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ABSTRACT 
 

Artificial Intelligence and Machine Learning have been around for a long time.  In recent years, there has 

been a surge in popularity for applications integrating AI and ML technology.  As with traditional 

development, software testing is a critical component of a successful AI/ML application.  The development 

methodology used in AI/ML contrasts significantly from traditional development.  In light of these 

distinctions, various software testing challenges arise. The emphasis of this paper is on the challenge of 

effectively splitting the data into training and testing data sets.  By applying a k-Means clustering strategy 

to the data set followed by a decision tree, we can significantly increase the likelihood of the training data 

set to represent the domain of the full dataset and thus avoid training a model that is likely to fail because 

it has only learned a subset of the full data domain. 
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1. INTRODUCTION 
 

1.1. Overview of Artificial Intelligence and Machine Learning. 
 

Artificial Intelligence (AI), a rapidly emerging branch of Computer Science, emphasizes on the 

modelling and programming of human intelligence in machines, and, to enable them to think and 

function like rational  intelligent systems. AI can be defined as the capability of a machine to 

imitate intelligent human behavior.  Think about this - a machine than can easily execute simple 

to complex tasks on a daily basis without much of human intervention. AI has made several 

breakthroughs in the recent years and is gaining traction for using computers to decipher 

otherwise complex problems, and, thus surpassing the quality of current computer systems [5]. In 

[6], Derek Partridge demonstrates various major classes of association that exist between 

artificial intelligence (AI) and software engineering (SE). These areas of communication are 

software support environments; AI tools and techniques in standard software; and the use of 

standard software technology in AI systems. Mark Kandel and Bunke, H, in [7], have also tried to 

correlate AI and software engineering at certain levels and discussed whether AI can be directly 

applied to SE problems, and if SE Processes are equipped for taking advantage of AI  techniques. 
 

1.2. How AI Impacts Software Testing? 
 

Research illustrates that software testing utilizes enterprise resources and adds no functionality to 

the application. If regression testing discloses a new error introduced by a revision code, a new 
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cycle of regression begins. Additionally, most software applications require engineers to write 

testing scripts, and their skills must be on par with the developers who initially code the app. This 

extra overhead expense in the quality assurance process is consistent with the growing 

complexity of software products.[6] 
 

To minimize the costs, the automated testing focuses more on AI capacity, efficiency, and speed. 

New applications progressively provide AI functionality, sparing the challenge for human testers 

to comprehensively evaluate the entire product. Either data or market trends, AI will be 

increasingly needed to certify intelligence -containing systems, partly because the spectrum of 

input and output possibilities is so wide. 

The intent of this paper is to focus on one of the issues and challenges that testers face in 

effectively testing an AI application. Currently there are various AI methods such as 

classification and clustering algorithms that rely primarily on monotonous data to train models to 

predict accurate results [8]. 

 

2. ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING 
 

2.1. Types of Machine Learning Algorithms 

 

Machine Learning Algorithms have been divided into different categories based on their purpose.  

The following are the key categories: [3] 
 

• Supervised Learning - ML tries to model relationships and dependencies between the 

target prediction output and the input features. Input data is called training data and has a 

known label or result. Algorithms include - Nearest Neighbor, Naive Bayes, Decision 

Trees, Linear Regression, Support Vector Machines (SVM), Neural Networks. 

 

• Unsupervised Learning - Input data are not labeled and do not have a known result. 

Mainly used in pattern detection and descriptive modeling. Algorithms includes - k-means 

clustering and association rules. 

 

• Semi-supervised Learning - In the previous two categories, either there are no labels for 

all the observations in the dataset or labels are present for all the observations. Semi-

supervised learning falls in between the two. Input data is a mix of labeled and unlabeled. 

 

• Reinforcement Learning - It allows machines and software agents to automatically 

determine the ideal behavior within a specific context, in order to maximize its 

performance. Algorithms includes Q-Learning, Temporal Difference (TD), and Deep 

Adversarial Networks. 

 

3. CHALLENGE OF SPLITTING DATA INTO TRAINING AND TEST SETS 
 

It can be a major challenge to effectively split a data set into a training data set and a testing data 

set. A good split leads to a productive training of the model while a poor split is more likely to 

lead to an inefficient model. 
 

3.1. Splitting data into Training and Testing sets overview 
 

Typically, a data scientist would use a framework for automatically splitting the available data 

into mutually exclusive datasets for training and testing.  According to [1] one popular 

framework used to do this is SciKit-Learn, which allows developers to split the size of dataset by 
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random selection. When assessing different models, or retraining models, it is important to 

override the random seed used to split the data. The outcomes would not be consistent, 

equivalent, or reproducible if not performed precisely. Typically, 70% - 80% of the data is used 

for training the model, with the remainder reserved for evaluation. There are numerous advanced 

methods available to ensure that the division of training and testing has been conducted in a 

representative way. When considering the coverage of model testing, it should be measured in 

terms of data, rather than lines of code. 
 

The design of regression testing activities demands attention. In traditional software development 

the risk of functional regression is typically low unless significant changes are made.  In the case 

of AI almost any change to the algorithm, model parameters, or training data usually needs the 

model to be rebuilt from scratch, and the risk of regression is very high for previously tested 

functionality. This is because 100% of the model could potentially change instead of a small 

percentage of the model based on the necessary modifications. In synopsis: 
 

• The way that the initial data has been gathered is important to understand whether it is 

representative. 
 

• It is important that the training data is not used to test the model otherwise testing will only 

appear to pass. 
 

• The data split for training and testing may need to be made reproducible. 

 

Improper splitting of datasets into training, validation, and testing sets will contribute to 

overfitting and underperformance in production. For instance, if a trained model expects a certain 

input feature, but at inference time if that feature is not passed to the, the model will fail to render 

a prediction. Other times however, the model will quietly crash. One of the most critical 

challenges for a data scientist to consider is data leakage. If one does not how to prevent data 

leakage, the leakage will come up often, and will destroy the models in the most subtle and 

dangerous ways. Particularly, leakage causes a model to look accurate and precise until one starts 

making decisions with the model, and then the model becomes very imprecise.  
 

In this paper, we attempt to understand and propose a means to ensure that the data that is split 

between the training data set and testing data set robustly represents the domain of the full 

dataset.  In our examples, we are assuming that there is not data leakage where the same data 

points appear in both the training and the testing data sets.  Random splitting of the data into 

training and test data sets while not leaving out key parts of the total data domain is a common 

challenge in AI applications.  In [2], we see an example in source code summarization.  In 

attempting to generate natural language descriptions in source code, LeClair and McMillan 

explore the efficacy of splitting the data by method or by project.  This is a very specific and 

narrow use case.  We are seeking a methodology that is more generic and has the potential to be 

of use in a variety of use cases. 
 

3.2. Example of a Poor Split 
 

To help explain the challenge, let us consider a dataset representing flowers.  To help visualize 

the problem, Figures 1 and 2 display a constructed collection of data.  In both figures, the letter of 

the datapoint represents a particular type of flower.  The y-axis represents plant height and the x-

axis represents petal width.  There may be several other attributes included in the dataset, such as 

leaf shape, flower color, and thorn presence.  It is popular to use an 80/20 split when dividing 

data into training and test data sets, where we use 80 percent of the data to train the model and 

reserve 20 percent of the data to test the model.  Both Figure 1 and Figure 2 show a splitting of 
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the data by brute force that results in a poor split.  In figure 1, very little data for the P flower 

variety is included in the test data set while in Figure 2, very little data for G variety of flower is 

seen.  This poses a serious problem for training the model. There is one flower variety in either 

case that is highly under-represented in the test data.  In training, we can expect the model to 

learn effectively on 4 of the 5 flower varieties, but it won’t learn much about the fifth variety.  

Almost all the test results, however, will be for a flower variety that the model did not learn.  

Thus, we would expect a prominent loss during the testing of the model and ultimately an 

ineffective model. 

 

 
 

Figure 1 Data split example 

 

 
 

Figure 2 Data split example 

 

Of course, in the real world, none would split data in the above presented brute force manner.  

We would really like to pick data points for the training and for the test data sets at random.  A 

straight random data split could have a complete data domain coverage such that there are no 

holes that will fail to learn about an important subset of the data from the model.  However, it is 

not difficult to imagine that there is a chance of under representing 1 or 2 of the flower varieties 

by a strictly random split of the data.  It would be ideal if we could apply a bit of intelligence to 

the splitting of the data while retaining an approach that still arbitrarily selects individual data 

points randomly. 
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3.3. k-Means Clustering 
 

Clustering is a technique of Machine Learning technique that involves data point grouping. 

Theoretically, data points that are in the same group should have similar properties or 

characteristics, while data points from different clusters should have dissimilar properties or 

characteristics. In clustering, we do not have a target to predict; rather the model will understand 

the data and try to club similar observations and form different clusters. Hence, it is an 

unsupervised learning model. There are different clustering algorithms in AI that are available, 

and each algorithm has its own purpose. 
 

We will be concentrating on K-Means clustering in our paper. K-means is one of the simplest 

algorithms for unsupervised learning that follows a simple and uncomplicated way of classifying 

a data set through a variety of clusters. The main objective is to define k centers, one for each 

cluster. As per [14], the algorithm is comprised of the following steps: 
 

1) Let X = { x1, x2, x3,…,xn} represent the set of data points, and ,V={v1,v2,v3…,vn} the 

set of centers. 

2) Randomly select ‘c’ cluster centers. 

3) Calculate the distance between each data point and cluster centers. 

4) Assign the data point to the cluster center whose distance from the cluster center is 

minimum of all the cluster centers.  

5) Recalculate the new cluster center using: 
 

 
 

Where, ‘ci’ represents the number of data points in ith cluster. 

6) Recalculate the distance between each data point and newly obtained cluster centers. 

7) If no data point was reassigned then stop, else, repeat from step 3. 
 

The algorithm is significantly sensitive to the initially selected random cluster centers. The k-

means algorithm can be run multiple times to reduce this effect. The results depend on the value 

of k and there is no optimal way to describe a best “k”. 
 

3.4. Decision Tree 
 

Decision tree is a machine learning prediction technique. Decision tree builds by repeatedly 

splitting data into smaller and smaller samples, Decision trees are trained by passing data down 

from a root node to leaves. The data is then repeatedly split according to predictor variables so 

that the child nodes are more “pure” or identical in terms of the outcome variables. One of the 

predictor variables will be chosen to make the root split. This creates a leaf node, which will 

further split into child nodes. All the leaves either contain only one class of outcome or they are 

too small to split further. At every node, a set of possible split points is identified for every 

predictor variable. The algorithm calculates the improvement in purity of the data that would be 

created by each split point of each variable. The split with the greatest improvement is chosen to 

partition the data and create child nodes. Calculating the improvement for a split [15], when the 

outcome is numeric, the relevant improvement is the difference in the sum of squared errors 

between the node and its child nodes after the split. For any node, the squared error is: 
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Where n is the number of cases at that node, c is the average outcome of all cases at that node, 

and yi is the outcome value of the ith case. If all the yi are close to c, then the error is low. A good 

clean split will create two nodes, both which have all case outcomes close to the average outcome 

of all cases at that node. When the outcome is categorical, the split may be based on either the 

improvement of Gini impurity or cross-entropy: 
 

 
 

where k is the number of classes and pi is the proportion of cases belonging to class i. These two 

measures give similar results and are minimal when the probability of class membership is close 

to zero or one. Let us consider the class’s red and blue with sample data points from the example 

above and calculate the Gini impurity as shown below: 
 

 
 

The initial node contains 10 red and 5 blue cases and has a Gini impurity of 0.444. The child 

nodes have Gini impurities of 0.219 and 0.490. Their weighted sum is (0.219 * 8 + 0.490 * 7) / 

15 = 0.345. Because this is lower than 0.444, the split is an improvement. Similarly, at every 

node, the purity will be determined and the model will decide whether further splits are needed. 
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3.5. Application of k-Means Clustering and Decision Tree for Accurate Data Split 
 

 
 

The above architecture demonstrates the schematic overview of the main phases of our data split 

process. The architecture consists of five phases: Tidying phase, Clustering (k-Means clustering) 

phase, Decision tree phase, Data split phase and Training phase. 
 

Data to be split for training and testing phases are stored in a data management system, which is 

confined to an unsupervised specific type of data. In unsupervised data, there are no output 

variables to predict. Input data are not labeled and do not have a known result. 
 

The first phase of our architecture is tidying the dataset, which is a crucial part of our proposal. 

Tidy data is a standard way of mapping the meaning of a dataset to its structure. A dataset is 

messy or tidy depending on how rows, columns, and tables line up with observations or data 

points, variables, and types. Around 80% of their time is spent by Data Scientists in cleaning, 

structuring and organizing the data. Tidy data is a way of structuring datasets to simplify analysis. 

In tidy data: Each variable must have its own column, each observation must have its own row, 

and each type of observational unit forms a table. [16] Messy data is any other arrangement of the 

data and it can be of these types: 
 

• Column headers are values, not variable names. 

• Multiple variables are stored in one column. 

• Variables are stored in both rows and columns. 

• Multiple types of observational units are stored in the same table. 

• A single observational unit is stored in multiple tables. 
 

There are more types of messy data not mentioned here, but they can be tidied in a similar way. 
 

In our approach, the AI tester is responsible for tidying the dataset, to perform this activity.  The 

AI tester must have a sound knowledge of Artificial Intelligence and Data Mining.  It is also 

important to train the tester on how to understand the data, how to clean the data, and how to 

restructure messy data into a comprehensible format. There are several dataset tidying tools 
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available, XLMiner being the robust data mining add-in for Excel that could be used to tidy the 

dataset. Once the dataset is tidy in nature, the AI tester can pass the dataset to the Clustering 

algorithm, which is the next phase of our architecture. 
 

The K-Means clustering phase involves the grouping of observations that have similar properties 

or features, while data points from different clusters should have different properties or features. 

In clustering, we do not have a target variable to predict, rather the algorithm will understand the 

data and will group similar observations or characteristics to form different clusters. K-means is 

one of the simplest unsupervised learning algorithms that follows simple and uncomplicated 

methods to classify a data set into a variety of clusters. The main objective is to define k centers, 

one for each cluster. K value can be passed as an input parameter to the clustering algorithm to 

determine how many clusters we need, but if we do not pass k value, after going through many 

iterations, the algorithm itself will attempt to group the observations into different clusters. In our 

architecture, we have considered two clusters as an example of grouping all the similar 

observations in to two distinct clusters. After the clusters are created, the output data from each 

cluster will be passed as an input to the affiliated decision tree for next phase.  

 

During the decision tree phase, each decision tree builds by repeatedly splitting the input data 

passed from the respective cluster into smaller and smaller samples.  Decision trees are typically 

trained by passing data down to leaf nodes from a root node. The data splits repeatedly according 

to predictor variables so that child nodes are more “pure” or identical in terms of the outcome 

variables. All the leaves either contain only one class of outcome or are too small to split further. 

As mentioned in the previous section regarding the Gini impurity, the decision tree will split the 

nodes based on the Gini value and determine whether or not the split is necessary.  Eventually, 

the decision tree produces different output attributes or variables which contain only one class of 

values per attribute with good purity.  
 

In the next data split and training phase, the AI tester collects the data attributes from each leaf of 

the decision tree and splits the data into training and testing sets. There is no standard percentage 

to decide how much to select for training and testing sets. It all depends on how much data the AI 

tester has available. If the AI tester has a large data set, the 75:25 training and testing ratio is okay 

to consider. Even if you get a very good precision after training the model with the training 

dataset, there is no guarantee that your trained model is a generalized one. One explanation for a 

non-generalized model is having a small training set, and the models appear to over-fit for small 

training sets.  Testing your model with distinct input combinations will therefore allow you to 

conclude whether your model is generalized. If you have a tiny data set, however, it is easier to 

go with 90:10. Another point to consider is Cross-validation, sometimes called rotation 

estimation, or out-of-sample testing. [17] It helps to assess how the findings of a statistical 

analysis will generalize to an independent data set. In the next section we will go through an 

example of exactly how our proposed architecture generates the accurate output. 
 

3.6. Example Results 
 

Let us now return to the example of flower data and apply the architecture to use k-means 

clustering and then the decision tree.  To begin with as shown in Figure 4 we want the dataset to 

be tidy.  Each column is a variable whereas each row is an observation of one flower.  The AI 

Tester must determine how much data to use for training and how much to reserve for testing.  A 

common selection is 80% for training and 20% for testing, but this is really at the discretion of 

the tester.  The AI tester must also have data domain knowledge and be sufficiently familiar 

enough with the k-means clustering principle to select a reasonable value for k.  In this example, 

we have chosen k = 5.  Figure 3 then shows a likely result of clustering the flower data into 5 

clusters. 
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Figure 3 Data Clustered 

 

Next, we move on to the decision tree.  Here we begin to consider the flower data's additional key 

attributes.  For this example, we will look at the leaf shape, flower color, and the presence of 

thorns as three additional key attributes to use in the decision tree.  We must apply a decision tree 

to each of the five clusters.  For the sake of brevity, let us concentrate on only one of the clusters.  

The focus will be Cluster 4. 
 

 
 

Figure 4 Cluster 4 Attributes 
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In cluster 4, there are two varieties of flower represented. The R variety is the bulk of the data 

points, but there are also some data points of the G variety.  Application of a decision tree to this 

data helps to identify key subgroups within the cluster.  The end result of implementing a 

decision tree is shown in Figure 5. 
 

 
 

Figure 5 Decision Tree Applied to Cluster 4 

 

Six key data subgroups within cluster 4 were revealed by the decision tree.  At this point, the 

tester applies the chosen percentage split to each key data subgroup from each cluster. The effect 

is a test data set that covers the entire data set domain robustly and, essentially, an efficient model 

where the loss seen when testing the model is very similar to the loss seen when training the 

model. 
 

3.7. Related Work 
 

Moderate research exists in terms of software testing in AI.  In [14] the key challenges of 

validating the quality of AI software have been summarized, which includes how to define 

quality assurance standard systems and develop adequate quality test coverage [9], how to 

connect quality assurance requirements and testing coverage criteria for AI systems based on big 

data, and how to use systematic methods to develop quality test models. [11] presents several 

new challenges that AI systems are facing in predicting system behavior such as determining the 

exact pre-conditions and inputs to obtain an expected result, defining expected results and 

verifying the accuracy of test outputs, and measuring the test coverage. Also [11] has interpreted 

the numerous challenges in test generation on the code, unit, module, or component levels. 

Generating tests from code makes it very challenging for AI to understand the state of the 

software and its data and necessary dependencies.  Parameters can be complex and goals and 

output optimizations may be unclear. The challenges that the model has in adapting itself to 

function more accurately in identification of gender images [12] have been clearly described. [1] 

Focused on the challenges faced in terms of testing facial recognition in AI systems. Data privacy 

is another big challenge in AI methodologies because of predictive analysis.  Organizations are 

concerned with the transparency of their personal data [13]. Due to the disparity in training data 

and test data collection, overfitting is another problem facing AI models today[4]. [11] defines 

issues with the integration testing of the AI system in terms of transformation, cleaning, 

extraction, and normalization of data.  
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4. CONCLUSION 

 

Software testing is just as critical in AI/ML applications as it is in any other type of software 

development.  Due to the nature of how AI systems work and are developed, there are many 

difficulties that the software testers face with AI applications This paper attempted to lay out one 

potential solution to the problem of splitting data into training and testing data sets to ensure that 

the training data set is selected in such a way that it effectively covers the entire dataset domain. 

The aim is to train a successful model.  The architecture in this paper sets out a methodology that 

increases the odds of a quality data split.  It begins with a tidy data set that is the input to the k-

means clustering phase to identify natural groupings of data points with similar characteristics.  

Next, each cluster of data becomes an input to the decision tree phase to further break each 

cluster into smaller samples of related data points.  Finally, on each leaf node of each decision 

tree, we perform the actual splitting of the data.  We have provided an example of how this could 

work. We look forward to applying the architecture to a number of applications and working to 

perfect it for further study. 
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