

International Journal on Soft Computing, Artificial Intelligence and Applications (IJSCAI), Vol.4, No.3/4, November 2015

DOI :10.5121/ijscai.2015.4401 1

TEMPORALLY EXTENDED ACTIONS FOR

REINFORCEMENT LEARNING BASED

SCHEDULERS

Prakhar Ojha
1
, Siddhartha R Thota

2
, Vani M

1
, Mohit P Tahilianni

1

1
Department of Computer Engineering, National Institute of Technology Karnataka,

Surathkal, India
2
Department of Information Technology, National Institute of Technology Karnataka,

Surathkal, India

ABSTRACT

Temporally extended actions have been proved to enhance the performance of reinforcement learning

agents. The broader framework of ‘Options’ gives us a flexible way of representing such extended course of

action in Markov decision processes. In this work we try to adapt options framework to model an operating

system scheduler, which is expected not to allow processor stay idle if there is any process ready or waiting

for its execution. A process is allowed to utilize CPU resources for a fixed quantum of time (timeslice) and

subsequent context switch leads to considerable overhead. In this work we try to utilize the historical

performances of a scheduler and try to reduce the number of redundant context switches. We propose a

machine-learning module, based on temporally extended reinforcement-learning agent, to predict a better

performing timeslice. We measure the importance of states, in option framework, by evaluating the impact

of their absence and propose an algorithm to identify such checkpoint states. We present empirical

evaluation of our approach in a maze-world navigation and their implications on "adaptive timeslice

parameter" show efficient throughput time.

KEYWORDS

Temporal Extension of Actions, Options, Reinforcement Learning, Online Machine Learning, Operating

System, Scheduler, Preemption

1. INTRODUCTION

One of the key reasons why humans can efficiently solve problems is their ability to create

abstractions in complex world by ignoring irrelevant details. In case of artificial agents, there has

been relatively lesser work on autonomously discovering useful abstractions. A system that can

autonomously discover new abstractions can learn to act in more complex situations and deviate

from its originally anticipated behaviour. In this work we want to extend the schedulers in

operating systems by autonomously discovering useful abstractions. Scheduling is based on time-

sharing techniques where several processes are allowed to run "concurrently" so that the

processor time is roughly divided into "slices", one for each runnable process. A single core

processor, which can run only one process at any given instant, needs to be time multiplexed for

running more processes simultaneously. Whenever a running process is not terminated upon

exhausting its quantum time slice, a switch takes place where another process in brought into

context. Linux processes have the capability of preemption [8]. If a process enters the running

state, the kernel checks whether its priority is greater than the priority of the currently running

process. If this condition is satisfied then the execution is interrupted and scheduler is invoked to

select the process, which just became runnable.

International Journal on Soft Computing, Artificial Intelligence and Applications (IJSCAI), Vol.4, No.3/4, November 2015

2

This type of time-sharing relies upon the interrupts and is transparent to processes. Otherwise, a

process is also to be preempted when its time quantum expires. The duration, being critical for

system performances, a natural question to ask would be - How long should a time quantum last?

It should be neither too long nor too short [8]. Excessively short periods will cause system

overhead because of large number of task switches. Consider a scenario where every task switch

requires 10 milliseconds and the time slice is also set to 10 milliseconds, then at least 50% of the

CPU cycles are being dedicated to task switch. On the other hand if quantum duration is too long,

processes no longer appear to be executed concurrently [15]. For instance, if the quantum is set to

five seconds, each runnable process makes progress for about five seconds, but then it stops for a

very long time (typically, five seconds times the number of runnable processes). When a process

has exhausted its time quantum, it is preempted and replaced by another runnable process. Every

time a process is pushed out to bring in another process for execution (referred as context switch)

several other elementary operations like swap-buffers, pipelines clearances, invalidate cache etc.

take place making process switch a costly operation [16]. So preemption of a process leads to

considerable overhead.

As there does not exist any direct relation between timeslice and other performance metrics, our

work proposes a machine-learning module to predict a better performing timeslice. Even though

the options framework gives convenient way to describe and reason with temporally extended

actions, there is very little guidance regarding how good options can be found. The aim of this

work is to address this issue by automatically finding sub-goal states for termination conditions of

options. Most of the earlier works have considered frequency of visitation of states as prime

heuristic to identify sub-goals [26]. The proposed adaptive time slice for preemption displays

improvements in terms of the total time taken (Turnaround Time) after the submission of process

to its completion, in-return creating more processor ticks for future. Most of present work has

hard-wired classifiers that are applicable only to certain types of jobs. Having a reinforcement-

learning agent with reward-function and temporally extended actions, which learns over time,

gives the flexibility of adapting to dynamic systems. There is a primary assumption made in most

of these works that the agent is restricted in the same environment but can confront with different

tasks and that it can explore its environment sufficiently enough to gather necessary information.

The subsequent sections will briefly discuss the fundamentals of reinforcement learning and

options framework, which strives to continuously improve self by learning in any new

environment.

The work presented in this paper is an extension to our previous work [18], where we only

focused on applying primitive RL techniques and show their applicability in Linux schedulers.

Here we aim at improving the adaptive module by means of incorporating temporal extensions in

decision making. Our hope is that such extensions will remove lower level detailed action

selection and allow for intelligent abstracted options. Following sections in this paper are

organized as follows: Section 2 gives an overview of the related previous works and Section 3

explains the theory of reinforcement learning and options framework and sets up notation for this

paper. Section 4 shows how we approach the problem in hand by proposing a novel design,

integrate RL modules and run simulations and then followed by implementation details of

knowledge base created and self-learning systems in Section 5. The results and analysis of our

system‟s performance is evaluated in Section 6 followed by conclusions and discussions in

Section 7.

International Journal on Soft Computing, Artificial Intelligence and Applications (IJSCAI), Vol.4, No.3/4, November 2015

3

2. RELATED WORKS

Below section briefly discusses earlier works in relevant fields by applying machine learning

techniques to CPU resources and Operating system parameters. Attempts have been made to use

historical-data and learn the timeslice parameter, which judges the preemption time for a given

process, and make it more adaptive.

To remember the previous execution behaviour of certain well-known programs, [10] studies the

process times of programs in various similarity states. The knowledge of the program flow

sequence (PFS), which characterizes the process execution behaviour, is used to extend the CPU

time slice of a process. They also use thresholding techniques by scaling some feature to

determine the time limit for context switching. Their experimental results show that overall

processing time is reduced for known programs. Works related to Thread schedulers on multi

core systems, using Reinforcement learning, assigns threads to different CPU cores [6], made a

case that a scheduler must balance between three objectives: optimal performance, fair CPU

sharing and balanced core assignment. They also showed that unbalanced core assignment results

in performance jitter and inconsistent priority enforcement. A simple fix that eliminates jitter and

presents a scheduling framework that balances these three objectives by algorithm based on

reinforcement learning was explored.

For temporally actions, earlier work by Stolle et al. considered the frequency of visitationof states

to identify subgoals [25]. For the room-hallway environment the main notion is to detect the

hallway regions from the state space as they form the bottleneck for most paths from start to end

state. The work in [7] has addressed scheduler problem based on making fixed classifiers over

hand picked features. Here timeslice values were tried against several combination of attributes

and patterns emerged for chosing better heuristic. However, their approach was compatible to

only few common processes like random number generation, sorting etc. and unlike our work, not

universally adaptive for any application. Reward based algorithms and their use in resolving the

lock contention has been considered as scheduling problem in some the earlier works[2]. These

hierarchal spin-locks are developed and priority assigned to processes to schedule the critical-

section access.Application run times are predicted using historical information in [1]. They derive

predictions for run times of parallel applications from the run times of similar applications that

have executed in the past. They use some of the following characteristics to define similarity:

user, queue, load leveler script, arguments, network adapter, number of nodes, maximum run

time, submission time, start time, run time. These characteristics are used to make a template

which can find the similarity by matching. They use genetic algorithms (GA), which are are well

known for exploring large search spaces, for identifying good templates for a particular workload.

Statistical Regression methods, which work well on numeric data but not over nominal data, are

used for prediction [5].

An application signature model for predicting performance is proposed in [4] over a given grid of

resources. It presents a general methodology for online scheduling of parallel jobs onto multi-

processor servers, in a soft real-time environment. This model introduces the notion of application

intrinsic behaviour to separate the performance effects of the runtime system from the behaviour

inherent in the application itself. Reinforcement Learning is used for tuning its own value

function that predicts the average future utility per time step obtained from completed jobs based

on the dynamically observed state information. From this brief review of related literature, we

draw the following conclusions:

International Journal on Soft Computing, Artificial Intelligence and Applications (IJSCAI), Vol.4, No.3/4, November 2015

4

 It is possible to profitably predict the scheduling behaviour of programs. Due to the

varied results in all above discussed works, we believe that the success of the approach

depends upon the ML technique used to train on previous programs execution behaviour.

 A suitable characterization of the program attributes (features) is necessary for these

automated machine learning techniques to succeed in prediction.

In specific to using reinforcement learning in realms of scheduling algorithms, most of the work

is concentrated around ordering the processes like to learn better permutations of given list of

processes, unlike our work of parameter estimation.

3. FRAMEWORK

3.1. Reinforcement Learning

Reinforcement learning (RL) is a collection of methods for approximating optimal solutions to

stochastic sequential decision problems [6]. An RL system does not require a teacher to specify

correct actions, instead, it tries different actions and observes their consequences to determine

which actions are best. More specifically, in any RL framework, a learning agent interacts with its

environment over a series of discrete time steps t = 0, 1, 2, 3. . . Refer Figure.1. At each time t,

the agent observes the environment state st , and chooses an action at , which causes the

environment to transition to a new state st+1, and to reward the agent with rt+1 . In a Markovian

system, the next state and reward depend only on the current state and present action taken, in a

stochastic manner. To clarify notation used below, in a system with discrete number of states, S is

the set of states. Likewise, A is the set of all possible actions and A(s) is the set of actions

available in states. The objective of the agent is to learn to maximize the expected value of reward

received over time. It does this by learning a (possibly stochastic) mapping from states to actions

called a policy. More precisely, the objective is to choose each action at so as to maximize the

expected return R, given by,

 (1)

where γ is the discount-rate parameter in range [0,1] , which allows the agent to trade-off between

the immediate reward and future possible rewards.

Fig.1 Concept of Reinforcement learning depicting iteraction between agent and environment

International Journal on Soft Computing, Artificial Intelligence and Applications (IJSCAI), Vol.4, No.3/4, November 2015

5

Two common solution strategies for learning an optimal policy are to approximate the optimal

value function, V*, or the optimal action-value function, Q*. The optimal value function maps

each state to the maximum expected return that can be obtained starting in that state and

thereafter always taking the best actions. With the optimal value function and knowledge of the

probable consequences of each action from each state, the agent can choose an optimal policy.

For control problems where the consequences of each action are not necessarily known, a related

strategy is to approximate Q*, which maps each state and action to the maximum expected return

starting from the given state, assuming that the specified action is taken, and that optimal actions

are chosen thereafter. Both V* and Q* can be defined using Bellman -equations as

where s' is the state at next time step, P
a
ss' is its probability of transission and R

a
ss' is the associated

reward.

3.2. Temporally Extended Actions: Options

Options generalize trivial tasks into a single extended course of actions [19,28]. These temporally

extended actions when selected by the agent, execute until a termination condition is met. During

its execution, the actions of particular option are chosen according to its own policy. One can

consider options as traditional open-loop-macros that can also follow a closed-loop policy in

reaction to the environment. It is well established that by augmenting the agent‟s set of primitive

actions with options, the agent‟s performance can be enhanced. This framework consists of an

initiation set, a policy and termination condition (I, π, ß). An option can start in a state only if it is

included in {I}. Subsequently after selecting an option, the actions are chosen according to the

policy π until the option terminates stochastically according to ß. When the option terminates, the

agent gets opportunity to select another option or primitive action based on initiation set. Semi-

Markov decision process (SMDP) combines the above idea of a fixed set of options with MDPs.

The optimal policy over a set of options O is addressed by SMDP version of one-step Q-learning

learning methods.

4. OUR APPROACH

4.1. Problem formulation

Our prime motivation is to reduce the redundant preemptions that current schedulers do not take

into account. To explain using a simple example, suppose a process has a very little burst time left

and it is swapped due to the completion of its timeslice ticks, then the overhead of cache-

invalidation, pipeline clearing, context switching etc. reduces the efficiency. Hence having a

flexible timeslice window will prevent the above scenario. This would also improve the total time

taken after the submission of process to its completion, in return creating more processor ticks for

future.

In this paper, we want to study the application of machine learning in operating systems and build

learning modules so as to make the timeslice parameter flexible and adaptive. Our aim is to

maintain the generality of our program so that it can be employed and learned in any

environment. We also want to analyze how long it takes for a module to learn from its own

experiences so that it can be usefully harnessed to save time. Our main approach is to employ

reinforcement learning techniques for addressing this issue of continuous improvement. We want

International Journal on Soft Computing, Artificial Intelligence and Applications (IJSCAI), Vol.4, No.3/4, November 2015

6

to formulate our learning through the reward-function which can self-evaluate its performance

and improve overtime.

4.2. Module Design

Figure.2 gives an over all view of our entire system. It describes how our reinforcement learning

agent makes use of the patterns learned initially and later on after having enough experiences it

develops a policy of itself to use the prior history and reward-function.

Formally, these below steps capture the important end-to-end flow mechanism.

1. Program X passes its requirements in user-space for acquiring resources from computer

hardware. These requirements are received by our agent.

2. Reinforcement learning agent uses its knowledge base to make decision. It uses patterns

recognized in the initial stages to have a kick start with reasonable values and not random

values. Later on knowledge base develops its history and reward function after sufficient

number of experiences.

3. The information is passed from the user-space to kernel-space via a system call which

will have to be coded by us. This kernel call will redirect the resource request to our

modified scheduler.

4. The number of ticks to be allocated is found in the fields of new_timeslice and forwarded

to CPU. And finally, CPU allocates these received orders in form of new ticks.

5.

Fig.2 Bird’s eye view of our design and implementation pipeline

As the intermediate system call and modified scheduler are the only changes required in the

existing systems, we provide complete abstraction to the CPU and user-space.

4.3. Modelling an RL agent

We present here a model to simulate and understand the Reinforcement learning concepts and

understand the updates of Bellman equation in greater depth [6]. We have created this software

with an aim to visualize the results of changing certain parameters of RL functions and as a

precursor for modelling scheduler.

International Journal on Soft Computing, Artificial Intelligence and Applications (IJSCAI), Vol.4, No.3/4, November 2015

7

Fig.3 Maze showing the environment in which RL-agent interacts.

 Work-Space: Checkerboard setup with a grid like maze.

 Aim: To design an agent which finds its own way from the start state to goal state. The

agent is designed to explore the possible paths from start state and arrive at goal state.

Each state has four possible actions N, S, E & W. Collision with wall has no effect.

 Description: Figure.3 depicts the maze which consists of rooms and walls. The whole

arena is broken into states. Walls are depicted by dark-black solid blocks denoting that

the agent cannot occupy these positions. The other blocks are number 1,2,3.....60 as the

possible states in which agent can be. Agent is situated at S1 at time t=0 and at every

future action it tries to find its way to the goal state S60.

 Reward-function: Transition to goal state gives a reward of +100. Living penalty is 0.

Hence the agent can take as long time as it wants to learn the optimal policy. This

parameter will be changed in case of real time schedulers. Reward Updating policy has

Temporal difference updates with learning rate (alpha) =0.2

Initially the agent is not aware of its environment and explores it to find out. Later it learns a

policy to make that wise decision about its path finding. Code (made publicly available) is written

in C language for faster excution time and the output is an HTML file to help better visualize the

reward updates and policy learned. Results and policies learned will be described in later sections.

4.4. Identifying Options

Our algorithm is based on the intuition that removal of different states (blocking them) from the

state-space causes different amounts of changes in the cumulative rewards of neighboring states.

We draw analogy from Cooperative Game Theory, wherein a player gains importance based on

his individual contribution to the group as well as his collaborative efforts with every other

member (or subset) of the group [24]. Based on this idea, shapley value gives a fair share of

group-reward to any player based on analyzing the difference in group‟s performance with and

without the specific player. We are incorporating this concept into state-space domain by

blocking a particular state and calculating the net variance of difference in cumulative rewards of

its neighboring states. Upon specifying initiation set and learning internal policies of options

International Journal on Soft Computing, Artificial Intelligence and Applications (IJSCAI), Vol.4, No.3/4, November 2015

8

using standard RL methods, we focus to selecting sub-goal states that can potentially be

checkpoints. In order to learn future options, the agent starts to explore the environment ahead of

time by means of solving random tasks. During this exploration, agent gathers statistics of

learning a policy on complete state-space and learning a policy after blocking one of the random

states from state-space. This helps in calculating level of influence on its neighboring states upon

removal. The below algorithm gives a step wise guidance to our approach, followed by

experimental details.

Algorithm

1. Select a few random tasks by choosing pairs {S, T} uniformly over start and target states.

2. For each task

a. Perform standard Q-learning to obtain values of states for going from S to T.

b. Repeat the earlier Q-learning task by blocking states from state-space

systematically.

3. For every state, calculate the difference in cumulative rewards of its neighbors when it

was and was not blocked. Calculate the average variance to avoid any bias due to unequal

number of neighbors.

4. Choose the checkpoint states by observing local maxima in variance values amongst

neighboring states.

Blocking a state refers to no possible transition either from or to this state. An option can be

formulated in such a way that checkpoint states are included under termination condition and we

can further use SMDP Q-learning in order to learn a policy over these identified options.

4.5. Simulation

As the scheduler resides deep in the kernel, measuring the efficacy of scheduling policies in

Linux is difficult. Tracing can actually change the behavior of scheduler and hide defects or

inefficiencies. For example, an invalid memory reference in the scheduler will almost certainly

crash the system [8]. Debugging information is limited and not easily obtained or understood by

new developer. This combination of long crash-reboot cycles and limited debugging information

can result in a time-consuming development process. Hence we resort to a good simulator of the

Linux scheduler that we can manipulate for verifying our experiments instead of changing kernel

directly.

LinSched: Linux Scheduler simulation

LinSched is a Linux scheduler simulator that resides in user space [11]. It isolates the scheduler

subsystem and builds enough of the kernel environment around it that it can be executed within

user space. Its behaviour can be understood by collecting relevant data through a set of available

APIs. Its wrappers and simulation engine source is actually a Linux distribution. As LinSched

uses the Linux scheduler within its simulation, it is much simpler to make changes, and then

integrate them back into the kernel.

We would like to mention few of the essential simulator side APIs below, which we

experimented over. One can utilize them to emulate the system calls and program the tasks. They

International Journal on Soft Computing, Artificial Intelligence and Applications (IJSCAI), Vol.4, No.3/4, November 2015

9

are used to test any policy that are under development and see the results beforehand

implementing at kernel directly. linsched_create_RTrr(...) -creates a normal task and sets the

scheduling policy to normal. void linsched_run_sim(...) -begins a simulation. It accepts as its only

argument the number of ticks to run. At each tick, the potential for a scheduling decision is made

and returns when it is complete. Few statistics commands like void linsched_print_task_ stats()

and void linsched_print_group_stats() give more detailed analysis about a task we use. We can

find the total execution time for the task (with task_exec_time(task)), time spent not running

(task->sched_info.run_delay), and the number of times the scheduler invoked the task (task-

>sched_info.pcount).

We conducted several experiments over the simulator on normal batch of jobs by supplying it

work load in terms of process creation. First 2 normal tasks are created with no difference and

ambiguity (using linsched_create_normal_task(...)). We next created a job which runs on normal

scheduler and has a higher priority by assigning nice value as -5. Similarly we experimented with

jobs which had lower priority of +5, followed by populating another normal and neutral priority.

On the other hand, we also verified our experiments over batch tasks which are created with low

and high priorities. They are all computation intensive tasks which run in blocks or batches.

(using linsched_create_batch_task(...)). And then finally one real-time FIFO task with priority

varying in range of 50-90, and one round-robin real-time task with similar priority range. Each

task as created is assigned with task_id which is realistic as in real linux machines. Initially all

tasks are created one after other and then after scheduler_tick() function times out, it is called for

taking decision on other processes in waiting/ready queue. The relevant results will be discussed

in subsequent sections.

5. IMPLEMENTATION AND EXPERIMENTS

5.1. Knowledge Base Creation

5.1.1. Creating Dataset

To characterize the program execution behaviour, we needed to find the static and dynamic

characteristics. We used readelf and size commands to get the attributes. We built the data set of

approximately 80 execution instances of five programs: matrix multiplication, quick sort, merge

sort, heap sort and a recursive Fibonacci number generator. For instance, a script ran matrix

multiplication program of size 700 x 700 multiple times with different nice values and selected

the special time slice (STS), which gave minimum Turn Around Time (TaT). After collecting the

data for the above programs with different input sizes, all of them were mapped to the best

priority value. Data of the above 84 instances of the five programs were then classified into 11

categories based on the attribute time slice classes with each class having an interval of 50 ticks.

We mapped the variance of timeslice against total Turnaround Time (TaT) taken by various

processes like Insertion sort, Merge sort, Quick sort, Heap sorts and Matrix multiplication with

input ranging from 1e4, 1e5, 1e6 after experimenting against all possible timeslices.

5.1.2. Processing Dataset

After extracting the features from executable filles, by readelf and size commands, we refine the

number of attributes to only those few essential features which actually help in taking decision. A

few significant deciding features which were later used for building decision tree are: RoData

(read only data), Hash (size of hash table), Bss (size of uninitialized memory), DynSym (size of

dynamic linking table), StrTab (size of string table). The less varying / non-deciding features are

International Journal on Soft Computing, Artificial Intelligence and Applications (IJSCAI), Vol.4, No.3/4, November 2015

10

discarded. The best ranked special time slices to each instance to gauge were classified to the

corresponding output of decision tree. The processed result was further fed as input to to the

classifier algorithm (decision trees in our case) to build iterative if-else condition.

5.1.3. Classification of Data

To handle new incoming we have built a classifier with attributes obtained from previous steps.

Decision tree rules are generated as the output from classification algorithm. We used WEKA

(Knowledge analysis tool) to model these classifiers. Most important identified features are

RoData , Bss and Hash . Finally groups are classified into 20 classes in ranges of timeslice. Few

instances for Decision Tree Rules are mentioned below.

 if {(RoData<=72) AND (bss <= 36000032) AND (bss <= 4800032) AND (bss

<=3200032) } then class=13

 if {(RoData<=72) AND (bss <= 36000032) AND (bss <= 4800032) AND (bss >

3200032) } then class=2

 if {(RoData<=72) AND (bss <= 36000032) AND (bss > 4800032) AND (bss <=

7300032) } then class=5

 if {(RoData<=72) AND (bss <= 36000032) AND (bss > 4800032) AND (bss > 7300032)

AND (bss <= 2000032) } then class=3

 if {(RoData<=72) AND (bss > 36000032) AND (bss <= 4800032) } then class=7

 if {(RoData<=72) AND (bss <= 36000032) AND (bss > 4800032) AND (bss > 7300032)

AND (bss > 2000032) } then class=0

 if {(RoData<=72) AND (bss > 36000032) AND (bss <= 4800032) } then class=4

To give a better visualization of out features, we present in Table.1 various statistics obtained for

Heap sort with input size 3e5 and priority (nice value) set to 4. These statistics help us decide the

lowest Turnaround Time and lowest number of swaps taken for best priority class.

Feature Name Value Feature Name Value

User time (seconds) 0.37 Voluntary context switches 1

Minor (reclaiming frame) page faults 743 Involuntary context switches 41

Percent of CPU this job got 98% File system outputs 8

Elapsed (wall clock) time (h:mm:ss) 0:00.38 Socket messages sent 0

Maximum resident set size (kbytes) 1632 Socket messages received 0

Signals delivered 0 Page size (bytes) 4096

Table.1 Statistics obtained for Heap sort with input size 3e5 showing the classifier features.

5.2. Self-Improving Module

The self-learning module that is based on Reinforcement learning technique is proved to improve

over time with its experience until converged to saturation. The input to this module is the group

decision from the knowledge base in the previous step as the output of the if-else clause. Further,

reinforcement learning module may give a new class if it decides from its policy learned over

time of several running experiences. In the background this self improving module would explore

for new classes which it could assign to a new incoming process. We modelled the scheduler

actions as a markov decision process where decisions for assigning a new time slice solely based

over current state and it need not have to take into account of the previous decisions. The policy

mapping for states and their aggregate reward associated is done using the Bellman equations

International Journal on Soft Computing, Artificial Intelligence and Applications (IJSCAI), Vol.4, No.3/4, November 2015

11

 (3)

Figure.4 shows how using an array implementation of Doubly Linked List, we generated the

above module. Temporal difference (TD method) was used for updating the reward-function with

experiences and time. The sense of reward for the scheduler agent was set to be a function of

inverse of waiting time of the process. The choice of such a reward function was to avoid the bias

introduced by the inverse of total turnaround time (TaT), which is the least where compared to

waiting time. This is because TaT is also inclusive of total number of swaps which in turn is

dependent over the size of input and size of text, whereas waiting time does not depend over the

size of input. We set the exploration vs. exploitation constant to be 0.2 which is still flexible

under temperature coefficient mentioned above.

Input to this module is the class decision from knowledge base obtained in the previous step

which is the output of the decision tree. It outputs a new class which RL module decides from its

policy generated over time of running. Reward sense is given by the inverse of waiting time of

the process. We have used exploration vs. exploitation ε-greedy constant as 0.2.

Fig.4 Integration of self learning module with decision tree knowledge base.

In our experimental Setup, we used WEKA (Knowledge analysis tool) for Decision trees and

attribute selection. For compilation of all programs we used gcc (GNU_GCC) 4.5.1 (RedHat

4.5.1-4). To extract the attributes from executable/binary we used readelf & size command tools.

For graph plots and mathematical calculations we used Octave.

5.3. Temporal Extension

We chose maze-world navigation task, as shown in Figure.3, to validate our hypothesis, where

the setup can be perceived as rooms connected via hallways. The rooms-hallway environment is

broken into 60 states where an agent can occupy only one state at any point of time. The agent

tries to find the goal state by traversing a path in the state-space. There are four stochastic

primitive actions that can move the agent North, South, East and West. Each action moves the

agent in expected direction with probability 0.8 and one of the other 3 directions with probability

0.2, chosen randomly. If the agent attempts to move into a blocked state or wall, it stays in the

same position. The agent starting at state:1 with no penalty being incurred for living or hitting the

walls. The discount factor for future rewards is 0.7 and there are no associated transition rewards

anywhere else except for exiting the maze at goal state:60. This environment is depicted in

Figure.3. We try to address the problem of finding bottleneck regions by treating them as

multiple-instance learning problem [20] with diverse density [21]. Here the system attempts to

International Journal on Soft Computing, Artificial Intelligence and Applications (IJSCAI), Vol.4, No.3/4, November 2015

12

identify a target concept on the basis of paths of positive and negative instances. A positive path

has at least one successful instance while negative path consist of all failed attempts to reach goal.

We place more importance to a negative bag that consists of observations made over an

unsuccessful path trajectory. Identifying bottleneck regions is well fit by this paradigm.

6. RESULTS AND ANALYSIS

For the maze environment as shown in Figure.3, one can intuitively expect the hallway regions to

be obvious candidates for option termination state ß. Our proposed algorithm indeed identifies

those particular hallway states to be important and marks them as checkpoints. As any path

crossing from one room to another needs to utilize the in-between hallway, blocking that

particular hallway would require the agent to identify another roundabout way. Blocking a state

that is well situated inside a room does not impact the cumulative rewards of its neighboring

states.

Fig5.Integration of self learning module with decision tree knowledge base.

Figure.5 is a temperature color-coded visualization for the variance in cumulative rewards of

neighbors. The numerical value in each state specifies the variance in difference of cumulative

rewards of its neighbors when the particular state is blocked. The color of any state is its simple

translation of numerical value over hue-scale. The change in color of adjacent states is more

significant for identifying hallway regions than the color themselves.

Fig.6 Variance in difference of cumulative rewards of neighboring states upon blocking a particular state. x

-axis considers this variance for each state in entire state space..

International Journal on Soft Computing, Artificial Intelligence and Applications (IJSCAI), Vol.4, No.3/4, November 2015

13

The graph plot for variance in cumulative rewards presented in Figure.6 is yet another easier

interpretation of above color-coded maze.

Fig.7 Exaggerated version of Figure.6 over few states of 10:16, highlighting the fluctuation of variance in

the hallway region

The fluctuation of local-maxima indicates important states that are correctly identified as hallway

regions. An exaggerated version of Figure.6 over the states 10:16 is depicted in Figure.7.

This observation reinforces our positive results verifying the correctness. The above results

indicate that hallway regions are found to exhibit a local-maxima property in variance vs. state-

space graph.Below we present a few test cases that characterise the general behaviour of

scheduler interaction with knowledge base and self-improving module. We also analyse the

effectiveness of integrating Static knowledge base and self-learning module by calculating time

saved and number of CPU cycles conserved. Programs were verified after executing multiple

times with different nice values on Linux System. Their corresponding figures show how the

turn-around-time changed as the CPU allotted timeslice of the process changed.

Experiments show that there does not exist any direct evident relation between time slice and

CPU utilization performance metrics. Refer Figure.8 and Figure.9 plot of TaT vs. timeslice class

allotted. Hence it is not a simple linear function which is monotonic in nature. One will have to

learn a proper classifier which can learn the pattern and predict optimal timeslice. Below we show

the analysis for 900x900 matrix multiplcation and merge sort (input size 3e6). Table.2 shows

their new suggested class from knowledge base. For Heapsort (input size 6e5) and Quicksort

(input size 1e6) we have only plotted their TaT vs. Timeslice graphs in Figure.8, which is similar

in wavy nature as Figure.9. We have omitted explicit calculations to prevent redundancy in paper,

as their nature is very similar to previous matrix multiplication.

Effectiveness analysis for Matrix Multiplication with input size of 900x900 random matrix

elements.

 Turnaround Time (normal) - 27872216 ms

 Turnaround Time (with KB)- 24905490 ms

 Time saved = 2966726 ms

 Time saved per second - 109879 ms

International Journal on Soft Computing, Artificial Intelligence and Applications (IJSCAI), Vol.4, No.3/4, November 2015

14

 No. of clock cycles saved - 2.4MHz x 109879

 No. of Lower operations saved - 109879 / (pipeline clear + context switch etc.)

Fig.8 Timeslice class (unnormalized nice values) vs.

Turn around time for (a) Matrix Multiplication and (b)Merge Sort .

Matrix Multiplcation Merge Sort

Turn around time

 (microsec)

Timeslice class

suggested

Turn around time

 (microsec)

Timeslice class

suggested

24905490 16 6236901 15

25529649 10 7067141 7

25872445 14 7305964 18

26151444 4 7524301 11

26396064 6 7639436 1

26442902 18 8055423 10

26577882 11 8273131 4

26800116 7 8302461 14

26827546 5 8537245 6

27080158 15 8569818 17

27376257 17 9255897 16

27484162 8 9483901 9

27643193 12 9499732 2

28535686 9 9660585 13

28581739 1 9844913 8

28900769 13 10217774 12

Table.2 Optimal timeslice-class decisions made by knowledge base module for Matrix multiplication of

input 900x900 and Merge sort over input size 3e6 elements.

International Journal on Soft Computing, Artificial Intelligence and Applications (IJSCAI), Vol.4, No.3/4, November 2015

15

Effectiveness analysis for Merge Sort with input size of 3e6 random array elements.

 TaT (normal) - 10439931 ms and TaT(with KB)- 6236901 ms

 Time saved = 4203030 ms

 Time saved per second - 382093 ms

 No. of clock cycles saved - 2.4MHz x 382093

 No. of Lower operations saved - 382093 / (pipeline clear + context switch etc.)

 (a) (b)

Fig.9 Timeslice class (unnormalized nice values) vs. Turn around time for (a)Heap Sort, (b)Quick Sort .

Fig.10 Values learned from iterative Q-learning steps for each cell state in Fig.3 after blocking state 13.

Values represent the cumulative rewarding of taking action in that particular direction.

International Journal on Soft Computing, Artificial Intelligence and Applications (IJSCAI), Vol.4, No.3/4, November 2015

16

Effectiveness analysis for Heap Sort with input size of 6e5 random array elements.

 Turnaround Time (normal) – 4320086 ms

 Turnaround Time (with KB)- 1678159 ms

 Time saved = 2641927 ms

 Time saved per second – 880642 ms

 No. of clock cycles saved - 2.4MHz x 880642

 No. of Lower operations saved - 880642 / (pipeline clear + context switch etc.)

System essential statistics

 User time (seconds): 0.81

 System time (seconds): 0.00

 Percent of CPU this job got: 99%

 Elapsed (wall clock) time (h:mm:ss or m:ss): 0:00.82

In the Fig.10, we observe the influence of blocking a random state (state 13 in this case) and

report the behaviour of neighboring states. As 13 lies in hallway region, it causes above average

change in cumulative rewards of 12 and 14, as compared to values in Fig.5.

7. DISCUSSION AND CONCLUSIONS

It is apparent that states near hallway region show sudden fluctuation in variance of rewards upon

blocking them. An interesting fact to be noticed here is that the states adjacent to hallway (like 29,

47) show greater change than the hallway state itself (like 35, 48). Our algorithm suggests that

both the ends of the hallway should be perceived to be more important than the hallway itself. We

humans would consider mid-hallway as a natural option for an agent, but for what is intuitive to

humans may not necessarily be the best optimized solution for machines. Another side

observation is the gradual increase in numerical value of variance of cumulative reward level for

states that are nearer to the goal-state. This is expected, as the states achieve more importance in

being closer to the goal state, which causes numerical bias of rewards as we approach the goal. As

Q-learning equation suggests, one extra step towards the goal will deduce the optimal policy

faster. Hence it is sensible for agent to cross over the hallway, before termination, within the same

option.

Further from the scheduler results we can observe that the turnaround time can be optimized by

reducing redundant context switches and also reducing the additional lower level register swaps,

pipeline clearances etc. This in turn saves the CPU cycles that are valuable resource for runtime

execution of subsequent jobs. A self-learning module proposed here has the potential of

constantly improving with more experiences and is provided over a knowledge base to prevent

the problem of cold-start. We have showed the non-intuitive irregularity between decreasing

turnaround time and increasing time slice by wave-pattern of TaT vs. class of time.

As one may observe, the above procedure is computationally intensive and would be expensive in

case of large state-space. But identification of optimal option subgoals motivates for future work

on approximation algorithms that stochastically arrive at the same solution with good precision.

We are also currently investigating ways to address the problem of infinite horizon in

reinforcement learning, as the scheduler may run for infinite amount of time (or very large time

unit) and scores rewards just for the sake of its existence.

International Journal on Soft Computing, Artificial Intelligence and Applications (IJSCAI), Vol.4, No.3/4, November 2015

17

 REFERENCES

1. Warren Smith, Valerie Taylor, Ian Foster, Predicting Application Run-Times Using Historical

Information”, Job Scheduling Strategies for Parallel Processing, IPPS/SPDP„98 Workshop, March,

1998.

2. Jonathan M Eastep, “Smart data structures: An online ML approach to multicore Data structure”,

IEEE Real-Time and Embedded Technology and Applications Symposium 2011.

3. M. John Calandrino , documentation for the main source code for LinSched and author the

linux_linsched files LINK: http://www.cs.unc.edu/~jmc/linsched/

4. D. Vengerov, A reinforcement learning approach to dynamic resource scheduling allocation,

Engineering Applications of Artificial Intelligence, vol. 20, no 3, p. 383-390, Elsevier, 2007.

5. Richard Gibbons, A Historical Application Profiler for Use by Parallel Schedulers, Lecture Notes on

Computer Science, Volume : 1297, pp: 58-75, 1997.

6. Richard S. Sutton and Andrew G. Barto. , Reinforcement Learning: An Introduction. A Bradford

Book. The MIT Press Cambridge, Massachusetts London, England.

7. Atul Negi, Kishore Kumar. P, UOHYD, Applying machine learning techniques to improve Linux

process scheduling 2010.

8. Internals of Linux kernel and documentation for interface modules LINK:

http://www.faqs.org/docs/kernel_2_4/lki-2.html

9. D. Vengerov, A reinforcement learning framework for utility-based scheduling in resource-

constrained systems, Future Generation Compute Systems, vol. 25, p. 728-736 Elsevier, 2009.

10. Surkanya Suranauwarat, Hide Taniguchi, The Design, Implementation and Initial Evaluation of An

Advanced Knowledge-based Process Scheduler, ACM SIGOPS Operating Systems Review, volume:

35, pp: 61-81, October, 2001.

11. Documentation for IBM project for real scheduler simulator in User space LINK:

http://www.ibm.com/developerworks/library/l-linux-schedulersimulator/

12. Tong Li, Jessica C. Young, John M. Calandrino, Dan P. Baumberger, and Scott Hahn , LinSched: The

Linux Scheduler Simulator Research Paper by Systems Technology Lab Intel Corporation, 2008

13. McGovern, A., Moss, E., and Barto, A. G. (2002). Building a basic block instruction scheduler with

reinforcement learning and rollouts. Machine Learning, 49(2/3):141– 160.

14. Martin Stolle and Doina Precup , Learning Options in Reinforcement Learning Springer-Verlag Berlin

Heidelberg 2002

15. Danie P. Bovet, Marc, Understanding the Linux Kernel, 2nd ed, O„ Reilly and Associates, Dec., 2002.

16. Modern Operation System Scheduler Simulator, development work for simulating LINK:

http://www.ontko.com/moss/

17. Andrew Marks, A Dynamically Adaptive CPU Scheduler, Department of Computer Science, Santa

Clara University, pp :5- 9, June, 2003.

18. Prakhar Ojha, Thota Siddhartha R, Vani M, Tahilianni Mohit, Learning Scheduler Parameters for

Adaptive Preemption, 2015, National Institute of Technology Karnataka, pp: 148-162, SCAI‟15

ICAITA.

19. X. Ding, Y.-t. LI, and S. Chuan. Autonomic discovery of subgoals in hierarchical reinforcement

learning. The Journal of China Universities of Posts and Telecommunications, 21(5):94–104, 2014.

20. D. R. H. Lathropb Thomas G. Solving the multiple-instance problem with axis-parallel rectangles.

21. A. McGovern. acquire-macros: An algorithm for automatically learning macro-actions. In NIPS98

Workshop on Abstraction and Hierarchy in Reinforcement Learning, 1998.

22. A. McGovern, R. S. Sutton, and A. H. Fagg. Roles of macro-actions in accelerating reinforcement

learning. In Grace Hopper celebration of women in computing, volume 1317, 1997.

23. R. B. Myerson. Conference structures and fair allocation rules. International Journal of Game Theory,

9(3):169–182, 1980.

24. D. Precup. Temporal abstraction in reinforcement learning. 2000.

25. M. Stolle and D. Precup. Learning options in reinforcement learning. In SARA, pages 212–223.

Springer, 2002.

26. R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction, volume 1. MIT press

Cambridge, 1998.

27. R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for temporal

abstraction in reinforcement learning. Artificial intelligence, 112(1):181–211, 1999.

International Journal on Soft Computing, Artificial Intelligence and Applications (IJSCAI), Vol.4, No.3/4, November 2015

18

Authors

Prakhar Ojha, student of the Department of Computer Science Engineering at

National Institute of Technology Karnataka Surathkal, India. His areas of interest are

Artificial Intelligence, Reinforcement Learning and Application of knowledge bases

for smart decision making.

Siddhartha R Thota, student of the Department of Information Technology at

National Institute of Technology Karnataka Surathkal, India. His areas of interest are

Machine Learning, Natural language processing and hidden markov model based

Speech processing.

Vani M is a Associate Professor in the Computer Science Engineering Department

of NITK. She has over 18 years of teaching experience. Her research interest

includes Data Structures and Algorithms, Algorithmic graph theory, Operating

systems and Algorithms for wireless sensor networks.

Mohit P Tahiliani is a Assistant Professor in the Computer Science Engineering

Department of NITK. His research interest includes Named Data Networks, TCP

Congestion Control, Bufferbloat, Active Queue Management (AQM) mechanisms

and Routing Protocol Design and Engineering.

