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ABSTRACT 

 
With the emergence of XML as de facto format for storing and exchanging information over the Internet, 

the search for ever more innovative and effective techniques for their querying is a major and current 

concern of the XML database community. Several studies carried out to help solve this problem are mostly 

oriented towards the evaluation of so-called exact queries which, unfortunately, are likely (especially in the 

case of semi-structured documents) to yield abundant results (in the case of vague queries) or empty results 

(in the case of very precise queries). From the observation that users who make requests are not 

necessarily interested in all possible solutions, but rather in those that are closest to their needs, an 

important field of research has been opened on the evaluation of preferences queries. In this paper, we 

propose an approach for the evaluation of such queries, in case the preferences concern the structure of the 

document. The solution investigated revolves around the proposal of an evaluation plan in three phases: 

rewriting-evaluation-merge. The rewriting phase makes it possible to obtain, from a partitioning-

transformation operation of the initial query, a hierarchical set of preferences path queries which are 

holistically evaluated in the second phase by an instrumented version of the algorithm TwigStack. The 

merge phase is the synthesis of the best results.  
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1. INTRODUCTION 
 
A semi-structured XML document is an electronic document whose textual content has a certain 
regularity (well formed document), and has a structure that is not constrained by a model: its 
structure is flexible [1]. Textual content and structural flexibility make semi-structured documents 
excellent candidates for the exchange and storage of data: we talk of XML Databases (XML 
DBs).  
 
The data stored in the DBs are generally exploited through a dedicated query language (SQL for 
RDB - Relationnal Database -, XPath, XQuery for XML DBs, etc) allowing the user to express 
queries to be efficiently evaluated by a query engine. The quest for more innovative and effective 
techniques for evaluating user queries is becoming a major and current concern of the XML 
database community. Several authors have looked into it and have proposed solutions that 
initially consisted in the rewriting of XML queries into SQL ones, and then, in a second step, the 
proposal of native evaluation algorithms [2, 3, 4] for the so-called exact or strict queries, which, 
unfortunately, are likely (especially for the case of semi-structured documents) to return abundant 
results (case of vague queries) or empty results (case of very specific queries).  
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From the observation that users making queries are not necessarily interested in all possible 
responses to their queries, but rather those that come closest to their needs, an important field of 
research have been opened on the evaluation of queries with preferences: these queries consist of 
two parts, specifying mandatory requirements called constraints and optional requirements called 
wishes or preferences [5, 6]. It is understood that a response to a query with preference must 
imperatively satisfy the first part and possibly the second; however, if there is even a satisfactory 
response to both the first and the second part, only the responses that satisfy both must be 
returned as a result.  
 
The problem addressed in this paper concerns the evaluation of XML queries with structural 
preferences (preferences relating to the structure of the document). Several approaches to evaluate 
such queries have already been proposed in the literature (see section 2.2). They usually differ by 
the document indexing technique used (like DataGuide [7] or region encoding [8]) or by their 
evaluation strategy (like rewriting queries before their evaluation, [9, 7, 8] or direct evaluation 
[10]). 
 
We propose in this paper an approach to evaluate queries with structural preferences. The 
investigated solution concerns the case of documents indexed by a DataGuide [11] annotated by 
the region encoding [12, 2, 4]; it revolves around the proposal of the preferences queries 
evaluation strategy in three phases: rewriting-evaluation-merge. The rewriting phase makes it 
possible to obtain (this is the first main contribution of the paper), from a partitioning-
transformation operation of the initial query, a hierarchical set of preference path queries which is 
(this is the second main contribution of the paper) holistically evaluated in the evaluation phase 
by an instrumented version of the TwigStack algorithm [2]. The merging phase consists in 
synthesizing the best results by making use of a so-called preferenceTable in order to store the 
candidate results, from which the best ones (i.e. the un-dominated ones) will be selected by means 
of the Skyline operator [13]. A synoptic view of the proposed evaluation approach is schematized 
in the figure 1.  
 

 
 

Figure 1. A synoptic view of our holistic evaluation approach of preference queries 

 

Organization of the manuscript: section 2 introduces the concepts of XML documents 
(representation, indexing) and their queries, while section 3 is dedicated to the presentation and 
illustration of our holistic evaluation approach of preference queries. In section 4, we fully unfold 
a running example of prefTwigStack highlighting the majors concepts outlined in this paper. 
Finally, we conclude the paper in the section 5. 
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2. XML DOCUMENTS AND QUERIES  
 
2.1. Representations And Indexing Of XML Documents  

 
An abstract XML document

1
 
 
is represented by a labeled tree D =(Nd , Ed ) where Nd is a set of 

labeled nodes, Ed a set of arcs each connecting two nodes of Nd. For any node x ∈ Nd the 
function labeld(x) returns its label.  
 
XML documents are generally exploited through indexes that can be grouped into three 
categories [4]: path indexes, which is a summary of all paths from the root to any node of the 
considered XML document, node indexes, and the category of sequence based indexes. A detailed 
presentation of those commonly used is given in [14]. In this paper, the index used is the one that 
is derived from the hybridization of a path index: the (strong) DataGuide [11] and a index based 
on the region encoding [12]; it is this index which is used for the implementation of TwigX-
Guide [4].  
 
Let’s recall that, in its original form, a DataGuide is a summary of all the paths contained in a 
document in such a way that, every path of the source document appears exactly once in the 
DataGuide. The DataGuide is usually smaller than the document whose it is the index and can be 
used to answer very effectively path queries containing only ParentChild (P-C) relationships. 
However, it is unusable for the evaluation of queries containing the Ancestor-Descendant (A-D) 
relations because, it does not retain in its representation, the hierarchical structural relations that 
exist between the nodes of the document which it represents [11, 15]. Nevertheless, if we 
annotate a DataGuide for example with the nodes region encoding as in TwigX-Guide [4], we can 
couple it to a query rewriting strategy to effectively evaluate twig queries. Let’s recall also that in 
the indexing based on nodes region encoding [12], each document node is represented by a triplet 
(Start, End, Level): Start and End represent respectively the start and end positions of the element 
in the document; Level is the depth of the element in the tree representation of the document. 
With this convention, as in [3], the index of a document consists of a set of sorted linked lists Ta 

of occurrences of nodes of type a. These lists are sorted according to the component Start of the 
triplet.  
 
Note that, for any couple of nodes a and b respectively represented by the triplets (starta, enda, 

levela) and (startb, endb, levelb), one of the advantages of this representation is that it allows to 
determine the relations (P-C) or (A-D) in constant time. Indeed, a is an ancestor of b if and only 
if starta<startb<enda. If in addition levela + 1 = levelb, then a is the parent of b. Subsequently, 
we will say of a node a that it covers a node b if b is a descendant of a.  
 

2.2. XML Queries: Representation And Evaluations  
 
Like a classic DB, an XML document contains information (data). It also encapsulates a structure 
that must be taken into account when querying. Thus, an XML query concerns not only the 
content (the data) but also the structure (the structural relations that the user wishes to have 
between the different occurrences of the elements).  
 
As for the documents representation, an XML query Q can be represented by a tree Q = (Nq, Eq) 
in which Nq is a set of labeled nodes, Eq a set of arcs each linking two nodes of Nq. In Eq there 
are two types of arcs: those linking a parent node to a child node denoted x/y and those linking a 
node to one of his descendants noted x//y. For any node x ∈ Nq the function labelq(x) returns its 

                                                 
1 In an abstract XML document, text and attribute nodes are ignored: these are not of any interest for the 
purely structural treatments that interest us in this paper. 
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label, and we write Σ = {labelq(x), x ∈ Nq} the set of all labels of the query Q.  
 
Let, Q = (Nq, Eq) be a query, D = (Nd , Ed) an XML document, two nodes nd ∈ Nd and nq ∈ Nq: 
we’ll say that nd is an instance or an occurrence of nq in D if labelq(nq) = labeld(nd). Matching 
the query Q on the document D consists in finding for every node of Q, their occurrences in D 

and such that, these occurrences satisfy the same structural constraints than those defined between 
the nodes Nq. If it is the case, we say we found a match of Q in D. Evaluating a query Q on a 
document D is equivalent to find all its matches in D.  
 
Several techniques for evaluating XML queries exist in the literature. Some (older) of them 
rewrite XML queries to another format, usually the SQL format; others, on the other hand, 
operate natively. In the second category, there are two main approaches of evaluation [4]: one 
carrying the depth first search (DFS) tree traversal of the tree representation of the document to 
match the query tree [3, 9, 8], and the one proceeding by decomposition-matching-merge [2, 4]. 
The first algorithms proposed in the second approach proceeded by binary decomposition of the 
query nodes, with the main disadvantage that, they construct many intermediate results that are 
not necessarily used for the production of the final solution. Moreover, these algorithms perform 
many mergers that explode their temporal complexities. New techniques have been developed in 
the wake of the second approach to address this limitation. The most famous use a holistic 
evaluation approach originally proposed by Bruno et al. [2], and developed in many works [16, 
4]. 
 
2.3. Preference queries  
 
When the query matching is made in such a way that each query node is absolutely associated 
with at least one document node [2,3,4,9], the corresponding query is said to be an exact query. 
There are also queries with so-called preferences nodes also called preference queries. A 
matching of such a query may not contain occurrences of the preference nodes but, necessarily, 
those of the so-called strict or exact nodes [6,7,8,10]. Evaluating a preference query on a 
document amounts to returning the best matches of it. In order to do this, we first return 
exclusively only the matches containing all the occurrences of the query nodes and, if there is no 
such matching, we return those containing the "maximun" matching of preference nodes. 
 
In the current study, the language used to express preference queries is the one proposed by Sara 
Cohen et al. [7]. A preference node is followed by the "!" symbol. For example, in the preference 
query Q1 = A[B! [C/D]/E]/F[G[//H[I!/J]/K]/L]/M the nodes "B" and "I" are preference nodes. A 
query path in which a preference node can only appear as the last node is called a prefPathQuery. 
They are on the form l1/.../lm/l(m+1)!; Q2 = A/B! is an example. 
 

3. HOLISTIC EVALUATION OF PREFERENCES QUERIES  
 
We present in this section PrefTwigStack, a holistic evaluation algorithm of XML preference 
queries. It is decomposed into three routines corresponding to as many processing phases: 
rewriting-evaluation-merge (see figure 1). 
 
3.1. Preftwigstack: The Rewriting Phase Of The Initial Query  
 
The purpose of the rewriting phase is to transform a preference query into an equivalent one in 
which nodes are prefPathQuery: the obtained query is then easily evaluable on a DataGuide. This 
phase consists of three sub-phases: local decomposition - rewriting - global merging. 
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3.1.1. The Local Decomposition Sub-Phase  
 

The initial query t is decomposed into a set of subqueries t1,..., tn forming a (tree) partition Πt
 2
of 

t and such that, for any subquery ti (it is a subtree), it can not exist a (A-D) relation between its 
nodes, but also, it can only have preference nodes at its leaf. Πt is constructed as follows:  
 

a) find the largest prefix t1 of t (it is a subtree) such that its leaf nodes which are either 
leaves in t, or preference nodes or else, are nodes linked to another node of t by an (AD) 
relation. In order to do this, during the t’s traversal, we cut any arc starting from a 
preference node or any arc starting from a node having an arc representing an (A-D) 
relation. 

b) prune t1 from t: it is the first element of the Πt partition; in fact, it is the root element of 
(the tree) Πt .  

c)  if following the pruning of t1 from t, the residual forest is not empty, then, each subtree 
of this one is pruned equally (as in a) and in b)); each time, the obtained prefix is added as 
the son of a Πt node, at the same relative position like the one occupied by the t’s 
currently pruned subtree in t3. This process is repeated until an empty forest is obtained 
(fig. 2.a).  

 

3.1.2. The Local Rewriting Sub-Phase  

 
The goal here is to rewrite a twig subquery4 

 
(the tag of a Πt node), in an equivalent one whose 

nodes are tagged with prefPathQuery (figure 2.b).  
 
The rewriting technique is inspired by the one used by Su-Cheng et al. [4] for the evaluation of 
exact queries on a DataGuide. Note that, the rewriting approach that they have developed, 
significantly reduces the number of subqueries to be evaluated on DataGuide and consequently, 
the number of joins to perform in order to synthesize the final solution.  
 
The rewrite approach described in [4] uses the topBranchNode notion which, for a given t twig 
query, designates the first twig node that is encountered on the path stemming from the t’s root. 
Following this notion, we introduce that of topBranchNodePath which designates the path going 
from the t’s root to its topBranchNode.  
 
Let q be a twig (sub)query produced by the previous phase, and ti be a subtree (ie, a subquery) of 
q, let’s consider absPathTo_ti as the absolute path to the root node of ti in q. The main idea of our 
rewriting technique is: a) to determine the topBranchNodePath_ti of ti; it will be used to build 
absPathToTopBranch-NodePath_ti which will be the root node label of the tree to be generated 
by the ti rewriting, and the prefix for the tags of the other nodes of that tree: 
absPathToTopBranchNodePath_ti = absPathTo_ti/topBranchNodePath_ti b) to recursively 
transform any subtree st of the ti topBranchNode into a tree tagged by pathQuery. To do this, 

                                                 
2 The Πt partition is represented as a tree in which each node contains a subquery ti of t. This tree 
representation of the partitioning of t, makes it possible to preserve in the subqueries ti all the hierarchical 
relations (P-C, A-D, etc ) that existed between t’s nodes. 
3 In order to make the processing of the global merge sub-phase possible, each node of the tree encoding 
the partitioning of t is decorated by a triplet (leafNum, relPos, relType) such that, if the subquery tic of Πt 

has as parent the subquery tip in Πt , relPos is the relative position of the root node of tic in the list of child 
nodes of nelag (nelag is the tip’s leaf node, whose tic’s root node is one of his children: nelag is either a 
preference node, or a node having an (A-D) relation whose pruning led to the creation of tic), and typeRel is 
the relationship type ((A-D) or (P-C)) that links nelag to the root node of tic in t. leafNum is the nelag’s 
relative position among the leaves of tip. 
4 Recall that, it must at the best of times have preference nodes exclusively at his leaves. 
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considering that absPathToTopBranchNodePath_ti is the absolute path to the topBranchNode of 
ti, if st is a path query, then, add it as the child node of the node labeled by 
absPathToTopToBranchNodePath_ti/st at the same position as st was in ti; this node will be 
tagged absPathToTopBranchNodePath_ti/st. Otherwise, recursively call the function rewrite

5
 

with absPathToTopBranchNodePath_ti and the subtree st as effective parameters. The recursive 
call result will be added as the child node of the node labeled by the 
absPathToTopBranchNodePath_ti at the same position as st was in ti.  
 

3.1.3. The global merging sub-phase  

 
The purpose of this subphase is to produce a query whose nodes are tagged by preference path 
queries by merging the annotated rewriting of subqueries from the previous subphase. Any tic 

rewriting of a subquery t annotated with (leafNum, relPos, typeRel), which parent is the rewritten 
subquery tip, is inserted as relPos

th subtree of the leaf number leafNum of tip; the relation linking 
it to this leaf being typeRel.  
 
Figure 2 gives an overview of the results of the processing carried out in each of these subphases 
on the Q1 query presented in section 2.3.  
 

 
 

Figure 2. Overview of prefTwigStack rewriting phase on the initial query Q1 
 
3.2. Preftwigstack: Holistic Evaluation Phase Of The Rewritten Query  
 
This phase takes as input a query in which each node is decorated with a prefPath-Query. It aims 
to return all the solutions resulting from the holistic evaluation of the latter with production for 
any solution, information indicating the occurrences of the preference nodes which it eventually 
integrates; those informations are directly inserted in a so-called prefTable [8] a soon as they are 
produced.  
 
The algorithm proposed for this phase is an instrumentalized version of the TwigStack algorithm 
[2] for the evaluation of a tree whose nodes are labeled with prefPathQuery

6.  
 
Like in TwigStack, a stack and a list are associated with each node of the query tree. However, 
unlike TwigStack which for a query node already has the list of occurrences of his label via the 
document index, here, this list is obtained from the annotated DataGuide after the evaluation of 
the prefPathQuery who label the query node. For the evaluation itself, TwigStack [2] is used to 
holistically merge the lists associated with the different nodes. But, how are these lists obtained?  

                                                 
5 The function rewrite allows to rewrite the tree taken as a second parameter into an equivalent tree whose 
nodes are labeled by path queries, all prefixed by the path that the function takes as its first parameter. 
6 Note that in TwigStack, nodes are labeled by element names and not by paths as they are here. 
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3.2.1. Evaluating A Prefpathquery On An Annotated Dataguide  

 
A prefPathQuery Chnq tagging a given node of a query tree is either a strict path of the form 
Chnqs = l1/.../lm or, a preference path of the form Chnqp = l1/.../lm/l(m+1)! having l(m+1)! as the 
single preference node. The evaluation of such a query on annotated DataGuide is immediate 
when it is a strict path. Whereas, for a preference path, it is necessary to take into account the 
cases where the occurrence of the preferred node may be absent.  
 
In order to sharpen our intuition for a better understanding of the proposed evaluation technique, 
let’s consider the evaluation of a simple example of a preference path query Q3 = /A/B!/C and 
examine the different cases that we can face.  
 

Consider that the evaluation of the strict query q = /A (resp. q 
′

= /A/B) on the DataGuide produced 

the list TA =[a0, a0
′

, a1, a2, a0
′′

] (resp. TB =[b1, b2]), such that in the document, a1 (resp. a2) is 
the parent of b1 (resp. b2). Three possible cases represented in figure 3 are to be examined:  
 
Case 1) processing of C’s occurrences that precede

7
 

 
the first occurrence b1 of B and are part of 

the solution. Such occurrences can be either direct childs of an occurrence of A preceding a1 in 
the list TA, or direct childs of a1 (figure 3.a). For the treatment of this case, by noting nprec(a1) 
the number of A occurrence that precede or are equal to a1 in TA, we must insert in the list TB, 
nprec(a1) pseudo-occurences of B noted ε1 ... εnprec(a1) 

and considered as pseudo-parents of the 
C’s occurrences processed in the current case. For the case illustrated in the figure 3.a, we will 
stamp each εi, 1 ≤i ≤3 respectively with the region encoding pairs (nextL(a0), nextR(a0)), 
(nextL(a0’), nextL(a1)) and (nextL(a1), nextL(b1)) where nextL(ai) is equal to the start 

component of ai and nextR(ai) is equal to the end component of ai: the stamps calculation scheme 
is materialized by the green dashed lines in the figure 3.a. 
 

 
 

Figure 3. Various cases according to the position of B’s occurrences: (a) at the head of the TB list, (b) 

and (c) between two consecutives B’s occurrences in TB list, (d) at the end of the TB list. 

 
Case 2) processing of C’s occurrences that follows

8
 
 
the last occurrence b2 of B and are part of the 

solution. Such occurrences can be either direct childs of an occurrence of A following a2 in TA, or 
direct childs of either a2 or an occurrence of A covering a2(figure 3.d). Noting         nfollow(a2) the 
number of A’s occurrences following a2 or covering a2 or equal to a2 in TA, for the treatment of 
this case, we must insert in list TB, nfollow(a2)  pseudo-occurences of B noted ε1 ... εnfollow(a2) 

and 
interpreted as pseudo-parents of any occurrences of C processed in the current case. For the case 
illustrated in the figure 3.d, we will stamp each εi, 1 ≤i ≤3 respectively with the region encoding 
pairs (nextR(b2), nextR(a2)), (nextR(a2), nextR(a0)) and (nextL(a0’), nextR(a0’)).  
Case 3) processing of C’s occurrences appearing between two successive occurrences b1 and b2 
                                                 
7 It will be said that a node a(starta, enda, levela) precedes a node b(startb, endb, levelb) if ( starta < 
startb). 
8 It will be said that a node a(starta, enda) follows a node b(startb, endb) if (endb < starta). 
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of TB, and are part of the solution. We can notice that, here, a1 and a2 can be covered by the 
same occurrence of A (figure 3.b) or not (figure 3.c). However, in all cases, the number of pseudo-

occurrences n[a1−a2] of B to be inserted in TB is equal to the number of occurrence of A between 
a1 and a2 in TA: n[a1−a2]= |ak(startak, endak), enda1 < endak < starta2|. For the case illustrated 
in the figure 3.b, we will stamp each εi, 1 ≤i ≤3 respectively with the region encoding pairs 
(nextR(b1), nextR(a1)), (nextR(a1), nextL(a2)) and (nextL(a2), nextL(b2)). We deduce from the 
study of these three cases that the list Tnq of the occurrences which will be associated with a node 
labeled by a preference path query Chnq = l1/.../lm/l(m+1)! can be built as follows: 1) evaluate 
the two strict queries Chnq1 = l1/.../lm and Chnq2 = l1/.../lm/l(m+1) on the DataGuide. Let’s note 
α =[a0,..., am] and β =[b1,..., bn] the corresponding answers9. 2) initialize Tnq to β: Tnq =[b1,..., 
bn]. 3) create and insert appropriately in Tnq the pseudo occurrences ε0,..., εm as shown above.  
 
3.2.2. The holistic evaluation  
 
The holistic evaluation phase of PrefTwigStack uses a very slightly adapted version of the 
TwigStack algorithm and, like the latter, it operates in two steps: the intermediate solutions are 
produced for all the root to leaf paths queries of the query tree; these are then merged to obtain 
the final answer.  
 
The major difference between the algorithm used in the holistic evaluation phase of 
PrefTwigStack and TwigStack lies on the type of the nodes tags, and on how to get the lists 
associated with the query nodes; those lists are provided in TwigStack while they are built in the 
running time in PrefTwigStack. A few instructions must be add in the TwigStack merge function 
so that, each solution resulting from the merge is inserted into the preferenceTable table. Recall 
that, according to [8], during an insertion, we must indicate in a boolean way and for each 
preference node, if the solution being inserted includes or not one of its occurrences (see table 1).  
 

3.3. PrefTwigStack: the best answers merging phase  
 
In this phase, the answers recorded in the preferenceTable during the previous phase are filtered 
using the skyline operator [13, 8] to retain only those that are not dominated in the sense of the 
preference relationship.  
 
Let’s consider two tuples p =(p1,..., pk, pk+1,... pn) and q =(q1,..., qk, qk+1,... qn) of a relational 
table R whose schema is R(P1, ..., PK, PK+1,..., Pn)10. For a query in which the preferences are 
related to the fields Pk+1,..., Pn, by using the skyline operator, we will say that p dominates q and 
we write p > q, if the following three conditions are satisfied: (1) pi = qi, for all i = 1, 2,... k. (2) pi 

≥qi for all i =(k + 1),..., n. (3) there is i, (k + 1) ≤i ≤n, and pi > qi. The best answers will then be 
the non-dominated answers of the table preferenceTable. 
 

4. AN ILLUSTRATION OF PREFTWIGSTACK  
 
In this section, we show a running example of prefTwigStack. The query Q4 = /A[B!/C]/D/E 

schematized in the figure 4.b is evaluated on the XML document represented in the figure 4.c. An 
index of this document is schematized in the figure 5. By applying the rewrite procedure 
presented in the section 3.1, we have in the figure 4.b a representation of the rewritten query.  
 

                                                 
9 Recall that the bi, i = 1,... n as well as the ai, i = 1,... , m are actually triplets (starti, endi, leveli) used in 
region encoding. 
10 According to this study, these two tuples are two answers to a preference query and R represents the table 
preferenceTable. 
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Figure 4. (a) An intial query, (b) A query after transformation, (c) An annotated (with (start, end)) 
document to be query. 

 

 
 

Figure 5. Annotated DataGuide (index) of the XML document of figure 4.c.  
 
 

Following the presentation in section 3.2.1, the list associated with the query node A/B! is TB 

=[ε0(1, 9), ε1(10, 11), b1, ε2(13, 15), ε3(15, 16), ε4(16, 17), b2] where, the εi, i = 0,..., 4 are the 
pseudo occurrences of B. The lists associated with the respective nodes A, C and /A/D/E are 
respectively: TA =[a1, a2, a3], TC =[c1, c2, c3, c4, c5], TE =[e1, e2, e3].  
 
Figure 6 shows the state of the various stacks and lists associated with the different nodes during 
matching. The table 1 presents the preferenceTable table obtained at the end of phase 2, from 
which the best answer {< a3, b2, c3, d3, e3 >} is selected as the only dominant tuple. In fact, it’s 
the only tuple containing an occurrence of the preference node D.  

 
Table 1. The preferenceTable. 

 
Candidates solutions  Preferences Nodes  

 B 

< a1, c1, d1, e1 > 0 
< a1, c1, d2, e2 > 0 
< a3, b2, c3, d4, e3 >  1 
< a2, c4, d4, e3 >  0 
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Figure 6. An illustration of the running of prefTwigStack: query of the figure 4.b is matching on the 

document of the figure 4.c. 
 

5. CONCLUSIONS 
 
We have presented in this paper a holistic evaluation approach of XML queries with structural 
preferences. This approach has been structured in three phases: rewriting-evaluation-merge. As in 
TwigX-Guide [4], a complex query is rewritten via a partitioning-transformation operation into a 
structured set of path queries that are holistically evaluated on an annotated DataGuide. The 
proposed approach reduces both the number of joins required for the holistic evaluation of a 
query, and the size of the lists to be joined.  
 
The approach proposed in this manuscript has been carried out on many examples (among which 
the one presented in section 4) with very satisfactory results. With regard to the fact that the 
evaluation approach investigated in this paper is divided into three phases, the following question 
can be formulated: can deforestation techniques developed in functional programming be used to 
propose an evaluation algorithm that proceeds in a single phase, thereby avoiding the explicit 
construction of intermediate candidate responses? This seems to us to be the main object of an 
interesting study that can follow this work.  
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