
International Journal of Software Engineering & Applications (IJSEA), Vol.10, No.3, May 2019

DOI: 10.5121/ijsea.2019.10305 47

METRIC-BASED FRAMEWORK FOR TESTING &

EVALUATION OF SERVICE-ORIENTED SYSTEM

Salisu Garba

Department of Mathematics & Computer Science, Sule Lamido University, Kafin Hausa.

Jigawa State.

ABSTRACT

The increase in the significance of service orientation in system development is accelerating with an

increase in demand for qualitative and cost-effective systems. Service-Oriented Architecture (SOA) is one

of the established structural designs used for developing and implementing flexible, reusable, rapid and

low-cost service-oriented systems. The established testing and evaluation methods don’t work well for

systems that are made-up of services (service-oriented system). As a result, several testing and evaluation

metrics for service-oriented systems were proposed. However, these metrics were created based on

preceding software development approaches that offer insufficient focus to service-oriented systems thereby

lacking the efficiency to evaluate these systems. Furthermore, Lack of access to source code also frustrates

classical mutation-testing approaches, which require seeding the code with errors. This paper discusses

different testing and evaluation metrics available for SOS and proposed a theory-grounded framework for

testing and evaluation of service-oriented systems with the aim of decreasing cost and increasing the

quality of the SOS. Then, the proposed framework is validated theoretically to check its usability and

applicability for testing and evaluation of SOS. The results show that the proposed framework is able to

decrease cost and increasing the quality of the SOS.

KEYWORDS

Service Oriented systems, SOA, Metrics, testing, cost evaluation, quality evaluation

1. INTRODUCTION

The persistence storms of the Internet, TCP/IP, HTTP, and XML have created the circumstances

for another incarnation of SOA again. Due to the universal support for those technologies, now

SOA has the potential to have a wider, ever permanent encounter than beforehand. Service

Oriented Architecture enables flexibility, adoptability, integrability, business adaptability and the

ability to incrementally change the system, switching service providers, extending services,

modifying service providers and consumers due to loose-controlled coupling.

Essentially, beyond the technical definition, SOA is a change of paradigm, a change in the way of

thinking about information technology (IT), and the process of delivering IT (via services) from

start to end in an easier, more flexible manner, more reusable and more responsive to business

changes while providing cost efficiency as a major benefit. Service Oriented Architecture (SOA)

is devised to standardize obtainable IT resources and transformed the heterogeneous collection of

distributed, intricate systems and applications into a set-up of integrated, straightforward and

flexible IT assets.

Prior to Service-oriented architecture, the Common Object Request Broker Architecture

(CORBA) and the Distributed Component Object Model (DCOM) provide similar and related

International Journal of Software Engineering & Applications (IJSEA), Vol.10, No.3, May 2019

48

functionality. These existing approaches to service orientation, however, suffered from a few

tricky problems such as tightly coupled scenarios according to [4]. It is significant to recognize

that SOA is not a technology, but a method of software design that proposes a fundamental shift

in how organizations implement systems. SOA marks the end of monolithic enterprise

applications and marks the commencement of a more flexible and adoptable business process-

centric application. SOA Applications are built based on services. Therefore, it is very important

to understand the word service clearly. According to [1], a service is a software component that is

well-defined, self-contained, and independent on the situation or status of other services. A

service is an implementation of well-defined company functionality, consumed by clients in

disparate applications or company procedures.

Services are connected together using Web Services. However, Web services are merely a step

along a much longer road. Web Services are the composition of protocols by which Services can

be published, discovered and utilized in a technology impartial, methodology neutral, platform

neutral, and language-neutral standard form. Services in SOA concentrated on conceding a

schema and message-based contact alongside an application across interfaces that are application

scoped, and not constituent or object-based.

The established testing and evaluation methods don’t work well for systems that are made-up of

services (service-oriented system). As a result, several testing and evaluation metrics for service-

oriented systems were proposed. However, these metrics were created based on preceding

software development approaches that offer insufficient focus to service-oriented systems thereby

lacking the efficiency to evaluate these systems. Furthermore, Lack of access to source code also

frustrates classical mutation-testing approaches, which require seeding the code with errors.

This paper proposed a metric based framework for testing & evaluation of service-oriented

system so as to enhanced quality as well as the effectiveness of testing and evaluation of service-

oriented systems. The rest of this paper is organized as follows; the SOA Rationale and SOS

Design Principles are discussed in section 2. The proposed framework is illustrated and

discussed in section 3. The conclusion and future work are discussed in section 4.

2. SOA RATIONALE AND SOS DESIGN PRINCIPLES

A considerable amount of literature has been published on the SOA rationales and design

principles. Enterprise architects regard SOA as an architectural evolution rather than revolution as

it captures many of the excellent features of previous software architectures. Services are the

building blocks of any software architecture, which is the implementation of well-defined

business functionality, consumed by clients in different applications or business processes.

Nowadays SOA has removed one more barrier by permitting application to interconnect in an

object-model-neutral method. For example, employing a simple XML-based messaging scheme,

Java requests can implore Microsoft .NET requests or CORBA-compliant, or even COBOL,

applications.

[4] states that the intrinsic property of many modern computing paradigms (e.g. peer-to-peer

systems, distributed systems, and smart environments) is the distribution of services and control

among multiple entities (or agents), be it software, human or a mix of both. Service Oriented

Architecture enables flexibility, adoptability, integrability, business adaptability and the ability to

switch service providers, extend services; modify service due to loosely coupling.

Previous integration models such as point to point and spoke and the wheel had certain

limitations. The complexity of application integration for a point to point model rises substantially

with every new application that needs to communicate and share data with it. The Enterprise

International Journal of Software Engineering & Applications (IJSEA), Vol.10, No.3, May 2019

49

Service Bus is an improvement over these two architectures and plays a critical role in connecting

heterogeneous applications and services in a Service-Oriented Architecture.

Figure 1. The basic concept of SOA and the components of SOS

The principle of service orientation includes loose coupling, reusability, statelessness, abstraction,

autonomy, composability, discoverability. Therefore, the fundamental aim of SOA is to align

enterprise IT competence with company goals, and to facilitate enterprise IT to respond with

better agility toward business requirements, allowing employees, trading partners, and customers

to respond extra quickly and become accustomed to shifting business demands.

A considerable amount of literature has been published on SOS design principles. While other

authors such as [1], [17], [4] take account of Service normalization, Service optimization, Service

relevance, Service encapsulation, Service location transparency as principles of designing SOS.

The table below shows the ground rules that must be followed in designing SOS.

SOA principles that promote loose coupling, standards-based technologies, and coarse-grain

service design enable the creation of reusable services repository that can be pooled into higher-

level services and the composite system as new business needs arise. These lower the cost

development, testing, and maintenance.

Figure 2. Expected Benefits of SOA (Adopted from: [7])

International Journal of Software Engineering & Applications (IJSEA), Vol.10, No.3, May 2019

50

3. THE PROPOSED SOS TESTING AND EVALUATION FRAMEWORK

The proposed metric-based framework for testing & evaluation of the service-oriented system is

shown in Figure 3 below. The detail activities and rationales in each part of the framework are

discussed below.

Figure 3. The proposed SOS testing and evaluation framework

3.1. Testing Metrics

According to [8], it’s next to impossible to control what cannot be measured. By his saying, it is

very clear how important software measures are. The metrics we are about to discuss aim at

getting empirical laws that relate SO program size to the expected number of bugs, the expected a

number of tests required to find bugs, testing technique effectiveness. Linguistic Metrics that are

based on measuring properties of SO program text without interpreting what the text means such

as a line of codes (LOC) is highly inaccurate when used to predict costs, resources, and schedules.

However, Structural Metrics that are based on structural relations between the objects in a SO

program such as the number of nodes and links in a control flow-graph should only be used as a

rule of thumb at best.

Cyclomatic Complexity is a software metric (measurement), used to indicate the complexity of a

program. [13], states that if G is the control flowgraph of the program (P) and G has edges (E)

and nodes (N), then the cyclomatic complexity of program (P) can be established using the

following metrics.

() 2V G E N= − +

() 1 6 1 3 2 , () 5V G V G= − + =

International Journal of Software Engineering & Applications (IJSEA), Vol.10, No.3, May 2019

51

Alternatively, the cyclomatic complexity can also be determined by identifying the number of

linearly independent path in the control flowgraph of program (P) or simply by determining the

number of decision nodes in G. The metrics below shows how the cyclomatic complexity of the

program (P) can be established using the decision nodes (D) in G

.

() 1V G D= +

() 4 1 , () 5V G V G= + =

Table 1. Cyclomatic complexity interpretation

According to [6], establishing an empirical science of software development is very essential for

the maturity of the discipline. The objective was to identify quantifiable attributes of software,

and the relations between them, thereby evolving philosophical discussions to quantification. This

is comparable to the discovery of quantifiable attributes of matter (such as volume and mass) and

the relationships between them (corresponding to the gas equation). Therefore, Halstead's metrics

are really more than just complexity metrics. It states that the vocabulary of a program (η) can be

determined by summing the number of distinct operators (keywords) and the number of distinct

operands (data objects) as shown in the equation below;

1 2V o c a b u l a r y o f t h e P r o g r a m : η η η= +

While the length of the program (N) can be determined by summing the total number of

operators (keywords) and the total number of operands (data objects) as shown in the equation

below. However, the length of the program (N) should not be confused with the line of codes,

therefore N LOC≠

1 2L e n g t h o f t h e P r o g r a m : N N N= +

o r

1 2 1 2 2 2L e n g t h o f t h e P r o g r a m : l o g l o gN η η η η= +

The Volume of the program (V), the difficulty or complexity of the program (D), the amount of

effort required (E) and the time needed to program the service-oriented system to can be

determined using the metrics below;

2V o l u m e o f t h e P r o g r a m : * l o gV N η=

International Journal of Software Engineering & Applications (IJSEA), Vol.10, No.3, May 2019

52

1 2

2

D i f f i c u l t y o f t h e P r o g r a m : *
2

N
D

η

η
=

T h e E f f o r t R e q u i r e d : *E D V=

T h e R e q u i r e d t o p r o g r a m :
1 8

E
T =

Software Engineers are still counting lines of code due to its popularity. However, the number of

delivered bugs (estimated number of errors in the implementation of SOS) can be determined by

dividing the volume of the program by a Halstead's constant of 3000.

T h e n u m b e r o f d e l i v e r e d b u g s :
3 0 0 0

V
B =

Authors in [3] compared actual to predicted bug counts to within 8% over a range of program

sizes from 300 to 12,000 volume of statements. The validity of the metric has been confirmed

experimentally many times, independently, over a wide range of programs and languages.

3.2. Cost Evaluation

For the majority of organizations, the initial stride of the SOS project is to outline the cost. So that

budget can be estimated to get the funding. The predicament is that the cost estimation of entire

SOS components is so complex and necessitate a clear understanding of the work that has to be

done.

Authors in [2] introduced an empirical effort estimation model that is still referenced by the

software engineering community. The constructive cost Model (COCOMO II) is the most widely

used software estimation model in the world which predicts the effort and duration of a project

based on inputs relating to the size of the resulting systems and a number of factors (cost drives)

that influence software projects.

The complexity of the model can be determined by the number of factors (cost drives) that are

taken into account to influence software projects thereby given a more accurate estimate. The

development model is the most important factor that contributes to the cost and duration of the

software project. This can be organic, semi-detached or embedded based on the complexity of the

project.

The intermediate and advanced COCOMO models incorporate 15 'cost drivers'. These 'drivers'

multiply the effort derived from the basic COCOMO model. The importance of each driver is

assessed and the corresponding value multiplied into the COCOMO equation, which becomes:

: () * (c o s)b
E f f o r t E a S p r o d u c t t d r i v e r s=

Where: E represents effort in person-months, S is the size of the software development in KLOC

(1000LOC), while a and b are constant values dependent on the development mode, this is

International Journal of Software Engineering & Applications (IJSEA), Vol.10, No.3, May 2019

53

multiplied by the product of cost drivers of the project which varies from very to extra high based

on the importance of a particular cost driver to the project.

Table 2. Different modes of COCOMO II

: () d
D e v e l o p m e n t T i m e D T c E=

SOS Development Time can be computed using the above metrics; Where: DT represents

development time in months, E represents an effort in person-months, while c and d are constant

values dependent on the development mode.

:
E

N u m b e r o f P e r s o n n e l N P
D T

=

The number of personnel for SOS Development can be computed using the above metrics; where:

NP represents the number of personnel (people), E represents an effort in person-months, while

DT represents development time in months.

The author in [11] proposed a formula to figure out how much an SOA project will cost as shown

in the metric below. Where: C (SOS) is the Cost of SOS, CDC is the Cost of Data Complexity,

CSC is the Cost of Service Complexity, CPC is the Cost of Process Complexity and ETS is the

Enabling Technology Solution.

()C S O S C D C C S C C P C E T S= + + +

Upon arrival at the Cost of SOS, [11] advises figuring in "10 to 20 percent variations in cost for

the simple reason that this is a new approach to calculating the cost of the service-oriented

system. However, Complexity measures the difficulty of understanding the interaction and

relationships between the services and services operations, therefore, the total complexity of the

service-oriented system can only be determined through the following equation.

() () ()
()

C s N S s N O s
T C M s

C M

+ +
=

Where: TCM is the is the total complexity metric for a service, C is the coupling which can either

be direct or indirect, NS is the number of services, NO is the number of operations and CM is the

cohesion metrics. This is because coupling and cohesion are used to estimate the degree to which

the components of the service-oriented system belong together and the strength of the

relationships between operations in service [3].

3.3. Quality Evaluation Metric

In order to help us categorize software quality factors, McCall proposes a categorization which

focuses on three important aspects of a software product (product revision, product transition,

product operation). However, the de facto definition of software quality consists of two levels:

International Journal of Software Engineering & Applications (IJSEA), Vol.10, No.3, May 2019

54

intrinsic product quality and customer satisfaction. Intrinsic product quality is usually measured

by the number of "bugs" (functional defects) in the software or by how long the software can run

before encountering a "crash."

Authors in [9] define software reliability as the probability of failure-free operation of a program

in a specified environment for a specified time. Reliability metric is an indicator of how broken a

program is. Metrics are best weighted by the severity of errors. A minor error every hour is better

than a catastrophe every month. Mean Time Between Failure (MTBF) which measures how long

a program is likely to run before it does something bad like a crash, where MTTF and MTTR are

mean time to failure and mean time to repair respectively as shown in the metrics below.

R e * 1 0 0 %
()

M T T F
l i a b i l i t y o f S O S

M T T F M T T R
=

+

R e * 1 0 0 %
M T T F

l i a b i l i t y o f S O S
M T B F

=

Good practice in software quality engineering, however, also needs to consider the customer's

perspective. From the customer's point of view, the defect rate is not as relevant as the total

number of defects that might affect their business. Therefore, a good defect rate target should lead

to a release-to-release reduction in the total number of defects, regardless of size.

According to [14], [16], dealing with the problem of runtime adaptation of composite services

that implement mission-critical business processes requires a combination of domain-agnostic and

domain-specific quality of service attributes such as response time, throughput, availability, and

accuracy.

Table 3. Quality of service metrics [14], [16]

The author in [8] states that customer satisfaction metric consists of the use of a five-point scale

survey to measure the level of customer satisfaction. Different organizations employ different

parameter in determining the satisfaction level of a customer. One of the most widely used

parameters of customer satisfaction in software quality is CUPRIMDSO (capability, functionality,

usability, performance, reliability, installability, maintainability, documentation/information,

service, and overall). However, some organizations prefer FURPS (functionality, usability,

reliability, performance, and service) for simplicity.

International Journal of Software Engineering & Ap

Table

A number of metrics can be created based on the five

customer’s satisfaction level of the SOS. For instance:

(1) Percent of completely satisfied customers

(2) Percent of satisfied customers (satisfied and completely satisfied)

(3) Percent of dissatisfied customers (dissatisfied and completely dissatisfied

(4) Percent of non-satisfied (neutral, dissatisfied, and completely dissatisfied)

Furthermore, the weighted index approach can be used to determine

level of the SOS. For example, some organizations use the

the following weighting factors:

• Completely satisfied = 100%

• Satisfied = 75%

• Neutral = 50%

• Dissatisfied = 25%

• Completely dissatisfied = 0%

Figure 4. NSI customer satisfaction analysis

The range of the NSI starts from 0% (all cu

customers are completely satisfied). If all customers are satisfied (but not completely satisfied),

NSI will have a value of 75%. This weighting approach, however, may be camouflaging the

satisfaction profile of one's customer set. For example, if half of the customers are completely

satisfied and half are neutral, NSI's value is also 75%, which is equivalent to the scenario that all

customers are satisfied.

If satisfaction is a good indicator of product loyalty, then half completely satisfied and half

neutral is certainly less positive than all satisfied. Furthermore, we are not sure of the rationale

behind giving a 25% weight to those who are dissatisfied. T

good metric for determining the customer’s level of satisfaction with SOS; it is inferior to the

simple approach of calculating

profile is desired, one can simply show the percent distribution of all categories via a histogram.

A weighted index is for data summary when multiple indicators are too cumbersome to be shown.

International Journal of Software Engineering & Applications (IJSEA), Vol.10, No.3

Table 4. Five-Point scale customer satisfaction

A number of metrics can be created based on the five-point-scale data, so as to

customer’s satisfaction level of the SOS. For instance:

Percent of completely satisfied customers

Percent of satisfied customers (satisfied and completely satisfied)

Percent of dissatisfied customers (dissatisfied and completely dissatisfied

satisfied (neutral, dissatisfied, and completely dissatisfied)

Furthermore, the weighted index approach can be used to determine the Customer satisfaction

level of the SOS. For example, some organizations use the net satisfaction index

the following weighting factors:

Completely satisfied = 100%

Completely dissatisfied = 0%

Figure 4. NSI customer satisfaction analysis

The range of the NSI starts from 0% (all customers are completely dissatisfied) to 100% (all

customers are completely satisfied). If all customers are satisfied (but not completely satisfied),

NSI will have a value of 75%. This weighting approach, however, may be camouflaging the

le of one's customer set. For example, if half of the customers are completely

satisfied and half are neutral, NSI's value is also 75%, which is equivalent to the scenario that all

If satisfaction is a good indicator of product loyalty, then half completely satisfied and half

neutral is certainly less positive than all satisfied. Furthermore, we are not sure of the rationale

behind giving a 25% weight to those who are dissatisfied. Therefore, this example of NSI is not a

good metric for determining the customer’s level of satisfaction with SOS; it is inferior to the

simple approach of calculating the percentage of specific categories. If the entire satisfaction

can simply show the percent distribution of all categories via a histogram.

A weighted index is for data summary when multiple indicators are too cumbersome to be shown.

plications (IJSEA), Vol.10, No.3, May 2019

55

scale data, so as to analyze the

Percent of dissatisfied customers (dissatisfied and completely dissatisfied)

satisfied (neutral, dissatisfied, and completely dissatisfied)

Customer satisfaction

index (NSI) which has

stomers are completely dissatisfied) to 100% (all

customers are completely satisfied). If all customers are satisfied (but not completely satisfied),

NSI will have a value of 75%. This weighting approach, however, may be camouflaging the

le of one's customer set. For example, if half of the customers are completely

satisfied and half are neutral, NSI's value is also 75%, which is equivalent to the scenario that all

If satisfaction is a good indicator of product loyalty, then half completely satisfied and half

neutral is certainly less positive than all satisfied. Furthermore, we are not sure of the rationale

herefore, this example of NSI is not a

good metric for determining the customer’s level of satisfaction with SOS; it is inferior to the

percentage of specific categories. If the entire satisfaction

can simply show the percent distribution of all categories via a histogram.

A weighted index is for data summary when multiple indicators are too cumbersome to be shown.

International Journal of Software Engineering & Applications (IJSEA), Vol.10, No.3, May 2019

56

For example, if customers' purchase decisions can be expressed as a function of their satisfaction

with specific dimensions of a product, then a purchase decision index could be useful. In contrast,

if simple indicators can do the job, then the weighted index approach should be avoided.

Figure 5. Customer Satisfaction indicator

System maintenance is any activity intended to eliminate faults or to keep programs in

satisfactory working conditions. The author in [15] suggests a software maturity index (SMI) that

provides an indication of the stability of a software product (based on changes that occur for each

release of the product). The software maturity index is then computed in the following manner:

[()]
T a c d

T

M F F F
S M I

M

− + +
=

Table 5. Summary of testing & evaluation metrics with the assumptions, pros, and cons

International Journal of Software Engineering & Applications (IJSEA), Vol.10, No.3, May 2019

57

4. CONCLUSION

This paper has argued that testing and evaluation of cost and quality plays a vital role in system

development, particularly service-oriented systems. However, the established testing and

evaluation methods don’t work well for systems that are made-up of services (service-oriented

system) due to the fact that these metrics were created based on preceding software development

approaches that offer insufficient focus to service-oriented systems thereby lacking the efficiency

to evaluate these systems. Furthermore, Lack of access to source code also frustrates classical

mutation-testing approaches, which require seeding the code with errors. Therefore, many metrics

are proposed to test and evaluate the SOS. In this paper, a set of basic metrics is proposed and

used for proposing derived metrics to evaluate the complexity, cost, quality, reliability and

maintainability of SOS. Subsequently, the result is used to create a Metric based framework for

Testing & Evaluation of Service Oriented System. The framework adds a new contribution is

assessing the complexity and quality of SOS. The findings of this investigation complement those

of earlier studies. The generalisability of these results is subject to certain limitations. For

instance, the metrics do not pay too much consideration to the service that is built from other

services (composite services) and only consider the operations as building blocks for the service-

oriented system. Further investigation and experimentation in using the proposed framework is

strongly recommended.

REFERENCES

[1] Basu, V., & Lederer, A. L. (2011). Agency theory and consultant management in enterprise resource

planning systems implementation. ACM SIGMIS Database, 42(3), 10-33.

[2] Boehm, B. W., Madachy, R., & Steece, B. (2000). Software cost estimation with Cocomo II with

Cdrom. Prentice Hall PTR.

[3] Elhag, A. A. M., & Mohamad, R. (2014, September). Metrics for evaluating the quality of service-

oriented design. In Software Engineering Conference (MySEC), 2014 8th Malaysian (pp. 154-159).

IEEE.

[4] Erl, T., Merson, P., & Stoffers, R. (2017). Service-oriented Architecture: Analysis and Design for

Services and Microservices. Prentice Hall PTR.

[5] Fuggetta, A., Lavazza, L., Morasca, S., Cinti, S., Oldano, G., & Orazi, E. (1998). Applying GQM in

an industrial software factory. ACM Transactions on Software Engineering and Methodology

(TOSEM), 7(4), 411-448.

[6] Halstead, M. H. (1977). Elements of software science (Vol. 7, p. 127). New York: Elsevier.

[7] Kai, J., Miao, H., & Gao, H. (2016). A Survey of Quality Prediction Methods of Service-oriented

Systems. International Journal of Hybrid Information Technology, 9(4), 183-198.

[8] Kan, S. H. (2002). Software quality metrics overview. Metrics and Models in Software Quality

Engineering, 85-120.

[9] Kapur, K. C., & Pecht, M. (2014). Reliability engineering. John Wiley & Sons.

[10] Jensen, H. A., & Vairavan, K. (1985). An experimental study of software metrics for real-time

software. IEEE Transactions on Software Engineering, (2), 231-234.

[11] Linthicum, D. (2007). How much will your SOA cost?. SOAInstitute. org, Mar.

International Journal of Software Engineering & Applications (IJSEA), Vol.10, No.3, May 2019

58

[12] Li, H. F., & Cheung, W. K. (1987). An empirical study of software metrics. IEEE Transactions on

Software Engineering, (6), 697-708.

[13] McCabe, T. J. (1976). A complexity measure. IEEE Transactions on software Engineering, (4), 308-

320.

[14] Moser, O., Rosenberg, F., & Dustdar, S. (2012). Domain-specific service selection for composite

services. IEEE Transactions on Software Engineering, 38(4), 828-843.

[15] Oman, P., & Hagemeister, J. (1992, November). Metrics for assessing a software system's

maintainability. In Software Maintenance, 1992. Proceerdings., Conference on (pp. 337-344). IEEE.

[16] Rosenberg, L. H., & Sheppard, S. B. (1994, October). Metrics in software process assessment, quality

assurance and risk assessment. In Software Metrics Symposium, 1994., Proceedings of the Second

International (pp. 10-16). IEEE.

[17] Seth, A., Agarwal, H., & Singla, A. R. (2011). Designing a SOA based model. ACM SIGSOFT

Software Engineering Notes, 36(5), 1-7.

[18] Seth, A., Agrawal, H., & Singla, A. R. (2014). Techniques for evaluating service oriented systems: A

Comparative Study.

