o 

 

485.26 
 

Model-II 

(with noise) 

 

 

Range 

 

 

1 – 20 

 

20o – 60o 

 

300 – 600 
 
By modified HT 

 

 
8.47 

 
36.42o 

 
424.51 

 

Table 2Target range of parameters, number of steps and ANN models (Phase-II) 

 

 

Examples 

 

 

z  

 

  

 

A  

 
Number of 

ANN models 

 

Model-I 

 

8– 12 

(5) 

 

35o – 45o 

(6) 

 

550– 750 

(9) 

 

270 

 
Model-II 

(with noise) 

 
8– 12 

(5) 

 
35o – 45o 

(6) 

 
500– 700 

(10) 

 
300 

 

Table 3 Theoretical examples (* in arbitrary units) 

 

5. FIELD EXAMPLE 
 

The applicability of the proposed technique is demonstrated on an observed vertical magnetic 
data near Karimnagar district, Telangana, India (Srinivas 1998) and is shown in Figure (11). The 

total length of the profile (182.60 meters) was digitized into 60 equal parts at an interval of 

3.0433m. The quality of the data is determined by the signal to noise ratio (SNR) and is given as: 
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m
SNR

s
 , 

 

where m is the mean and s  is the standard deviation of the data. If the ratio is less than 3, the data 

is assumed to be very poor quality. If the ratio is greater than 3, then the level of noise is 

negligible and the data shall be considered clean. Signal to noise ratio of the field datais 

calculated and is given by: 

 

  

5017.1
7.7567

646.8136
SNR  

 

The parameters ranges that were used in trial and error method during phase-I obtained by 

modified Hilbert transform  and are given as: 
 

 the depth z (19m–50m) 

  the inclination  ( 1o–150o) 

 the constant A (450,00,000–550,00,000)  

 

The appropriate values of parameters obtained in phase-I are 

 Three hundred training models were created by assigning different values to  

( , , )z A  in a close range of  which were used in phase-II are as follows: 

 

 the depth z (19m – 29m), with five points in this range 

  the inclination  (70o – 80o), with six points in this range 

 the constant A (465,62,000 – 466,22,000), with ten points in this range;  
 

ANNCMinversion response compared with the field data are shown in Figure (11). The Hilbert 

transform ( )H x and the modified Hilbert transform ( )MH x of the vertical magnetic anomaly

( )V x  are computed and shown in Figure (12). The estimated parameters are given in Table (4). 

Results shown are better and agree well with other inversion methods (Table 4).  
 

Table 4 Field Example (Vertical magnetic anomaly, near Karimnagar, Telangana, India) 

 

 

Methods 

 

 z (in meters)) 

 

 

  

 

A  

 

Gradient method [27] 

 

 

23.23 

 

56o00 

 

…. 

Modified Hilbert 

transformTechnique [32] 

 

21.4 

 

46o00 

 

…. 

Present Artificial Neural  

Network Committee Machine 

 

22.66 

 

78o18 

 

47493187.04 
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6. RESULTS AND DISCUSSION 
 

During training network, 870 training models were used for both theoretical and field data for 
which Levenberg-Marquart algorithm is very much suitable. From Table (3), it is observed that 

the results in general agree with the assumed values. However, the addition of random noise level 

 

Figure 12 Vertical magnetic anomaly V(x) the Hilbert transform H(x) and  

                   modified Hilbert transform MH(x) of field data. 
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to the magnetic anomaly and subsequent analysis show a marginal variation implying that the 

effect of such noise is almost negligible in the present method. The method with LM algorithm 

shows the best performance in extraction of parameters of a model. Hence, determination of the 

depth and inclination of various structures from magnetic data can be solved effectively. 
 

 

7. CONCLUSIONS 
 

The accuracy of ANNCM inversion results is fairly good. The ANN committee machine analysis 
of magnetic inversion is simple and elegant and the method is effective even in the presence of 

noise. In addition, it is independent of analytical nature of the data. 
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