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ABSTRACT 
 

This paper focuses on the study of short term load forecasting (STELF) using interval Type-2 Fuzzy Logic 

(IT2FL) and feed-forward Neural Network with back-propagation (NN-BP) tuning algorithm to improve 

their approximation capability, flexibility and adaptiveness. IT2FL for STELF is presented which provides 

additional degrees of freedom for handling more uncertainties for improving prediction accuracy and 

reducing cost. The IT2FL comprises five components which include; the fuzzification unit, the knowledge 

base, the inference engine, the type reducer and the defuzzification unit. Gaussian membership function is 

used to show the degree of membership of the input variables. The lower and upper membership functions 

(fired rules) as well as their consequent coefficients of IT2FL are fed into a (NN) which produces a crisp 

value coresponding to the optimal defuzzified output of IT2FLSs. The NN type reducer is trained to 
optimize parameters of membership function (MF) so as to produce an output with minimum error function 

with the purpose of improving forecasting performance of IT2FLS models. The IT2FNN system has the 

ability to overcome the limitations of individual technique and enhances their strengths to handle electric 

load forecasting. The IT2FNN is applied for STELF in Akwa Ibom State-Nigeria. The result of performance 

of IT2FNN is compared with IT2FLS and T1FLS methods for short term load forecasting with MSE of 

0.00123, 0.00185 and 0.00247 respectively. Also, the results of forecasting are compared using RMSE of 

0.035, 0.043 and 0.035 respectively, indicating a best accurate forecasting with IT2FNN. In addition, the 

result of performance of IT2FNN is compared with IT2FLS and T1FLS methods for short term load 

forecasting with MAPE of 1.5%, 3% and 4.5% respectively. Simulation results show that the IT2FNN 

approach takes advantages of accuracy and efficiency and performs better in prediction than IT2FL and 

T1FL methods in power load forecasting task. . 
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1. INTRODUCTION 
 

Akwa Ibom State in Nigeria has an energy demand that is continuously rising due to its 

increasing population. The role that affordable and reliable electricity plays in shaping the world 

economy cannot be overemphasized, as a nation’s growth in the gross domestic product (GDP) 
can be trailed to its growth in electricity. Accurate estimation of future power demands is required 

to facilitate the task of generating power reliably and economically. Due to the growing rate of 

residential, industrial, commercial, economic development and increase in population, clean, 
constant and efficient electric power supply is needed for the rapid growth and development of 

any given society, especially in a developing economy as Nigeria. It is observed that the electric 

power supplied in Nigeria is not adequate and cannot meet the demand needed for residential, 
commercial and industrial purposes. This has given rise to frequent power failures, fluctuations 

and outrages, leading to loss of revenue of utility companies, loss of energy utilization by the 
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customers and extra indirect cost. The consumption of electricity has gained critical attention as it 

acts as a production factor for corporations and welfare factor for societies.  

 

Electric Load is defined as an electric component or portion of an electric circuit that 

consumes electric power. The electric load consumed in any given power system depends on 

the amount and type of electric components being powered. Electric Load Forecasting is defined 

as the process of predicting or estimating the amount of electricity that will be needed to fully 

power up residences, industries and other institutions in the future. Electric load forecasting is one 

of the central functions in any power system to ensure an effective operation and planning of the 
system. Electric Load forecasting has become essential for efficient power system planning and 

operation. The forecasts for different time horizons are important for different operations within a 

utility company. Generally, the predictions are made hourly, or daily, or weekly, or monthly or 
yearly.  There are three kinds of electric load forecasting depending on its time scale. These 

include; short-, medium- and long-term [1]. Short term electric load forecasts range from one 

hour to one week. Medium term electric load range from a week to a year, while the Long load 

forecast are for predictions beyond a year. Accurate short- and medium-load forecasting is still a 
challenging problem. This is due to nonlinear and random behaviour of load demands. Short-term 

forecasts have become increasingly important due to extensive rise of the competitive market [2]. 

In particular, STLF is essential for variety of decision making processes such as expansion 
planning, transaction evaluation, economic dispatch, operation and system reliability, energy-

efficiency of a power system, etc. 

 
The power sector in Nigeria is undergoing various structural and organizational changes in recent 

past. The main focus of all the changes initiated is to make the power system more efficient, 

economically viable and better service oriented. All these can happen if, among other vital 

factors, there is a good and accurate system in place for forecasting the load that would be in 
demand by electricity customers. Such forecasts will be highly useful in proper system planning 

and operations.  

 
Electric load forecast, being a non-stationary random process, is affected by many factors 

including but not limited to weather conditions, social and economic environment, electricity 

price amendments, and calendar information (regular workdays and anomalous days), customer 
classes, etc. As the electricity market deepens reform, uncertainties inherent in the power system 

make it so difficult to predict power load accurately.  Whereas, having an accurate prediction of 

electric load is very important for several reasons including the economy and security. So finding 

an actual approach for handling uncertainty in electric load forecasting for improving the 
accuracy is very important. High accuracy of the load forecasting can increase network reliability, 

improve the security of the power system, reduces rates of equipment failures, and reduces the 

costs and blackouts 
 

Different methods are proposed for the short-term forecasting of electricity load, ranging from 

statistical models to more complicated artificial and computational intelligence. Statistical 

forecasting methods have been widely applied for load forecasting because of their simplicity and 
low computational cost [3] [4]. However, due to their linearity, their usage in describing the 

nonlinear and seasonal patterns of loads is significantly restricted. Also, advanced nonlinear 

methods from the field of artificial intelligence have also been widely utilized for electric load 
forecasting. These models are divided into several sub-groups such as neural networks (FNNs), 

fuzzy logic systems, support vector machines, evolutionary computing, hybrid and other 

approaches [5 - 10]. 
 

However, all of these models present remarkable records in a certain situations while 

simultaneously fail in others and, moreover, each possibility offers different information and 
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precision in handling load forecasting. Also, since STLF behaviour are non-linear and influenced 

by many factors including imprecision, uncertainty and vagueness , some of these techniques are 

not suitable for analyzing load with highly non-linear characteristics like, weather condition and 
some varying activities [11 - 13].  

 

Recently, Fuzzy logic and neural networks are widely applied to solve real world problems. 

Fuzzy logic is a set of mathematical principles for knowledge representation based on degrees of 
membership rather than the classical binary logic. It is a powerful tool to tackle imprecision and 

uncertainty and was initially introduced to improve robustness and low-cost solutions for real 

world problems [14]. Generally, the type-1 fuzzy logic systems have been implemented in many 
systems to a wider scale some of which include approximation and forecasting systems, control 

systems, databases, healthcare clinical diagnosis and so on.  

 

The drawback of the conventional fuzzy logic (type-1) is in its limited capabilities to directly 
handle data uncertainties as some of the designed systems face high level of uncertainties that can 

affect the performances of the systems. The type-2 fuzzy logic system (T2FLS) is an extension of 

the former with the intention of being able to model the uncertainties that invariably exist in the 
rule base because the membership functions of type-2 fuzzy systems are themselves fuzzy.  They 

provide a powerful framework to represent and handle such types of uncertainties. An interval 

type-2 fuzzy logic system (IT2FLS), which is a special case of T2FLS, has been applied to solve 
real-world problems. Recent theoretical and practical studies confirm that IT2FLSs cope well in 

handling uncertainties adequately than their type-1 (T1) counterparts and it is reasonably 

expected to witness more and more applications of IT2FLSs in different fields of science and 

engineering. The T1FLS and IT2FLS have been applied to solve problems in a wide variety of 
areas, including STELF [15 - 22].  

 

Neural network (NN) models in artificial intelligence are usually referred to as artificial neural 

networks (ANNs). These are essentially simple mathematical models defining a function     
  or a distribution over X or both. Sometimes NN models are also intimately associated with a 

particular learning algorithm or learning rule. An ANN is typically defined by three types of 

parameters: (1) the interconnection pattern between the different layers of neurons. (2) The 
learning process for updating the weights of the interconnections. (3) The activation function that 

converts a neuron's weighted input to its output activation. NN have the ability of learning 

nonlinear relationships in a system, because of dealing with nonlinear patterns, NN has shown 
better performance in accuracy in contrast to the traditional statistical methods such as 

discriminant analysis and logistic regression.  

 
Hybrid systems combining fuzzy logic, neural networks, genetic algorithms, and expert systems 

are proving their effectiveness in a wide variety of real world problems. Every intelligent 

technique has particular computational properties (e.g. ability to learn, explanation of decisions) 

that make them suited for particular problems and not for others. For example, while neural 
networks are good at recognizing patterns, they are not good at explaining how they reach their 

decisions. Fuzzy logic systems, which can reason with imprecise information, are good at 

explaining their decisions but they cannot automatically acquire the rules they use to make those 
decisions. These limitations have been a central driving force behind the creation of intelligent 

hybrid systems where two or more techniques are combined in a manner that overcomes the 

limitations of individual techniques. Type-2 fuzzy neural systems have been developed and 

applied to several data mining problems. Recent studies on load forecasting report that IT2FLSs 
possess an excellent approximation capability even better than traditional nonparametric methods 

such as NNs. But the integrated IT2FLS and NN have self-learning characteristics and allow 

reducing the complexity of the data and modelling uncertainty and imprecision [23 - 33]. 
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In this paper, we study IT2FL and combine mainly IT2FL and NN approaches to improve their 

approximation capability, flexibility and adaptiveness for improving power load forecasting 

accuracy. IT2FL for STELF is presented which provides additional degrees of freedom for 
handling more uncertainties for improving prediction accuracy and reducing cost. The IT2FL 

comprises five components which include; the fuzzification unit, the knowledge base, the 

inference engine, the type reducer and the defuzzification unit. Gaussian membership function is 

used to show the degree of membership of the input variables. The lower and upper membership 
functions (fired rules) as well as their consequent coefficients of IT2FL are fed into a (NN) which 

produces a crisp value coresponding to the optimal defuzzified output of IT2FLSs. The NN type 

reducer is trained to optimize parameters of membership function (MF) so as to produce an output 
with minimum error function with the purpose of improving forecasting performance of IT2FLS 

models. The IT2FNN system has the ability to overcome the limitations of individual technique 

and enhances their strengths to handle electric load forecasting.  

 
The study considers information such as temperature, humidity and the past electric load data. A 

study case of Uyo, Akwa Ibom State in Nigeria is considered, where all weather data are obtained 

from the Nigeria Meteorological Agency (NMA) and historical electric load data are obtained 
from the Power Holding Company of Nigeria (PHCN).  The result of performance of IT2FNN is 

compared with IT2FLS and T1FLS methods for short term load forecasting with MSE of 

0.00123, 0.00185 and 0.00247 respectively. Also, the results of forecasting are compared using 
RMSE of 0.035, 0.043 and 0.035 respectively, indicating a best accurate forecasting with 

IT2FNN. In addition, the result of performance of IT2FNN is compared with IT2FLS and T1FLS 

methods for short term load forecasting with MAPE of 1.5%, 3% and 4.5% respectively. 

Simulation results show that the IT2FNN approach takes advantages of accuracy and efficiency 
and performs better in prediction than IT2FL and T1FL methods in power load forecasting task.  

The remainder of the paper is presented as follows; section two gives IT2FL overview. In section 

three, IT2FL for STELF is presented. Section four presents IT2FNN for STELF, the simulation 
results are shown in section and conclusion is performed in section six. 

 

2. INTERVAL TYPE-2 FUZZY LOGIC: AN OVERVIEW 
2.1. INTERVAL TYPE-2 FUZZY SETS 
 

An interval type-2 fuzzy set (IT2FS)   is characterized as: 
 

                               Jx                                        (1) 

 

where x, the primary variable, has domain X; u U, the secondary variable, has domain Jx at each 

x X; Jx is called the primary membership of x and the secondary grades of    all equal 1. 

Uncertainty about   is conveyed by the union of all the primary memberships, which is the 
shaded region bounded by upper membership function (UMF) and lower membership functions 

(LMF) is called the footprint of uncertainty (FOU) of   as shown in Figure 1 [34] [35] [36]. 
 

                                                           (2) 
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Fig. 1: Interval Type-2 Fuzzy set with uncertain mean [24] 

 

      
                                                       (3) 

 

                                                             (4) 

 

                     
   ]}                                         (5) 

 

Where,   
    and       of  , are two type-1 MFs that bound the FOU,    is an interval set. Set 

theory operations of union, intersection and complement can be applied to easily compute for IT2 

FSs. 

 

2.2. INTERVAL TYPE-2 FUZZY LOGIC SYSTEM (IT2FLS) 

 
Figure 1 gives a typical structure of IT2FLS.  The components of IT2FLS are similar to T1FLS 

with the exception of the type reduction (TR) unit.  The structure of IT2FLS is made up of; a 

fuzzifier, an if–then rule base, inference engine, a type-reducer and a defuzzifier.  
 

 

 
 

 

 

 
 

 

 
 

Fig. 2: The Structure of IT2FLS [37]. 
 

Number The fuzzification process maps a crisp input vector into type-1 or IT2FSs using 
singleton, triangular, trapezoidal or Gaussian fuzzifier. Input IT2-FSs then activate the inference 

engine and the rule base to produce output IT2 FSs. A type-reduction unit combines the output 

sets and then performs a centroid calculation which produces an interval T1FS (type-reduced set). 

The type-reduced set is then processed by the defuzzification unit to produce crisp outputs. 
 

In this paper, IT2 Gaussian MFs with uncertain width (deviation) is used because of it suitability 

for highly dynamic random problem, such as electric load forecasting. 
 

            
   

   
 , σ   [σ1, σ2] and c  [c1, c2]                               (6) 

 

 That is σ   [σ1, σ2] with upper and lower membership functions defined as follows:  
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                                                (7) 

 

    
          

      

      
                                               (8) 

 

Where c is the center (mean) of the MF, σ is the width (standard deviation) of the MF and x is the 

input vector. The variables       and       are premise parameters that define the degree of 

membership of each element to the fuzzy set   and FOUs of the IT2IFS. The MFs are defined and 

evaluated for all the input and output linguistic variables.  The IT2F sets are explored in the 
antecedents’ parts and each MF of the antecedent part is represented using an upper and a lower 

MFs, denoted by   Ã(x) and  Ã(x). The detail description is found in [24]. Each node output 

indicates the lower and upper interval.  

 

An IT2FLS is characterized by if–then rules which can be expressed as a collection of IF–THEN 
statements as; 

 

                
                      

                        
 
                   (9) 

 

Where      i = 1, m are the antecedents,   is the consequent of the ith rule of IT2FLS. The    ’s are 

the MFs  
   

      of the antecedent part assigned of the ith input    , the    is the MFs      
      of 

the consequent part assigned to the output   . Also,          
 

 are the lower and upper 

coefficients of the consequent part and    is the IT1 set corresponding to the centroid of the IT2 

consequent set. The result of the input and antecedent operations contained in the firing set 
produces an interval type-1 set as shown in (10) [38].  

 

                             ]                                         (10) 

 

           
    

            
    

                                          (11) 

 

 
 
         

    
            

    
                                           (12) 

 

where        is the antecedent of rule i and µF1
i
(xˈ) is the degree of membership of x in F.      (x) 

and     (x) are upper and lower MFs of     , i = 1 to m respectively and * is a t-norm (minimum or 

product).  

 
The inference engine combines the fired rules and gives a mapping from input to output in 

IT2FSs. The combined output fuzzy set,      
      , is obtained by combining the fired output 

consequent sets by taking the union of the ith rule fired output consequent sets. The singleton 

fuzzifier is applied to obtain (11) and (12). 
 

The output of the IT2FLS model is obtained through combining the outcomes of N rules through 

ttype-reduction process using iterative Karnik-Mendel (KM) algorithm where  [39 - 40].  
 

      
    

      
   

    
   

        
     

                                               (13) 
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Where         and         for n = 1,…., N. 

 

   
         

        
     

          
     

 
   

                                                      (14) 

 

   
         

           
     

          
     

 
   

                                                      (15) 

 

Where    is the leftmost point and    is the rightmost point, L and R are the switch points 

determined by (14) and (15) respectively.                               ,             are 

arranged in ascending order. 
 

Finally, the defuzzified crisp output IT2FLS is achieved by averaging of    and  , as in (16):  

 

   
     

 
                                                                      (16) 

 
In an IT2FLS type reduction process converts an IT2 fuzzy set (FS) into aT1 FS. The first TR 

algorithm was proposed by Karnik and Mendel (KM) which recursively computes the left and 

right end points (center of sets) producing  a T1 interval set. However, the KM algorithm has 
computational challenge when there are many MFs and the rule base is large, and may not be 

suitable for fast real-time applications. In order to solve this problem, many more approached 

have been proposed [41 - 38]. Despite all these approaches, however, IT2FLS models using these 
TR algorithms are still computationally more intensive than T1 FLSs. It is found that the UB 

algorithm generates the closest outputs to the KM TR algorithm [45 - 48]. Previous studies 

mainly attempt to minimize the computational requirement of TR block compared to original KM 

algorithm, rather than checking the quality and accuracy of defuzzified outputs computed.  
 

3. INTERVAL TYPE-2 FUZZY LOGIC FOR SHORT TERM ELECTRIC LOAD 

FORECASTING 
 

In this section, the model of IT2FLS-STLF is presented in Figure 3, which IT2FLS comprises 

five components: fuzzification unit, knowledge base, inference engine, type reducer and 
defuzzification unit. The electric load data used in this work are presented in Tables 1 and 2 

respectively.  

 
Fig. 3: Model of IT2FLS-STLF 

 

The input variables are defined as temperature (TEMP), humidity (HUM) and past electric load 

(PELOAD) respectively. The output parameter is defined as electric load forecast (ELF). The 
input and output linguistic terms are defined as; Temperature (TEMP) = {Very Cool, Cool, 

Moderate, Hot, Very Hot}, Humidity (HUM) = {Very Low, Low, Moderate, High, Very High}, 

Past Electric Load (PELOAD) = {Very Low, Low, Moderate, High, Very High} and Electric 
Load Forecast (ELF) = {Very Low, Low, Moderate, High, Very High}. The input and output 
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space are divided into fuzzy regions (domain intervals) of X1, X2 and, X3 and Y as [23, 34], [45, 

98], [18, 35.4] and [10, 100] respectively. The universe of discourse for each input variable is 

defined in Table 3. IT2Gaussian MFs are defined for all input and output variables of the IT2S-
STELF and are presented in Tables 4 –7 respectively. Fuzzy rules are defined to maximize space; 

part of the IT2FL-STELF rules is presented in Table 8. The firing strength is evaluated based on 

(10) (11) (12). 
 

Table 1: Electric load data covering 10th – 15th January 2010 
 
 

HOUR MON TUES WED THUR FRI SAT SUN 

0:01 30.2 30.3 32.9 33.5 28.3 31.2 35.4 

0:02 29.8 30.5 31 32 28 28.4 29.8 

0:03 29.2 30.2 28 34 27.5 24.5 26.3 

0:04 29 30 28 31.4 27.4 22.8 24.2 

0:05 28 30 27.5 32.5 26.7 21.5 20.1 

0:06 28 29 27 28.9 28.4 19.5 18 

0:07 30 31.6 29.3 27.3 29.3 21.5 20.4 

0:08 40 42 37.3 32.5 32.4 23.7 23.6 

0:09 50.8 49.5 43 34.4 35.6 25.2 23.9 

0:10 49.9 50.1 40 45.8 37.8 38 25.1 

11:00 49.5 50.3 39 40.2 38.9 27.5 26.7 

12:00 49.8 50.4 40.3 39.2 39.4 27.8 26.7 

13:00 50.3 50.5 47.2 40.1 41.3 27.9 27.8 

14:00 50.8 50.7 46.9 43.8 44.2 28.4 27.4 

15:00 50.8 50.9 45.6 44.6 45.6 28.7 27.2 

16:00 50.3 51 46.1 48.7 46.8 29.5 26.7 

17:00 48.6 48.4 46.5 46.2 47.2 27.5 20.4 

18:00 43.8 45.5 45.8 44 44.2 26.5 21.2 

19:00 45.7 47.6 44 43.3 42.5 25.4 23.5 

20:00 48.7 49 43.8 45.4 40.5 22.2 24.1 

21:00 42.4 44.5 41 43.7 35.2 23.1 19.7 

22:00 37.5 39.5 35.6 33.2 32.1 22.4 18.2 

23:00 33.5 35.2 32.9 30.2 30.1 21.3 18.3 

24:00 30.3 33.6 31.5 30.1 29.3 21 18.4 

 

Table 2: Electric Load Training Data 

 
 

Time (Hr) Temperature (  C) Humidity (%) PELoad (MW) 

0:01 25 93 35.4 

0:02 25 94 29.8 

0:03 23 94 26.3 

0:04 24 97 24.2 

0:05 24 98 20.1 

0:06 25 97 18 

0:07 24 98 20.4 

0:08 27 83 23.6 

0:09 28 72 23.9 

0:10 30 64 25.1 

11:00 32 53 26.7 

12:00 33 48 26.7 

13:00 34 45 27.8 
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14:00 34 46 27.4 

15:00 33 47 27.2 

16:00 33 48 26.7 

17:00 30 54 20.4 

18:00 29 68 21.2 

19:00 28 73 23.5 

20:00 27 80 24.1 

21:00 26 85 19.7 

22:00 26 88 18.2 

23:00 24 90 18.3 

24:00 23 94 18.4 

Table 3: Universe of Discourse for Input Variables 

 
INPUT VARIABLES AND THEIR UNIVERSE OF DISCOUSE 

Temperature (TEMP) Humidity (HUM) Past Electric Load (PELOAD) 

0 – 50 0 – 100 0 - 55 

 
Table 4:  IT2FL-STELF Membership function values for Temperature 

 

Terms M (mean) δ 1(UMF) δ 2 (LMF) 

VCool 7 2 1 

Cool 15 2.2 1.2 

Moderate 25 3 1.5 

Hot 35 2 1 

VHot 42 2 1 

 
Table 5: IT2FL-STELF Membership function values for Humidity 

 
Terms M (mean) δ 1(UMF) δ 2 (LMF) 

VLow 12 4 2 

Low 28 5 3 

Moderate 50 6 4 

High 70 5 3 

VHigh 8 4 2 

 
Table 6: IT2FL-STELF Membership function values for PELoad 

 
Terms M (mean) δ 1(UMF) δ 2 (LMF) 

VLow 8 2.3 1.3 

Low 17 2.5 1.3 

Moderate 25 2.3 1 

High 36 3 1.5 

VHigh 47 2.3 1.0 

 
Table 7: IT2FL-STELF Membership function values for ELF 

 

Terms M (mean) δ 1(UMF) δ 2 (LMF) 

VLow 8 2.3 1.0 

Low 16 2.8 1.1 

Moderate 27 2.9 1.2 

High 40 3 1.5 

VHigh 52 3 1.5 
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Table 8:  IT2FL-STELF Fuzzy Rules 

 

No   Input Variables  Output  

TEMP  HUM  PELOAD  ELF  

1  VCool VLow VLow VLow 

2 VCool Low Low Low 

3 VCool  Mod  Mod  Mod  

4  Vcool High  Low  VLow  

5  Cool  High  Mod  Mod  

6  Mod  Mod  Mod  Mod  

7  Mod  Low  Mod  Mod  

8  Mod  Low  Low  Low  

9  Hot Mod  VLow  Low  

10  Hot  Mod  VHigh  High  

11  Hot Low  VHigh  High  

12  VHot  Mod  VHigh  VHigh  

13  VHot  Mod  Mod  High  

. 

. 

. 
 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

121 VHot VHigh VLow VLow 

122 VHot VHigh Low Low 

123 VHot VHigh Moderate Moderate 

125 VHot VHigh High High 

125 VHot VHigh VHigh VHigh 

 

Interval type-2 inference engine combines the fired rules and gives a mapping from input IT2FSs 

to output IT2FSs,      
      for a given input value for of Temp, Hum and Peload. This is achieved 

by the union of the ith rule fired output consequent sets. Type ReductionK-M type-reduction 

algorithm is applied to compute the left and right end points (  
  and   

   of the centroid of the 

consequent of the ith rule.     and  
 
are the lower and upper firing degrees of the ith rule and N is 

the number of fired rules. From the KM algorithms, we find that L = 1 and R = 3 and compute (  
  

and   
  . Using our selected sets of input values, we defuzzify the fuzzy set using the average of 

  and    in and obtain crisp value (Electric Load Forecast, ELF). 

 

4. INTERVAL TYPE-2 FUZZY NEURAL SYSTEM  (IT2FNNS) FOR SHORT 

TERM ELECTRIC LOAD FORCASTING 
 
In this section, IT2FNNS for short term electric load forecasting in Uyo, Akwa Ibom State, 

Nigeria as a study case, is investigated. The study intends to maintain less computational 

intensiveness and improve the accuracy and capability of IT2FLS in forecasting and 

approximation by integrating back propagation algorithm of feed-forward NNs. The architecture 
of IT2FNNS, with basically a five-layer IT2FNNs for short term electric load forecasting is 

shown in Figure 4. Layer I (Input Layer) provides the input nodes, which are crisp values. Layer 

II gives IT2 fuzzification nodes which maps the crisp input to a fuzzy set using a defined MF and 
produces IT2 MFs.  They form the antecedent part of this T2FNN.  Layer III (fuzzy rule layer), 

evaluates the rules in a rule base against fuzzy set received from fuzzification to produce yet 

another fuzzy set.  The nodes in this layer consist of the firing strength. Layer III nodes combined 
with layer IV to produce the consequent parts of the fuzzy rule nodes formed from a classical 2-

layer FNN with fuzzy rule nodes and output nodes. The links between layer III and layer IV 
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consist of interval weighting factors which determine the actual outputs of this system. In this 

paper, IT2FNN type reducer is employed in order to achieve a better forecast accuracy.  From 

Figure 4, the firing strengths of rules and their interval centroids are fed into an NN to directly 
and optimally generate the deffuzzified output of IT2FLS in place of the traditional TR block. 

The NN training is performed through minimization of an error-based cost function.  

 

The feeding vector to IT2FNN type reducer is formed from all training samples   as given in 
(17).  

 
 

Fig. 4: Architecture of IT2FNNS for STELF 
 

         
 
     

 
      

 
     

 
 ,                                               (17) 

 

Where     have the dimension,                      and         
 

give the lower and upper 

firing strengths of the nth rule as given in (11) and (12) respectively. While         
 
 are the 

centroid of IT2FS in the consequent part of the rules as defined and calculated in (9).  The 

weights of the IT2F output MF values (firing strength),                    
 
          in (11) and 

(12), form inputs to the FNN and    is computed for each set of input parameters. Using     as the 

input vector, the ith desired input–output pattern pair of the new dataset is formed as follows: 

 

                                                                             (18) 

 

Thus, a mapping from          to        , i.e.,                 is determined and the FNN 
type reducer is trained using traditional back propagation algorithm [28].  The weights of the 

IT2F output MF values are tuned using BP algorithm and the error between the desired output y
K
 

and the computed output O
k
 are determined. During the training process, for each incoming data, 

the parameters learning optimally tune the parameters of the IT2FNN to find the optimal values. 

The supervised learning method is used with the objective of minimizing the error function, Ek as 

defined by means of a learning algorithm. 
 

Ek = ½[y
k
 – O

k
]

2
                                                            (18) 

 

Where, y
k
 is the desired (expected) output and O

k
 is the actual (computed) output, k is the 

input/output pattern. In this study, learning algorithm is adapted and modified from the back BP 

as described in [49] [50] and is applied to train the IT2FNN.   
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Finally, the paper explores IT2FNN type reducer with the centers of fuzzy sets and firing 

strengths of rules to compute the crisp output of an IT2FNN system. Next, the study applies 

Percentage Error (%Error), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE) 
and Mean Absolute Percentage Error (MAPE) performance criteria for our experiments which are 

defined as: 

 

        
        

  
                                                          (19) 

 

    
 

 
         

                                                       (20) 

 

      
 

 
         

                                                    (21) 

 

 

     
   

 
   

    

 
  

                                                      (22) 

 

5. SIMULATION RESULTS  

 

In this paper, a case study location of Akwa Ibom State in Nigeria is considered, where historical 

data of past electric load are obtained from the Power Holding Company of Nigeria (PHCN) as 
well as past weather data from the Nigeria Meteorological Agency (NMA), Uyo in Akwa Ibom 

State. The principal instrument used for electric load data collection is the daily summary log 

sheets of the Power Holding Company of Nigeria PHCN. One-month data which covered the 

period of January 2010 are obtained from the log sheets kept in the undertaking offices of the 
Power Holding Company of Nigeria (PHCN). The data include the hourly load data transmitted 

within the Metropolitan city of Uyo. The weather data (Temperature and Relative humidity) for 

the period of January 2010 for the metropolitan city of Uyo are also obtained from 
WorldWeatherOnline (http://www.worldweatheronline.com/). Verbal questioning is also carried 

out.  

 
In order to derive the hourly, daily and weekly load forecast, the study considers factors such as; 

temperature (TEMP), humidity (HUM) and past electric load (PELOAD). The electric load data 

use covers 10th – 15th January. The load data from 10 January, 2010 serve as the training data 

which is used to generate the fuzzy rules for the knowledge base and electric load data for 18 
January, 2010 is used for testing purpose. The training data consists of both the input and the 

output pair. It of the form (X1
 (1)

, X2
(2)

, X3
(3)

, Y
 (1)

), where X1 (Temp), X2 (Hum) and, X3 (PELoad) 

are inputs, and Y (ELF) is the output. The performance of the proposed forecasting method 
depends on the appropriate selection of its set of inputs and its structure. 

 

The results of applying IT2FLS to STEL forecasting on a Monday week is shown in Table 9, 

while the results of the actual load and the forecasted load (ELF) with % Error is presented in 
Table 10 
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Table 9: IT2FL STEL Forecasting Results 

 
Time  Temperature (°C)  Humidity (%)  PELoad(MW)  ELF(MW)  

1am  24 90 35.4 27.0 

2am  23 94 29.8 26.9 

3am  23 95 26.3 24.4 

4am  24 96 24.2 22.7 

5am  24 98 20.1 22.1 

6am  24 98 18 21.3 

7am  23 88 20.4 19.8 

8am  24 80 23.6 19.6 

9am  25 74 23.9 23.9 

10am  25 64 25.1 23.5 

11am  24 57 26.7 17.7 

12pm  26 47 27.8 19.2 

1pm  28 44 27.4 20.5 

2pm  29 37 27.4 26.2 

3pm  30 34 27.2 27.1 

4pm  31 38 26.7 25.6 

5pm  30 47 20.4 16.6 

6pm  29 53 21.2 15.4 

7pm  29 68 23.5 21.9 

8pm  28 69 24.1 23.7 

9pm  26 67 19.7 14.2 

10pm  25 72 18.2 11.5 

11pm  24 75 18.3 12.6 

 
Table 10: The Results of IT2FL- STEL Forecasting - Load and Actual Load Forecasting with % Error 

 
Time  Actual 

Load(MW)  

ELF  

Load 

(MW)  

Error Error (%)  

1am  26.8 27.0 -0.2 0.75 

2am  25.2 26.9 -1.7 6.75 

3am  23.9 24.4 -0.5 2.10 

4am  22.3 22.7 -0.4 1.79 

5am  21.9 22.1 -0.8 0.91 

6am  22.0 21.3 0.7 3.18 

7am  20.2 19.8 0.4 1.98 

8am  20.1 19.6 0.5 2.49 

9am  24.7 23.9 0.8 3.24 

10am  24.2 23.5 0.7 2.89 

11am  18.4 17.7 0.7 3.80 

12pm  20.1 19.2 0.9 4.48 

1pm  21.6 20.5 1.1 5.09 

2pm  25.6 26.2 -1.4 2.29 

3pm  28.2 27.1 1.1 3.90 

4pm  24.9 25.6 0.7 2.81 

5pm  17.2 16.6 0.6 3.49 

6pm  16.1 15.4 0.7 4.35 

7pm  22.6 21.9 0.7 3.10 

8pm  22.9 23.7 -0.8 3.49 

9pm  15.0 14.2 0.8 5.33 

10pm  12.1 11.5 0.6 4.96 

11pm  11.9 12.6 -0.7 5.88 
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Fig. 5: The curve of Actual Load vs Forecasted Load (ELF) 

 
Fig. 6: The plot of Forecasted Load (ELF) and Actual Load against %Error 

 

From IT2FL-STEL forecasting results, it is observed that, the Highest ELE of 27.2 MW is 

recorded at 30°C Temp, 34% Hum and 27.2MW Peak Load at 1pm and the lowest ELE of 11.5 is 

achieved at 25°C Temp, 72% Hum and 18.2MW Peak Load at 11pm. The highest and the lowest 
of forecasting percentage error of hours is at 2am and 1am with 6.75% and 0.75 % respectively, is 

an over estimation of 2MW. From Table 9, the forecasted ELF load  is compared with the actual 

load with maximum and minimum forecasting percentage error in hours computed at 6.75% and 
0.75 %, at 2am and 1am, is an over estimation of 2MW. Figure 5 shows the load curve, plotted 

based on Table 9, which compares the actual load and the IT2FL forecasted load (ELF). From the 

curve it is observed that IT2FL forecasted electric load is very close to the actual load with 
minute variations. This indicates a relatively good correlation with the actual electric load 

demand. From Figure 6, it is observed that the %error plot against the forecasted and actual 

electric loads shows that the predicted electric load values indicate a better performance. The 

results obtained from the IT2FL are compared with the IT1FL method of short term load 
forecasting.  

 

Parts of the IT2FNN training results is presented in Table 11. Figure 7 presents the graph of Error 
versus Epoch showing a learning convergence curve for the STELF Training with 0.95 as desired 

output. In Figure 8, the graph of MSE versus Epoch showing a learning convergence curve for the 

STELF Training with 0.95 as desired output is shown. In order to comparatively evaluate the 

performance of the IT2FNN with the T2FL, the results obtained from the IT2FNN are compared 
with the IT2FLS method for STELF using MSE and RMSE. Table 12 gives parts of the results of 

comparison of IT2FNN and IT2FLS in STELF. Table 13 gives the comparison of the three 
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approaches based on MSE, RMSE and MAPE performance criteria. Architecture of the graph of 

IT2FLS versus IT2FNN in STELF is presented in Figure 9. Result indicates that IT2FNN gives 

the best result with a significant performance improvement over IT2FLS in handling STELF 
system control.  

 
Table 11: The Results of IT2FNN Training Results for n=5 iterations 

 
 

 
 

Fig.7: Error versus Epoch showing a Learning Convergence Curve for the STELF Training with 0.95. 

 

 
 

Fig. 8: MSE versus Epoch showing a Learning Convergence Curve for the STELF Training with 0.95. 
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Table 12: The Results of comparison of IT2FNN and IT2FLS 
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Fig. 9: Architecture of the graph of IT2FLS versus IT2FNN in STELF IT2FNNS for STELF. 

 
Table 13: Comparison of IT2FNN and IT2FLS based on MSE and RMSE 

 

 

5. CONCLUSION 
 

In This paper focuses on the study of short term load forecasting (STELF) using interval Type-2 
Fuzzy Logic (IT2FL) and feed-forward Neural Network with back-propagation (NN-BP) tuning 

algorithm to improve their approximation capability, flexibility and adaptiveness. IT2FLS for 

STELF is carried out and IT2FNN is introduced for improving performance of IT2FLS models in 
solving the problem of STELF.  Temperature, Humidity and Past Electric Load are used as inputs 

parameters. By formulating rule base of IT2FLS using available data, outputs (Electric Load 

Forecast) are obtained with an error margin of 0.75% and 5.88%. The consequent parts of the 

IT2FLS form an input to NN, where the firing strengths of rules and their interval centroids are 
fed into an NN to directly compute the output of IT2FLS models. The IT2FNN training is 

performed using back propagation learning algorithm to minimize the error-based cost function. 

The optimal weighting factors in the consequent part of this IT2FNN are directly generated from 
the optimal training algorithm. Weather data are obtained from the Nigeria Meteorological 

Agency (NMA) and historical electric load data are obtained from the Power Holding Company 

of Nigeria (PHCN) and used to perform comparative studies. The result of performance of 

IT2FNN is compared with IT2FLS and IT1FLS methods for short term load forecasting with 
MSE of 0.00123, 0.00185 and 0.00247 respectively. Also, the results of forecasting are compared 

using RMSE of 0.035, 0.043 and 0.035 respectively, indicating a best accurate forecasting with 

IT2FNN. In addition, the result of performance of IT2FNN is compared with IT2FLS and 
IT1FLS methods for short term load forecasting with MAPE of 1.5%, 3% and 4.5% respectively. 

It can be concluded that IT2FNN offers encouraging and acceptable degree of accuracy than 

IT2FLS and IT1FLS in handling the STELF task. This is due to the ability of IT2FNN to cope 
with uncertainties adequately and is able to tune the parameters of IT2FL in STEL forecasting to 

give a better solution then. In the future, full implementation of the system can be carried out and 

the proposed system can be improved by integrating IT2FLS with other algorithms like particle 

swarm optimization, to handle more uncertainties in STEL forecasting. 
 

Models Training/

Chi 

Mean Standard 

Deviation 

Mean Squared 

Error (MSE) 

Root Mean 

Square Error 

(RMSE) 

Mean Absolute 

Percentage Error 

(MAPE)% 

IT1FLS 300/250 0.618 0.155 0.00247 0.050 4.5 

IT2FLS 300/250 0.626 0.198 0.00185 0.043 3 

IT2FNN 400/250 0.634 0.241 0.00123 0.035 1.5 
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