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ABSTRACT 

 

In this work, a mathematical model of generalized porothermoelasticity with one relaxation time for 

poroelastic half-space saturated with fluid will be constructed in the context of Youssef model (2007). We 

will obtain the general solution in the Laplace transform domain and apply it in a certain asphalt material 

which is thermally shocked on its bounding plane. The inversion of the Laplace transform will be obtained 

numerically and the numerical values of the temperature, stresses, strains and displacements will be 

illustrated graphically for the solid and the liquid.  
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NOMENCLATURE 

 

i iu , U   The displacements of the skeleton and fluid phases 

, , R, Qλ µ   The poroelastic coefficients 

11 12 21 22R , R , R , R  The mixed and thermal coefficients 

s s

0T Tθ = −  The temperature increment of the solid where 
sT is the solid  

f f

0T Tθ = −  The temperature increment of the fluid where 
fT is the fluid  

0T  The reference temperature  

β    The porosity of the material 

s* f *,ρ ρ    The density of the solid and the liquid phases respectively 

( )s s*1ρ = −β ρ  The density of the solid phase per unit volume of bulk 

f f *ρ = βρ   The density of the solid phase per unit volume of bulk 

s

11 12ρ = ρ − ρ  The mass coefficient of solid phase 

f

22 12ρ = ρ − ρ  The mass coefficient of fluid phase 

12ρ    The dynamics coupling coefficient 

s* f *k , k   The thermal conductivity of the solid and the fluid phases  

( )s s*k 1 k= −β   The thermal conductivity of the solid phase 

f f *k k= β   The thermal conductivity of the fluid phase 

k   The interface thermal conductivity 
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s f

o o,τ τ   The relaxation time of the solid and the fluid phases 

ijσ    The stress components apply to the solid surface 

σ    The normal stress apply to the fluid surface 

ije    The strain component of the solid phase 

ε    The strain component of the fluid phase 
s f,α α    The coefficients of the thermal expansion of the phases 

sf fs,α α   The thermoelastic couplings between the phases 

s f

E EC ,C   The specific heat of the solid and the fluid phases 

sf

EC   The specific heat couplings between the phases 

s s
s E

s

C

k

ρ
η =   The thermal viscosity of the solid 

f f
f E

f

C

k

ρ
η =  The thermal viscosity of the fluid 

sf

12 EC

k

ρ
η =   The thermal viscosity couplings between the phases    

P    3 2= λ + µ  

11R    
s fsp Q= α + α   

22R    
f sfR 3 Q= α + α  

12R    
f sfQ P= α + α  

11F
   

s s

EC= ρ  

22F    
f f

EC= ρ  

12F    ( )s fs

12 22 o3 R R T= − α + α  

21F    ( )sf f

11 21 o3 R R T= − α + α  

 

1. INTRODUCTION 

 

Due to many applications in the fields of geophysics, plasma physics and related topics, an 

increasing attention is being devoted to the interaction between fluid such as water and thermo 

elastic solid, which is the domain of the theory of porothermoelasticity. The field of 

porothermoelasticity has a wide range of applications especially in studying the effect of using 

the waste materials on disintegration of asphalt concrete mixture. 

 

Porous materials make their appearance in a wide variety of settings, natural and artificial and in 

diverse technological applications. As a consequence, a variety of problems arise while dealing 

with static and strength, fluid flow, heat conduction and the dynamics of such materials. In 

connection with the later, we note that problems of this kind are encountered in the prediction of 

behavior of sound-absorbing materials and in the area of exploration geophysics, the steadily 

growing literature bearing witness to the importance of the subject [1]. The problem of a fluid-

saturated porous material has been studied for many years. A short list of papers pertinent to the 

present study includes Biot [2-3], Gassmann [4], Biot and Willis [5], Biot [6], Deresiewicz and 

Skalak [7], Mandl [8], Nur and Byerlee [9], Brown and Korringa  [10], Rice and Cleary [11], 

Burridge and Keller [12], Zimmerman et al. [13-14], Berryman and Milton [15], Thompson and 

Willis [16], Pride et al. [17], Berryman and Wang [18], Tuncay and Corapcioglu [19], Alexander 
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and Cheng [20], Charlez, P. A., and Heugas, O. [21], Abousleiman et al. [22], Ghassemi, A.[23] 

and Diek, A S. Tod [24].  

 

The thermo-mechanical coupling in the poroelastic medium turns out to be of much greater 

complexity than that in the classical case of impermeable elastic solid. In addition to thermal and 

mechanical interaction within each phase, thermal and mechanical coupling occurs between the 

phases, thus, a mechanical or thermal change in one phase results in mechanical and thermal 

changes throughout the aggregate of asphaltic concrete mixtures. Following Biot, it takes one 

physical model to consist a homogeneous, isotropic, elastic matrix whose interstices are filled 

with a compressible ideal liquid both solid and liquid form continuous (and interacting) regions. 

While viscous stresses in the liquid are neglected, the liquid is assumed capable of exerting a 

velocity-dependent friction force on the skeleton. The mathematical model consists of two 

superposed continuous phases each separately filling the entire space occupied by the aggregate. 

Thus, there are two distinct elements at every point of space, each one characterized by its own 

displacement, stress, and temperature. During a thermo-mechanical process they may interact 

with a consequent exchange of momentum and energy. 

 

Our development Proceeds by obtaining, the stress-strain-temperature relationships using the 

theory of the generalized thermo elasticity with one relaxation time “Lord-Shulman” [25]. 

Moreover, to the usual isobaric coefficients of thermal expansion of the single-phase materials, 

two coefficients appear which represent measures of each phase caused by temperature changes 

in the other phase.  

 

As a result of the presence of these "coupling" coefficients, it follows that coefficient of thermal 

expansion of the dry material which differs than that of the saturated ones and the expansion of 

the liquid in the bulk is not the same as of the liquid phase. Putting into consideration the 

applications of geophysical interest, it takes the coefficient of proportionality in the dissipation 

term to be independent of frequency, that is, we confine ourselves to low-frequency motions. The 

last constituent of the theory is the equations of energy flux. Because the two phases in general, 

will be at different temperatures in each point of the material, there is a rise of a heat-source term 

in the energy equations representing the heat flux between the phases. It has been taken this 

"interphase heat transfer" to be proportional to the temperature difference between the phases. 

Finally, by using the uniqueness theorem the proof has been done.  

 

Recently, Youssef has constructed a new version of theory of porothermoelasticity, using the 

modified Fourier law of heat conduction. The most important advantage for this theory, is 

predicting the finite speed of the wave propagation of the stress and the displacement as well as 

the heat [26]. 

 

In this paper, a mathematical model of generalized porothermoelasticity with one relaxation time 

for poroelastic half-space saturated with fluid will be constructed in the context of Youssef 

model. We will obtain the general solution in the Laplace transform domain and apply it in a 

certain asphalt material which is thermally shocked on its bounding plane. The inversion of the 

Laplace transform will be obtained numerically and the numerical values of the temperature, 

displacement and stress will be illustrated graphically. 

 

BASIC FORMULATIONS 

 

Starting by Youssef model of generalized porothermoelasticity [26], the linear governing 

equations of isotropic, generalized porothermoelasticity in absence of body forces and heat 

sources, are 
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(i)- Equations of motion 

 

 
( ) s f

i, jj j,ij i,ii 11 ,i 12 ,i 11 i 12 iu u QU R R u Uµ + λ + µ + − θ − θ = ρ + ρ &&&& ,   (1) 

 
s f

i,ii j,ij 21 ,i 22 ,i 12 i 22 iRU Qu R R u U+ − θ − θ = ρ + ρ &&&& .    (2) 

 

(ii)- Heat equations 

 ( )
2

s s s s f

,ii o 11 12 o 11 ii o 212
k F F T R e T R

t t

 ∂ ∂
θ = + τ θ + θ + + ε 

∂ ∂ 
    (3) 

 ( )
2

f f f s f

,ii o 21 22 o 12 ii o 222
k F F T R e T R

t t

 ∂ ∂
θ = + τ θ + θ + + ε 

∂ ∂ 
    (4) 

 

(iii)- Constitutive equations 

 
( )s f

ij ij kk ij 11 12 ij2 e e Q R Rσ = µ + λ δ + ε − θ − θ δ ,      (5) 

 
f s

kk 22 21R Qe R Rσ = ε + − θ − θ .       (6) 

 
( )

i,iiii,jj,iij uee,uu
2

1
e ==+=        (7) 

 
i,iUε = .         (8) 

FORMULATION THE PROBLEM 
 

We will consider one dimensional half-space 0 x≤ < ∞  is filled with porous, isotropic and 

elastic material which is considered to be at rest initially. The displacement will be considered to 

be in one dimensional as follows: 

 

 ( ) ( ) ( )1 2 3u u x, t , u x, t u x, t 0= = = ,      (9) 

 ( ) ( ) ( )1 2 3U U x, t , U x, t U x, t 0= = = .      (10) 

 

Then the governing equations (1)-(8) will take the forms: 

 

(a) Equations of motion 

 ( ) ( ) ( ) ( ) ( )

s f2 2

11 12 11 12

2 2

R Ru Q U
u U

x 2 x 2 x 2 x 2 2

∂ θ ∂ θ ρ ρ∂ ∂
+ − − = +

∂ λ + µ ∂ λ + µ ∂ λ + µ ∂ λ + µ λ + µ
&&&& , (11) 

 

s f2 2

21 22 21 22

2 2

R RU Q u
u U

x R x R x R x R R

∂ θ ∂ θ ρ ρ∂ ∂
+ − − = +

∂ ∂ ∂ ∂
&&&& .     (12) 

 

(b) Equation of heat 

 

2 s 2
s s f o 11 o 2111 12
o2 2 s s s s

T R T RF F u U

x t t k k k x k x

  ∂ θ ∂ ∂ ∂ ∂
= + τ θ + θ + +  

∂ ∂ ∂ ∂ ∂  
,   (13) 
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2 f 2
f s f o 12 o 2221 22
o2 2 f f f f

T R T RF F u U

x t t k k k x k x

  ∂ θ ∂ ∂ ∂ ∂
= + τ θ + θ + +  

∂ ∂ ∂ ∂ ∂  
.   (14) 

 

(c) The constitutive relations 

 
( ) ( ) ( ) ( )

s fxx 11 12
R Ru Q U

2 x 2 x 2 2

σ ∂ ∂
= + − θ − θ

λ + µ ∂ λ + µ ∂ λ + µ λ + µ
,    (15) 

 

f s22 21R RU Q u

R x R x R R

σ ∂ ∂
= + − θ − θ

∂ ∂
. (16) 

 

u
e

x

∂
=

∂
 (17) 

 
U

x

∂
ε =

∂
. (18) 

Using the non-dimensional variables as follows: 

 

( ) ( ) ( ) ( ) ( ) ( ) ij2 s f s f

o 0 o 0 0 iju , U , x c u, U, x , t , c t, , , T , , ,
2 R

σ σ
′ ′ ′ ′ ′ ′ ′ ′ ′= η τ = η τ θ θ = θ θ σ = σ =

λ + µ
 

 

where 

sf
2 12 E
o

12

C2
c ,

k

ρλ + µ
= η =

ρ
. 

 

Then, we get 

 

 
( ) ( ) ( )

2 2 s f

0 11 0 12 11

2 2

12

T R T Ru Q U
u U

x 2 x 2 x 2 x

ρ∂ ∂ ∂ θ ∂ θ
+ − − = +

∂ λ + µ ∂ λ + µ ∂ λ + µ ∂ ρ
&&&& ,   (19) 

 

( ) ( )2 2 s f

0 21 0 22 22

2 2

12

2 2T R T RU Q u
u U

x R x R x R x R R

λ + µ λ + µρ∂ ∂ ∂ θ ∂ θ
+ − − = +

∂ ∂ ∂ ∂ ρ
&&&& .  (20) 

 

2 s 2 s
s s f12 11 21
o2 2 s s s

F R Ru U

x t t k k x k x

  ∂ θ ∂ ∂ η ∂ ∂
= + τ θ + θ + +  

∂ ∂ ∂ η η η ∂ η ∂  
,   (21) 

 

2 f 2 f
f s f21 12 22
o2 2 f f f

F R Ru U

x t t k k x k x

  ∂ θ ∂ ∂ η ∂ ∂
= + τ θ + θ + +  

∂ ∂ ∂ η η η ∂ η ∂  
.   (22) 

 
( ) ( ) ( )

s f0 11 0 12
xx

T R T Ru Q U

x 2 x 2 2

∂ ∂
σ = + − θ − θ

∂ λ + µ ∂ λ + µ λ + µ
,     (23) 

 

f s0 22 0 21T R T RU Q u

x R x R R

∂ ∂
σ = + − θ − θ

∂ ∂
.      (24) 

 

In the above equation, we dropped the prime for convenient. 
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FORMULATION THE PROBLEM IN LAPLACE TRANSFORM DOMAIN 

 

Applying the Laplace transform for the both sides of the equations (19)-(24) which is defined as 

follows: 

 ( ) ( ) s t

0

f s f t e dt

∞
−= ∫ , 

then, we get 

 

2 s f

11 12 13 142

d u d d
L u L U L L

d x dx d x

θ θ
= + + + ,      (25) 

 

2 s f

21 22 23 242

d U d d
L u L U L L

d x dx d x

θ θ
= + + + ,      (26) 

 
2 s

s f

31 32 33 342

d d u d U
L L L L

d x d x d x

θ
= θ + θ + + ,      (27) 

 
2 f

s f

41 42 43 442

d d u d U
L L L L

d x d x d x

θ
= θ + θ + + ,      (28) 

 

s f

xx 11 12

d u d U
A A A

d x d x
σ = + − θ − θ ,       (29) 

 

s f

21 22

d U du
B A A

d x dx
σ = + − θ − θ ,       (30) 

 

d u
e

d x
=           (31) 

 
d U

d x
ε = .         (32) 

where 

 

11 21 12 21 11 21 12 22
11 12 13 14

C AC C AC A AA A AA
L , L , L , L

1 AB 1 AB 1 AB 1 AB

− − − −       
= = = =       

− − − −       
, 

 

21 11 22 12 21 11 22 12
21 22 23 24

C BC C BC A BA A BA
L , L , L , L

1 AB 1 AB 1 AB 1 AB

− − − −       
= = = =       

− − − −       
, 

 

( ) ( ) ( ) ( )s 2 s s 2 s 2 s 2

o o 12 o 11 o 21

31 32 33 34s s s

s s s s F s s R s s R
L , L ,L , L

k k k

+ τ η + τ + τ + τ
= = = =

η η η η
, 

 

( ) ( ) ( ) ( )f 2 f 2 f f 2 f 2

o 21 o o 12 o 22

41 42 43 44f f f

s s F s s s s R s s R
L , L , L , L

k k k

+ τ + τ η + τ + τ
= = = =

η η η η
. 

 
( ) ( ) ( )

2 20 11 0 12 11
11 12 11 12

12

T R T RQ
A ,A , A , C s , C s

2 2 2

ρ
= = = = =

λ + µ λ + µ λ + µ ρ  

 

( ) ( )2 20 21 0 22 22
21 22 21 22

12

2 2T R T RQ
B , A , A , C s , C s ,

R R R R R

λ + µ λ + µρ
= = = = =

ρ
 

 

By using equations (25)-(28), we get 
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 8 6 4 2

x x x xD aD bD cD d u 0 − + − + =  ,       (33) 

 8 6 4 2

x x x xD aD bD cD d U 0 − + − + =  ,       (34) 

 
8 6 4 2 s

x x x xD aD bD cD d 0 − + − + θ =  ,       (35) 

 
8 6 4 2 f

x x x xD aD bD cD d 0 − + − + θ =  ,       (36) 

where 

 11 13 33 14 43 22 23 34 24 44 31 42a = L  + L L  + L L  + L  + L L  + L L  + L  + L  

 

( ) ( )

( )

( )( )
( )

11 22 23 34 24 44 31 42 12 21 23 33 24 43

13 21 34 22 33 24 34 43 33 44 32 43 33 42

14 21 44 22 43 23 33 44 34 43 31 43 33 41

22 31 42 23 34 42

b = L L +L L +L L +L +L  - L L + L L + L L -

 L L L  - L L + L (L L  - L L ) + L L  - L L - 

L L L  - L L  + L L L  - L L - L L  + L L  

+ L L  + L + L (L L ( )32 44 24 31 44 34 41 31 42 32 41
 - L L )+ L L L  - L L + L L  - L L

 

 

11 22 31 42 23 34 42 32 44 24 31 44 34 41 31 42 32 41

12 21 31 42 23 33 42 32 43 24 31 43 33 41

13 21 32 44 34 42 22 33 42 32 43

c = L (L (L  + L ) + L (L L  - L L ) +L (L L  - L L ) +L L  - L L ) 

- L (L (L  + L ) + L (L L  - L L ) + L (L L  - L L )) 

+ L (L (L L  - L L ) +L (L L  - L L )
14 21 31 44 34 41

22 33 41 31 43 22 31 42 32 41

) - L (L (L L  - L L ) 

+ L (L L  - L L )) + L (l L  - L L )

  

 11 22 31 42 32 41 12 21 32 41 31 42d =L L (L L  - L L ) + L L (L L  - L L ) , 

 

and 

n
n

x n

d
D

d x
= . 

 

According to equations (33)-(36) and to bounded state of functions at infinity, we can consider 

the following forms 

 

 ( ) i

4
x

i

i 1

u x,s e−λ

=

= α∑ ,         (37) 

 ( ) i

4
x

i

i 1

U x,s e
−λ

=

= β∑ ,         (38) 

 ( ) i

4
xs

i

i 1

x,s e−λ

=

θ = γ∑ ,         (39) 

 ( ) i

4
xf

i

i 1

x,s e−λ

=

θ = ω∑ ,         (40) 

 

where i , i 1, 2,3, 4±λ = are the roots of the characteristic equation of the system (33)-(36) which 

takes the form 

 

 
8 6 4 2a b c d 0λ − λ + λ − λ + = ,        (41) 

 

To get the relations between the parameters 
i i i, ,β γ ω  and

iα , we will use equations (26)-(28) in 

the following forms 
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2 s f

x 22 23 x 24 x 21D L U L D L D L u − − θ − θ =  ,      (42) 

 
2 s f

34 x 31 32 33 xL U D L L L D u − + − θ − θ =  ,      (43) 

 
s 2 f

44 x 41 x 42 43 xL D U L D L L D u − − θ + − θ =  ,      (44) 

 

Inserting the formulas in (37)-(40) into equations (42)-(44), we get 

 

 ( )2

i 22 i 23 i i 24 i i 21 iL L L L , i 1, 2,3, 4λ − β + λ γ + λ ω = α = ,    (45) 

 ( )2

34 i i 31 i 32 i 33 i iL L L L , i 1, 2,3, 4− β + λ − γ − ω = − λ α = ,    (46) 

 ( )2

44 i i 41 i i 42 i 43 i iL L L L , i 1, 2,3, 4λ β − γ + λ − ω = − λ α = ,    (47) 

 

By solving the system in (45)-(47), we obtain 

 

 i
i i

i

H
, i 1, 2,3, 4

W
β = α = , 

 i
i i

i

G
, i 1, 2,3, 4

W
γ = α = , 

 i
i i

i

F
, i 1, 2,3, 4

W
γ = α = , 

Where 

 

 

4 2

i i 21 23 33 24 43 i 21 31 42 23 33 42 32 43

24 31 43 33 41 21 31 42 32 41

H ( (L  + L L  + L L ) - (L (L  + L ) + L (L L  - L L ) + 

L (L L  - L L )) + L (L L  - L L ) ) , i 1,2,3,4

= − λ λ

=
 

 

5 3 2

i 33 i i 22 33 24 33 44 32 43 33 42 34 i 21 24 43

21 32 44 22 33 42 32 43 21 34 42

G = L - (L L + L L L - L L + L L ) - L (L + L L ) 

 + (L L L  + L (L L - L L )) + L L L , i 1,2,3,4

λ λ λ

λ =
 

 

5 3 2

i 43 i i 21 44 22 43 23 33 44 31 43 33 41 23 43 34 i

i 21 31 44 22 33 41 31 43 21 34 41

F = L + (L L - L L + L L L - L L +L L ) + L L L  

 - (L L L  + L (L L - L L )) - L L L , i 1,2,3, 4

λ λ λ

λ =
 

 

6 4 3 2

i i i 22 24 44 31 42 23 34 i i 22 31 42 23 32 44

24 31 44 31 42 32 41 34 i 23 42 24 41

22 31 42 32 41

W = -  + (L  + L L  + L  + L ) - L L - (L (L  + L ) - L L L  

+L L L  + L L  - L L ) + L (L L - L L ) 

+ L (L L  - L L ) , i 1,2,3,4

λ λ λ λ

λ

=
 

Hence, we have 

 

 ( ) i

4
xi

i

i 1 i

H
U x,s e

W

−λ

=

= α∑ ,       (48) 

 ( ) i

4
xs i

i

i 1 i

G
x,s e

W

−λ

=

θ = α∑ ,       (49) 

 ( ) i

4
xf i

i

i 1 i

F
x,s e

W

−λ

=

θ = α∑ ,       (50) 

To get the values of the parameters iα , we have to apply the boundary conditions as follows; 
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(1) The thermal conditions 
 

We will consider the bounding plane surface of the medium at x = 0 has been thermally loaded by 

thermal shock as follows: 
 

( ) ( ) ( )s

00, t 1 H tθ = −β θ ,       (51) 

and 

( ) ( )f

00, t H tθ = βθ , (52) 

 

where H(t) is the Heaviside unite step function and 0θ is constant which gives after using the 

Laplace transform the following conditions 

 

( )
( ) 0s
1

0,s
s

− β θ
θ = ,         (53) 

and 

( )f 00,s
s

βθ
θ = ,        (54) 

 

(2) The mechanical conditions 

 

We will consider the bounding plane surface of the medium at x = 0 has been connected to a rigid 

surface which prevents any displacement to accrue on that surface, i.e.  

 

( )u 0, t 0= ,         (55) 

and  

 ( )U 0, t 0= ,         (56) 

 

which gives after using the Laplace transform the following conditions 

 

 ( )u 0,s 0= ,         (57) 

and 

 ( )U 0,s 0= .         (58) 

After using the boundary conditions in (53), (54), (57) and (58), we get the following system 

 

 
4

i

i 1

0
=

α =∑ ,         (59) 

 

4
i

i

i 1 i

H
0

W=

α =∑ ,         (60) 

 
( )4

0i
i

i 1 i

1G

W s=

− β θ
α =∑ ,       (61) 

 
4

0i
i

i 1 i

F

W s=

βθ
α =∑ ,        (62) 

 

Then we get 
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( )

( )

( )

2 3 4 4 3 3 4 4 3 3 4 4 3

0 1
1 3 2 4 4 2 2 4 4 2 2 4 4 2

4 2 3 3 2 2 3 3 2 2 3 3 2

W (F H  - F H +G H G H )-F H F H  -
W

= W (F H  - F H +G H G H )-F H F H
s

W (F H  - F H +G H G H )-F H F H

 β − +
 θ

α β − + + 
∆  

β − + 

, 

 

( )

( )

( )

1 3 4 4 3 3 4 4 3 3 4 4 3

0 2
2 3 1 4 4 1 1 4 4 1 1 4 4 1

4 1 3 3 1 1 3 3 1 1 3 3 1

W (F H  - F H +G H G H )-F H F H  -
W

= W (FH  - F H +G H G H )-FH F H
s

W (FH  - F H +G H G H )-FH F H

 β − +
 θ

α − β − + + 
∆  

β − + 

, 

 

( )

( )

( )

1 2 4 4 2 2 4 4 2 2 4 4 2

0 3
3 2 1 4 4 1 1 4 4 1 1 4 4 1

4 1 2 2 1 1 2 2 1 1 2 2 1

W (F H  - F H +G H G H )-F H F H  -
W

= W (FH  - F H +G H G H )-FH F H
s

W (FH  - F H +G H G H )-FH F H

 β − +
 θ

α β − + + 
∆  

β − + 

, 

 

( )

( )

( )

1 2 3 3 2 2 3 3 2 2 3 3 2

0 4
4 2 1 3 3 1 1 3 3 1 1 3 3 1

3 1 2 2 1 1 2 2 1 1 2 2 1

W (F H  - F H +G H G H )-F H F H  -
W

= W (FH  - F H +G H G H )-FH F H
s

W (FH  - F H +G H G H )-FH F H

 β − +
 θ

α − β − + + 
∆  

β − + 

, 

where 

 

1 2 3 4 4 3 3 4 2 2 4 4 2 3 3 2

2 1 3 4 4 3 3 4 1 1 4 4 1 3 3 1

3 1 2 4 4 2 2 4 1 1 4 4 1 2 2 1

4 1 2 3 3 2

= - W (F (G H  - G H ) + F (G H  - G H ) + F (G H  - G H )) +

 W (F (W H  - G H ) + F (G H  - G H ) + F (G H  - G H )) - 

W (F (G H  - G H ) + F (G H  - G H ) + F (G H  - G H )) + 

W (F (G H  - G H ) + 

∆

2 3 1 1 3 3 1 2 2 1
F (G H  - G H ) + F (G H  - G H ))

, 

 

Those complete the solution in the Laplace transform domain. 

 

NUMERICAL INVERSION OF THE LAPLACE TRANSFORMS 

 

In order to invert the Laplace transforms, we adopt a numerical inversion method based on a 

Fourier series expansion [27]. 

 

By this method the inverse )t(f of the Laplace transform ( )sf  is approximated by  

 

 ( ) ( )
ct N

1

k 11 1 1

e 1 i k i k t
f t f c R1 f c exp , 0 t 2t,

t 2 t t=

    π π
= + + < <    

    
∑  

 

Where N is a sufficiently large integer representing the number of terms in the truncated Fourier 

series, chosen such that 
 

 ( ) 1

1 1

i N i N t
exp c t R1 f c exp

t t

    π π
+ ≤ ε    

    
, 

 

where ε1 is a prescribed small positive number that corresponds to the degree of accuracy 

required. The parameter c is a positive free parameter that must be greater than the real part of all 

the singularities of ( )sf . The optimal choice of c was obtained according to the criteria described 
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in [27]. 

 

NUMERICAL RESULTS AND DISCUSSION 

 

The Ferrari's method has been constructed by using the FORTRAN program to solve equation 

(41). The material properties of asphaltic material saturated by water have been taken as follow 
[28], [29]: 

 

*

o 11 2 11 2 11 2

0

11 2 s -5 o 1 s* 3 3

11

s 1 o 1 s 1 o 1 s

E o

T 27 C, Q 0.4853 10 dyne.cm , R 0.0362 10 dyne.cm , 0.2160 10 dyne.cm

0.0926 10 dyne.cm , 2.16 10 C , 2.35 gm.cm , 0.002 gm.cm

k 0.8 W m k , C 800 J.kg . C , 0.02s, k 0.001

− − −

− − − −

− − − −

= = × = × λ = ×

µ = × α = × ρ = ρ =

= = τ = = 1 o 1W m k− −

*f sf fs o 1 f * 3 f 1 o 1 f 1 o 1

E

f

o

0.0001 C , 0.82 gm.cm , k 0.3W m k , C 1.9cal.gm . C ,

0.00001s,

− − − − − −α = α = α = ρ = = =

τ =

 

We will take the non-dimensional x variable to be in interval 0 x 1≤ ≤ and all the results will be 

calculated at the same instance t 0.1=  for two different values of the porosity β of the material 

when 0.25β =  and 0.35β = . 

 

The temperature, the stress, the strain and the displacement for the solid and the liquid have been 

shown in figures 1-8 respectively. We can see that, the value of the porosity has a significant 

effect on all the studied fields.  

 

Figure 1 shows the temperature increment distribution of the solid with two different values of 

the porosity; 0.25β =  and 0.35β = . It shows that the porosity parameter has a significant effect. 

 

Figure 2 shows the temperature increment distribution of the liquid with two different values of 

the porosity; 0.25β =  and 0.35β = . We can see that the porosity parameter has a significant 

effect where the liquid temperature increases when the porosity increases. 

 

Figure 3 shows the stress distribution of the solid with two different values of the porosity; 

0.25β =  and 0.35β = . We can see that the porosity parameter has a significant effect where the 

absolute value of the stress acts on the solid increases when the porosity increases. 

 

Figure 4 shows the stress distribution of the liquid with two different values of the porosity; 

0.25β =  and 0.35β = . We can see that the porosity parameter has a significant effect where the 

absolute value of the stress acts on the liquid increases when the porosity increases for wide range 

of x. 

 

Figures 5-8, show that the porosity parameter has significant effects on the deformation and the 

displacement for both medium solid and liquid. The absolute value of the peak points (sharp 

points) increase when the value of the porosity parameter increases for the both medium solid and 

water. 
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CONCLUSION 

 

In studying a mathematical model of generalized porothermoelasticity with one relaxation time 

for poroelastic half-space saturated with fluid in the context of Youssef model we found that: 

 

1- The porosity parameter of the poroelastic material has significant effects on the 

temperature, the stress, the deformation and the displacement distributions for the both 

medium the solid and the liquid. 

2- Youssef model of porothermoelasticity with one relaxation time introduce finite speed of 

thermal wave propagation which agree with realistic physical behavior for the solid and 

the liquid.  
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