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ABSTRACT 

 
In fuzzy decision-making processes based on linguistic information, operations on discrete fuzzy numbers 

are commonly performed. Aggregation and defuzzification operations are some of these often used 

operations. Many aggregation and defuzzification operators produce results independent to the decision-

maker’s strategy. On the other hand, the Weighted Average Based on Levels (WABL) approach can take 

into account the level weights and the decision maker's "optimism" strategy. This gives flexibility to the 

WABL operator and, through machine learning, can be trained in the direction of the decision maker's 

strategy, producing more satisfactory results for the decision maker. However, in order to determine the 

WABL value, it is necessary to calculate some integrals. In this study, the concept of WABL for discrete 

trapezoidal fuzzy numbers is investigated, and analytical formulas have been proven to facilitate the 

calculation of WABL value for these fuzzy numbers. Trapezoidal and their special form, triangular fuzzy 

numbers, are the most commonly used fuzzy number types in fuzzy modeling, so in this study, such numbers 

have been studied. Computational examples explaining the theoretical results have been performed. 
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1. INTRODUCTION 
 
Firstly introduced by Lotfi A. Zadeh in 1965, the fuzzy logic and fuzzy sets theory led to the 

integration of verbal linguistic information into mathematical models [1]. In fuzzy decision-

making models based on linguistic information, usually operations on discrete fuzzy numbers are 

performed [2, 3].In [2], in order to merge subjective evaluations, a compensatory class of 

aggregation functions on the finite chain from [4] is used. Then the ranking method proposed by 

L. Chen and H. Lu in [5] is used to choose the best alternative, i.e., to exploit the collective 

linguistic preference (see [6]). This ranking method is based on the left and right dominance 

values of alternatives which is defined as the average difference of the left and right spreads at 

some discrete levels. Herein, the index of optimism is used to reflect a decision maker’s degree of 

optimism. In our study, a more sophisticated form of this approach based on the Weighted 

Average Based on Levels (WABL) defuzzification operator is investigated. 

 

Generally, defuzzification or determining the crisp representative of a fuzzy number (FN) is one 

of the basic operations in fuzzy inference systems, fuzzy decision-making systems and many 

other fuzzy logic based systems. Investigations on defuzzification methods keep their actuality 
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nowadays, and various recent studies on defuzzification methods are available in the literature [7 

- 10].  

 

The well-known basic defuzzification methods are the Center of Area (COA), the Mean of 

Maxima (MOM), the Bisector of Area (BOA), etc. This group of methods are based on integral 

calculations based on the real number axis that the fuzzy number is defined. However, there are 

other group of methods based on integrals on [0, 1] membership degrees’ axis. The most general 

representative of the last group of methods is the Weighted Average Based on Levels method 

(WABL). This method is based on the study about the mean value of the fuzzy number proposed 

in the pioneer study [10]. Later researches on this method have been continued in many studies 

[11 - 13]. More detailed investigations on the WABL approach has been handled by Nasibov with 

study [14] and have been continued in studies [15 - 18].  

 

The main advantage of the WABL method is that it can be adjusted according to the decision-

making strategy, or its parameters can be calculated via machine learning. In addition, the WABL 

parameters can be adjusted appropriately to behave as well-known methods such as COA, MOM, 

etc. [13, 19].In [13], one of the WABL type level based method called SLIDE is represented. The 

advantage of the SLIDE method is that the parameters can be adjusted to give better results in 

fuzzy controllers. In [13], also a machine learning approach has been given to optimally adjust 

the parameters of the SLIDE method. It transforms to the COA and MOM defuzzification 

methods as special cases. 

 

WABL approach and its variations is used for various purposes in many other papers. In many 

studies, the WABL approach is handled for finding the best approximations of fuzzy numbers [20 

-26]. Many other studies use the WABL approach to perform choice and ranking as well as for 

determining the distances between fuzzy numbers [27, 28]. In [29] an approach to obtain 

trapezoidal approximation of fuzzy numbers with respect to weighted distance based on WABL is 

proposed. In studies [30, 31] step type, and piecewise linear approximations are also investigated. 

 

In all of the previous studies, the WABL operator is presented and investigated for fuzzy numbers 

with continuous universe of levels in the interval [0, 1]. In this study, we investigate the WABL 

for discrete universe of levels in the same interval:  

 

Λ = {�	, �
, … , ��|�� ∈ [0, 1]; 	�	 < �
 < ⋯ < ��}.   (1.1) 

 

The basic forms of fuzzy numbers such as triangular and trapezoidal fuzzy numbers with discrete 

universe of levels and with different patterns of level weights are investigated in this study and 

some analytical formulas to calculate the WABL values are presented.  

 

Rest of the paper is organized as follows. The next preliminaries section recalls the definition of 

the WABL operator and recalls the analytical formulas for calculation the WABL values of the 

continuous fuzzy numbers with various type of level weights functions. Then, in section 3, 

discrete leveled trapezoidal fuzzy numbers are defined and different patterns of level weight 

functions for discrete case are proposed. In the section 4, the levels’ weights pattern functions are 

investigated. In the next section 5, the WABL values for discrete leveled trapezoidal FN with 

various levels’ weights patterns are investigated and some analytical formulas are proven. Using 

this formulas give us a way for simple calculation of the WABL value of a fuzzy number without 

using more complicated integral calculations. Next, in the section 6 some computational 

examples calculating WABL values of discrete fuzzy numbers are illustrated. Finally, the 

conclusion part highlighting benefits of this study completes the paper. 
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2. PRELIMINARIES 
 
According to the ��-representation, any fuzzy subset � of the number axis �, or any fuzzy 

number � can be defined as follows: 

 ⋃ (�/��)�∈(	,
]      (2.1) 

where,  �� = [��(�), ��(�)] = {� ∈ �|��(�) ≤ � ≤ ��(�)},  (2.2) 

 

and ∀� ∈ (0,1], [��(�), ��(�)] is a continuous closed interval. In this connection, it is assumed 

that  �
 ≠ ∅, i.e. � is a normal fuzzy number. 

 

Let � be a fuzzy number given via��-representation. Density function of degrees’ importance (in 

short – degree-importance function) we call the function  $(�) that satisfies the following 

normality constraints: 

 % $(�)&�
	 = 1,         (2.3) 

 $(�) ≥ 0, ∀α ∈ (0, 1].        (2.4) 

 

Definition 2.1. The Weighted Averaging Based on Levels (WABL) operator for a continuous 

fuzzy number � is calculated as below: 

 (�)�(�; *, $) = % (*��(�) + (1 − *)��(�))$(�)&�
	 ,     (2.5) 

 

where * ∈ [0, 1] is the “optimism” coefficient of the decision maker’s strategy and the degree-

importance function $ satisfies the normality constraints (2.3)-(2.4). 

 

Based on this definition, a lot of methods can be constructed for obtaining the WABL parameters 

(i.e. the degree-importance function$ and the optimism parameter*).These parameters allow the 

method to gain flexibility. One of the methods for calculating the parameters used in WABL 

operator is developed with using equations system [18]. We will use the notation (�)�(�)instead of (�)�(�; *, $) for simplicity from now on. 

 

Notice that any function $(�), satisfying constraints (2.3) and (2.4) could be considered as a 

continuous degree-importance function. The following patterns of this function is handled in 

studies [17, 19]: 

 $(�) = (- + 1)�., - = 0, 1, 2,…    (2.6) 

 

It is clear that according to the parameter k, the degrees’ importance (weights) will be constant 

(for		- = 0), or be increasing linearly (for		- = 1), quadratic (for		- = 2), etc. w.r.t. level cuts. 

 

In [19] it is shown that most of the well-known defuzzification operators can be simulated using 

the WABL operator. Simple analytical formulas to calculate WABL values of a continuous 

triangular and trapezoidal fuzzy numbers are formulated also in [19]. Some of these formulas are 

mentioned below. 
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a)                                                                         b) 

 

Fig. 1. a) � = (0,1, 2)triangular, and b) � = (0,13 , 14 , 2) trapezoidal fuzzy numbers. 

 

Definition 2.2. A fuzzy number with membership function in the form 

 

5�(6) = 7
893:93 ,				6 ∈ [0,1),49849: ,			6 ∈ [1, 2],0,					;�ℎ=2>?@=. B     (2.7) 

 

is called a triangular fuzzy number	� = (0,1, 2) (Fig. 1a). 

 

The LR functions of the triangular fuzzy number � = (0,1, 2) is as follows: 

 ��(�) = 0 + �(1 − 0) and  ��(�) = 2 − �(2 − 1),  ∀α ∈ [0, 1]  (2.8) 

 
Theorem 2.1 [19]. Let a FN � = (0,1, 2)be a triangular fuzzy number and suppose that the 

distribution function of the importance of the degrees is in the form (2.6). Then the following 

formula for WABL is valid: 

 (�)�(�) = * C2 − .D
.DE (2 − 1)F + (1 − *) C0 + .D
.DE (1 − 0)F,  (2.9) 

 

where - is the parameter of the degree-importance function. 

 

Definition 2.3. A fuzzy number with membership function in the form 

 

5�(6) =
GHI
HJ 893:K93 ,				6 ∈ [0,13),									1,										6 ∈ [13 , 14)		49849:L ,			6 ∈ [14, 2),0,					;�ℎ=2>?@=.

B    (2.10) 

 

is called a trapezoidal fuzzy number � = (0,13 , 14 , 2) (Fig. 1b). 

 

The LR functions of the trapezoidal fuzzy number � = (0,13 , 14, 2)is as follows: 

 ��(�) = 0 + �(13 − 0) and  ��(�) = 2 − �(2 −14),  ∀α ∈ [0, 1]  (2.11) 

1 

)(xµ

13 0 2 6 14  

1 

)(xµ

1 0 2 6 
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Theorem 2.2 [19]. Suppose � = (0,13 , 14 , 2)is a trapezoidal fuzzy number and let the 

distribution function of the importance of the degrees is in the form (2.6). Then the following 

formula is valid for the WABL: 

 (�)�(�) = * C2 − .D
.DE (2 − 14)F + (1 − *) C0 + .D
.DE (13 − 0)F, (2.12) 

 

where - is the parameter of the degree-importance function. 

 

3. WABL OF A DISCRETE FUZZY NUMBER 

 
As has been mentioned above, decision-making processes based on linguistic information, mostly 

performs with discrete fuzzy numbers [2, 3]. In our case, discrete fuzzy numbers with a given 

discrete universe M = {6
, 6E, … , 6N|6� ∈ �, ? = 1,… , O} and for a given discrete values of the 

membership degrees 

 

Λ = {�	, �
, … , ��|�� ∈ [0, 1]; 	�	 < �
 < ⋯ < ��}   (3.1) 

 

is handled. Such fuzzy numbers can be represented as follows: 

 � = ⋃ 5(6)/68∈P ,     (3.2) 

 

where   5(6) ∈ Λ, ∀x ∈ U. This form of fuzzy number we call a discrete valued fuzzy number. In 

case of satisfying only the constraint (3.1), we will call the FN as discrete leveled fuzzy number. 

 

Definition 3.1. Discrete triangular FN � = (0,1, 2)  is a FN with discrete universe M that 

 � = ∑ 5�(6�)/6�8T∊P ,      (3.3) 

where  

5�(6�) = 7
8T93:93 ,				6� ∈ [0,1),498T49: ,			6� ∈ [1, 2],0,					;�ℎ=2>?@=. B    (3.4) 

 

Definition 3.2. Discrete trapezoidal FN � = (0,13, 14, 2)  is a FN with discrete universe M that 

 � = ∑ 5�(6�)/6�8T∊P ,     (3.5) 

where  

5�(6�) =
GHI
HJ 8T93:K93 ,				6� ∈ [0,13),									1,													6� ∈ [13, 14)		498T49:L ,			6� ∈ [14, 2),0,						;�ℎ=2>?@=.

B    (3.6) 

 

Let �� = {6�VM|µ(6�) ≥ �}be the � level set of the fuzzy number �. So it will be 

 ��(�) = 1?O{6�|6� ∈ ��},    (3.7) 

 ��(�) = 1W6{6�|6� ∈ ��}.    (3.8) 
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Let denote X�(�) = (1 − *)��(�) + *��(�) ,     (3.9) 

 

where  * ∈ [0, 1]  is the “optimism” coefficient of the WABL operator, and X�(�)	 is the mean 

value according to the optimism coefficient  *  for the level 	�. Then the WABL value of the 

fuzzy number � is calculated as follows: 

 (�)�(�) = ∑ $(�)(*��(�) + (1 − *)��(�))�∈Λ = ∑ $(�)�∈Λ X�(�)  (3.10) 

 ∑ $(�)�∈Λ = 1,     (3.11) 

 $(�) ≥ 0,			∀� ∈ Λ,     (3.12) 

 

where $(�), � ∈ Λ, is the degree-importance mass function. 

 

4. USING OF PATTERN FUNCTIONS FOR CONSTRUCTING OF DISCRETE 

LEVEL WEIGHTS 

 
We will consider the discrete FN for the case where the levels’ set Λ  is a discrete set on [0, 1], 
such as Λ = {�	, �
, … , ��}. In this case, similarly to the formula (2.6), the level weights (i.e. 

degree-importance) can be produced according to various patterns such as constant, linear, 

quadratic etc. For this purpose we can use a general pattern function as follows: 

 Y(��) ≡ Y� = ?.,			? = 0,1,… , �.    (4.1) 

 

It is obvious that according to the different values of the parameter - = 0, 1, 2, …, it can be 

produced different patterns such as constant, linear, quadratic etc. The following must be taken 

into account for $(��) ≡ $� , ? = 0,1,… , �, 
 $� = [T\ , ? = 0,1, … , �,    (4.2) 

where  ] = ∑ Y���^	  .      (4.3) 

 

It is clear that the non-negativity and normality conditions are satisfied: 

 $� ≥ 0, ? = 0,1,… , �,     (4.4) 

 ∑ $� = 1��^	 .      (4.5) 

 

Some special cases of the level weights are handled below. 

 

a. The level weights are constant. It should be  - = 0  in the weights’ pattern function,  

 
and  

 Y� = ?	 = 1, ? = 0,1,… , �,    (4.6) 

so  ] = ∑ 	1��^	 = � + 1,     (4.7) 

 

will be satisfied. Considering the eq. (4.2), the level weights will be in the form below 
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 $� = 
\ = 
�D
 , ? = 0,1, … , �.    (4.8) 

 

b. The weights are linearly increasing w.r.t. levels. In this case,it should be  - = 1  in the 

weights’ pattern function, consequently 

 Y� = ?
 = ?, ? = 0,1,… , �,     (4.9) 

 

so  ] = ∑ 	?��^	 = �(�D
)E ,     (4.10) 

 

will be satisfied. Considering eq. (4.2), the level weights will be in the form below 

 $� = �\ = E��(�D
) , ? = 0,1,… , �.    (4.11) 

 

c. The weights are quadratic increasing w.r.t. levels. In this case,it should be  - = 2  in 

the weights’ pattern function, consequently 

 Y� = ?E, ? = 0,1,… , �,     (4.12) 

 

so  ] = ∑ ?E��^	 = �(�D
)(E�D
)_ ,    (4.13) 

 

will be provided. Considering eq. (4.2), the level weights will be in the form below 

 $� = �`\ = _�`�(�D
)(E�D
) , ? = 0,1,… , �.    (4.14) 

 

In the next section, some analytical formulas have been developed to calculate the WABL value 

for a discrete trapezoidal fuzzy number in case of equal distributed discrete levels and with 

different weights’ pattern functions. 

 

5. DETERMINING OF THE WABL VALUE FOR A DISCRETE LEVELED 

TRAPEZOIDAL FUZZY NUMBER IN CASE OF EQUAL DISTRIBUTED 

LEVELS 
 
Let us consider the given levels are equal distributed, i.e. the levels’ set is Λ = {�	, �
, … , ��}  
with∆� = *;O@�. So the following equalities are satisfied: 

 ∆� = 
� ⇒ �� = ?∆� ,? = 0,1,… , �,    (5.1) 

 

Definition 5.1. Let consider the trapezoidal FN � = (0,13, 14 , 2). Suppose that the level sets ��T , ? = 0,1, … , �, are constructed according to the discrete values of  �� ∈ [0, 1], ? = 0,1, … , �. 
Such fuzzy numbers we call trapezoidal discrete leveled fuzzy numbers (Fig. 2). 
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Fig. 2. The discrete leveled trapezoidal FN � = (0,13 , 14 , 2) with levels  �� ∈ [0, 1], ? = 0,1, … , �. 

 

Proposition 5.1. The following equality is satisfied for a trapezoidal FN � = (0,13 , 14, 2) for 

any level � ∈ [0, 1]: 
 X(�) = X(0) + �[X(1) − X(0)].     (5.2) 

 

Proof: The left and right side functions of a trapezoidal FN  � = (0,13 , 14, 2) are as follows: �(�) = 0 + �(13 − 0),� ∈ [0, 1],     (5.3) 

 �(�) = 2 − �(2 −14), � ∈ [0, 1].     (5.4) 

 

So, according to eq.(3.9), 

 X(�) = (1 − *)�(�) + *�(�) = (1 − *)(0 + �(13 − 0)) + *(2 − �(2 −14)).  (5.5) 

 

Consider that X(0) = (1 − *)0 + *2,     (5.6) 

and  X(1) = (1 − *)13 + *14,      (5.7) 

we can write: X(�) = (1 − *)0 + �(1 − *)(13 − 0) + *2 − �*(2 −14))  (5.8) = X(0) + �(1 − *)(13 − 0) − �*(2 −14) 
 = X(0) + �[(1 − *)(13 − 0) − *(2 − 14)] 
 = X(0) + �[(1 − *)13 − (1 − *)0 − *2 + *14] 
 = X(0) + �[X(1) − X(0)]      

 (5.9) 

 

Proposition 5.2. For any discrete leveled trapezoidal FN � = (0,13, 14, 2), when∆� = *;O@�, 
the following is valid: 

 ∑ X(��)��^	 = (�D
)E (X(0) +X(1))   (5.10) 

 

Proof: Considering the Proposition 5.1 in case of a discrete leveled trapezoidal FN  � =(0,13 , 14, 2), we can write 

 

 

1 

)(xµ

13  0 2 6 14  

��  
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cX(��)�
�^	 =c(X(0) + ��(X(1) − X(0))�

�^	 = 

 (� + 1)X(0) + (X(1) − X(0))∑ ����^	    (5.11) 

 
Considering ∆� = *;O@� , we can write 

 ∆� = 
� ⇒ �� = ?∆� ,? = 0,1,… , �,    (5.12) 

 

So ∑ ����^	 = 
� ∑ ?��^	 = 
� �(�D
)E = �D
E .    (5.13) 

 

Considering the eq. (5.13) in (5.11), we can write: 

cX(��)�
�^	 = (� + 1)X(0) + (X(1) − X(0)) � + 12  

= (� + 1)2 (2X(0) +X(1) −X(0)) = (�D
)E (X(0) + X(1)),    (5.14) 

which completes the proof. 

 

Proposition 5.3.For any discrete leveled trapezoidal FN � = (0,13, 14, 2), when ∆� =*;O@�,the following is valid: 

 ∑ ?X(��)��^	 = (�D
)[d�e(	)D(E�D
)fe(
)9e(	)g]_    (5.15) 

Proof:  

c?X(��)�
�^	 =c?hX(0) + ��fX(1) −X(0)gi�

�^	  

= ∑ ?X(0) + fX(1) −X(0)g∑ ?��^	 ����^	    (5.16) 

 

Considering�� = �� 	 , ? = 0,1,… , �,  when∆� = *;O@�, and considering the well-known following 

equality: ∑ ?E��^	 = �(�D
)(E�D
)_  ,    (5.17) 

 

the eq. (5.16) can be continued as follows: 

 

c?X(��)�
�^	 = X(0)�(� + 1)2 + fX(1) −X(0)gc?�

�^	
?� 

= X(0)�(� + 1)2 + fX(1) −X(0)g� �(� + 1)(2� + 1)6  

= 3X(0)�(� + 1) + fX(1) − X(0)g(� + 1)(2� + 1)6  = (�D
)fd�e(	)D(E�D
)(e(
)9e(	)g_ ,    (5.18) 
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which completes the proof. 

 

Theorem 5.1.If ∆� = *;O@�, and the level weights are equally distributed, then the WABL of 

the discrete leveled trapezoidal FN � = (0,13, 14 , 2)is as follows: 

 (�)�(�) = e(	)De(
)E     (5.19) 

Proof: It is cler that 

 (�)�(�) = ∑ $(�)(*�(�) + (1 − *)�(�))�∈Λ = ∑ $(�)X(�)�∈Λ  . (5.20) 

 

We assume thatΛ = {�	, �
, … , ��}, so the equation (5.16) can be written as follows: 

 (�)�(�) = ∑ $�X(��)��^	     (5.21) 

 

where $� ≡ 	$(��), ? = 0,1, … , �. 
 

In case of the equal distributed level weights, the level weights will be in the form (4.8). 

According to the Proposition 5.2,the following is valid 

 ∑ X(��)��^	 = �D
E (X(0) + X(1)),   (5.22) 

so we can write (�)�(�) = ∑ $�X(��)��^	 = 
�D
∑ X(��)��^	 = e(	)De(
)E  , (5.23) 

which completes the proof. 

 

Let us consider the linear increasing distribution of the levels’ weights as in (4.9). So, the level 

weights must be as (4.11). 

 

Theorem 5.2.If ∆� = *;O@�, and the level weights are linear increasing w.r.t. levels according 

to the pattern (4.9), then the WABL of the discrete leveled trapezoidal FN � = (0,13, 14, 2)is as 

follows: 

 (�)�(�) = X(0) + E�D
d� fX(1) −X(0)g   (5.24) 

Proof: Considering that ∆� = *;O@� ⇒ �� = �� , ? = 0,1,… , �,    (5.25) 

 

the level weights have the pattern (4.11), and X(��) can be calculated as in Proposition 5.1, the 

following equalities can be written: 

 (�)�(�) = ∑ $�X(��)��^	 = E�(�D
)∑ ?X(��)��^	 .   (5.26) 

 

Considering the Proposition 5.3 that 

 ∑ ?X(��)��^	 = (�D
)[d�e(	)D(E�D
)fe(
)9e(	)g]_  ,   (5.27) 

 

we can write 

 



International Journal on Soft Computing (IJSC) Vol.9, No.2/3, August 2018 

11 

 

(�)�(�) = 2�(� + 1) (� + 1)[3�X(0) + (2� + 1)fX(1) − X(0)g]6 = 

d�e(	)D(E�D
)fe(
)9e(	)gd� = X(0) + E�D
d� fX(1) −X(0)g , (5.28) 

 

which completes the proof. 

 

It is clear that when  13 = 14, the trapezoidal FN becomes a triangular one. Thus, the provision 

of the all previous propositions and theorems are also valid for triangular fuzzy numbers. 

 

6. COMPUTATIONAL EXAMPLES 
 
The first example is about calculation of the WABL value for any discrete fuzzy number with any 

discrete set of levels (without the assumption that ∆� = *;O@�). 
 

Example 6.1. Let calculate the WABL value of the discrete fuzzy number given below: 

 � = 	.
9E + 	.l	 + 	.m
 + 
E + 	.ml + 	.nn  ,    (6.1) 

 

when the “optimism” parameter * = 0.2. Suppose that the levels weights are as follows: 

 $(0.1) = 0.1, $(0.4) = 0.3, $(0.5) = 0.3, $(0.7) = 0.2, $(1.0) = 0.1. (6.2) 

 

It is clear from the conditions of the example that the discrete universe is M ={−2, 0, 1, 2, 4, 5} and the levels’ set is  Λ = {0.1, 0.4, 0.5, 0.7, 1.0}. 
 

So we can calculate (let denote X� ≡ X(�)): 
 �	.
 = 1?O{−2, 0, 1, 2, 4, 5}=-2;  �	.
 = 1W6{−2, 0, 1, 2, 4, 5} = 5,  (6.3) 

 X	.
 = 0.8 · (−2) + 0.2 · 5 = −0.6;      (6.4) 

 �	.l = 1?O{0, 1, 2, 4, 5}=0;  �	.l = 1W6{0, 1, 2, 4, 5} = 5,     (6.5) 

 X	.l = 0.8 · 0 + 0.2 · 5 = 1.0;       (6.6) 

 �	.n = 1?O{1, 2, 4, 5}=1;  �	.n = 1W6{1, 2, 4, 5} = 5,      (6.7) 

 X	.n = 0.8 · 1 + 0.2 · 5 = 1.8;       (6.8) 

 �	.m = 1?O{1, 2, 4}=1;  �	.m = 1W6{1, 2, 4} = 4,      (6.9) 

 X	.m = 0.8 · 1 + 0.2 · 4 = 1.6;       (6.10) 

 �
.	 = 1?O{2}=2;  �
.	 = 1W6{2} = 2,       (6.11) 

 X
.	 = 0.8 · 2 + 0.2 · 2 = 2.0;       (6.12) 

 

Therefore, 
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(�)�(�) = c $��∈Λ X� = 

 0.1 · (−0.6) + 0.3 · 1.0 + 0.3 · 1.8 + 0.2 · 1.6 + 0.1 · 2.0 = 1.3     (6.13) 

The next example is about calculation of the WABL for a discrete leveled trapezoidal fuzzy 

number with a discrete set of levels with the equally distributed level weights and with the 

assumption that ∆� = *;O@�. 
 

Example 6.2. Let calculate the WABL value of the discrete leveled trapezoidal fuzzy number � = (10, 14, 15, 23) (Fig. 3), and assume that the “optimism” parameter is:* = 0.8. Suppose that 

the levels are equally distributed and the levels’ weights are generated according the pattern 

function  Y� = ?	 = 1, ? = 0,1,… ,4, so  

 ] = ∑ Y� =l�^	 5.     (6.14) 

 

 
Fig.3. The discrete leveled trapezoidal FN  � = (10, 14, 15, 23) and its WABL value. 

 

According to the eq. (4.5), the level weights will be in the form below 

 $� = 
\ = 
n , ? = 0,1,… ,4.    (6.15) 

 

Now, we calculate the X(0) and X(1): 
 X(0) = (1 − *)0 + *2 = 0.2 ∙ 10 + 0.8 ∙ 23 = 20.4,   (6.16) 

 X(1) = (1 − *)13 + *14 = 0.2 ∙ 14 + 0.8 ∙ 15 = 14.8.   (6.17) 

 

So we can calculate the WABL value quickly according to the theorem 5.1, 

 (�)�(�) = e(	)De(
)E = E	.lD
l.uE = 17.6 .   (6.18) 

 

Finally, the following example is about calculation of the WABL for a discrete trapezoidal fuzzy 

number with a discrete set of levels with the assumption that ∆� = *;O@�, and levels’ weights are 

linear increasing w.r.t the levels. 

 

Example 6.3. Let calculate the WABL value of the same discrete trapezoidal fuzzy number � = (10, 14, 15, 23), and assume that the “optimism” parameter also is * = 0.8. Now suppose 

that the levels’ weights are generated according the pattern function: 

 Y� = ?
 = ?, ? = 0,1,… , �,     (6.19) 

1 

)(xµ

14 10 23 6 15 

(�)� 

17.6 
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with  � = 4, so  ] = ∑ Y� =l�^	 ∑ ? =l�^	 10.     (6.20) 

 

According to the eq. (4.11), the level weights will be in the form below: $� = �\ = �
	 , ? = 0,1, … ,4.    (6.21) 

i.e. $	 = 0, $
 = 

	 , $E = E
	 , $d = d
	 , $l = l
	.   (6.22) 

 

It is clear that because the “optimism” parameter*is the same to the example 6.2, the values of the X(0) and X(1) will be the same to the previous example, soX(0) = 20.4 and X(1) = 14.8. 

Finally, we can calculate the WABL value quickly according to the theorem 5.2, 

 (�)�(�) = X(0) + (2� + 1)3� fX(1) − X(0)g = 20.4 + v
E (14.8 − 20.4) = 19.9	.     (6.23) 

 

7. CONCLUSION 
 

In this study, we handle the discrete fuzzy numbers that are used in various type of fuzzy 

decision-making systems with linguistic information. Moreover, the trapezoidal and their special 

form, triangular fuzzy numbers, are the most commonly used fuzzy number types in fuzzy 

modeling. So in this study, such type of discrete fuzzy numbers have been considered. The 

WABL operator, which take into account the level weights and the decision maker's "optimism" 

coefficient, are defined and investigated for these numbers. Note that the flexibility of the WABL 

operator gives opportunity through machine learning, train its parameters according to the 

decision maker's strategy, producing more satisfactory results for the decision maker. In this 

study, simple analytical formulas have been formulated for the calculation of WABL values for 

discrete trapezoidal fuzzy numbers	� = (0,13, 14 , 2) with constant, linear and quadratic form 

pattern functions of level weights. Examples, reinforcing the use of the theoretical formulas, have 

been demonstrated. However, since trapezoidal fuzzy number transforms to the triangular one � = (0,1, 2)when13 = 14 = 1,all the results are also valid for discrete triangular fuzzy 

numbers.  

 

In our future studies, we plan to develop analytical formulas that facilitate the calculation of 

WABL for parametric trapezoidal discrete fuzzy numbers, which is a more general form of the 

trapezoidal discrete fuzzy numbers. 
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