
International Journal of Software Engineering & Applications (IJSEA), Vol.10, No.4, July 2019

DOI: 10.5121/ijsea.2019.10403 29

A LITERATURE SURVEY OF COGNITIVE

COMPLEXITY METRICS FOR STATECHART

DIAGRAMS

Ann Wambui King’ori

1, 2
, Geoffrey Muchiri Muketha

1
 and Elyjoy Muthoni

Micheni
3

1

School of Computing and Information Technology, Murang' a University of Technology,

Kenya
2
Department of Information Communication Technology, Nkabune Technical Training

Institute, Kenya
 3

School of Business and Management Sciences, The Technical University of

Kenya, Kenya

ABSTRACT

Statechart diagrams have inherent complexity which keeps increasing every time the diagrams are modified.

This complexity poses problems in comprehending statechart diagrams. The study of cognitive complexity

has over the years provided valuable information for the design of improved software systems. Researchers

have proposed numerous metrics that have been used to measure and therefore control the complexity of

software. However, there is inadequate literature related to cognitive complexity metrics that can apply to

measure statechart diagrams. In this study, a literature survey of statechart diagrams is conducted to

investigate if there are any gaps in the literature. Initially, a description of UML and statechart diagrams is

presented, followed by the complexities associated with statechart diagrams and finally an analysis of

existing cognitive complexity metrics and metrics related to statechart diagrams. Findings indicate that

metrics that employ cognitive weights to measure statechart diagrams are lacking.

KEYWORDS

UML, Statechart diagrams, Software metrics, Cognitive complexity metrics, statechart complexity metrics

1. INTRODUCTION

Unified Modeling Language (UML) is a language that represents a software system visually [29].

The language is currently one of the most widely used for modeling of systems programs using

object-oriented technology [6, 12, 17, 18]. UML diagrams can be divided into two categories,

namely, structural UML diagrams that show how the system is structured, and behavioural UML

diagrams that visualize the dynamic behavior of the system [7, 14, 25, 28].

Researchers have recognized the importance of UML models in today’s software development.

The benefits associated with modeling using UML language include reduction of the software

development expenses, speeding up the process of the building system software, and development

of good quality system programs [7].

A statechart is one of the pillar diagrams of UML used to model the dynamic nature of a system.

A typical statechart diagram is composed of states, transitions, and events. These states are

changed by events. Statechart diagrams have inherent complexity that keeps growing with age

which may affect their cognitive effectiveness. Researchers agree that high cognitive complexity

International Journal of Software Engineering & Applications (IJSEA), Vol.10, No.4, July 2019

30

indicates poor design, which sometimes can be unmanageable thus leading to low- quality

diagrams [2, 23]. Researchers have proposed numerous metrics that have been used to measure

and therefore control the complexity of these diagrams. However, there is a lack of literature that

documents the statecharts cognitive complexity.

This paper is, therefore, a literature survey of existing cognitive complexity metrics for UML

diagrams and existing metrics for statechart diagrams. The survey is conducted to investigate if

there are any gaps in the literature.

The rest of this paper is structured as follows: Section two presents a short overview of the basic

concepts on statechart diagrams, section three presents the complexity of statechart diagrams, and

sections four and five covers the existing cognitive complexity metrics for UML diagrams and

existing metrics for statechart diagrams respectively. Section six presents the conclusions.

2. BASIC CONCEPTS OF STATECHART DIAGRAMS

Statechart diagrams capture the life cycles of objects, subsystems, and systems. The diagrams

show states, transitions, events, and activities of a software system. They also describe the

different states of an object and how internal and external events can change those states [13].

These events include received messages, the time elapsed, errors and conditions becoming true. A

statechart diagram should be attached to all classes that have identifiable states and complex

behavior. A statechart also shows different events that change the state and activities that take

place in a particular state. Researchers have identified three key elements of statecharts diagrams

namely; states, events, and transitions. Figure1 shows states, transitions, and actions performed

when a card is swiped-in on an automated teller machine.

Figure 1. Statechart for an ATM

2.1. States

A state represents a discrete, continuous segment of time where the object’s behavior will be

stable. The object remains in a state until an event triggers a state change. In [26] a state is

defined as a condition or situation during the life of an object during which it satisfies some

condition, performs some activity, or waits for an event. The state of an object is dependent on

how it interacts with other objects and the entry, do and, exit activities it is performing [26]. A

state has five parts namely; state name, entry (action performed upon entry to a state), do activity,

exit state (action performed on leaving a state) and deferrable triggers which are events that are

postponed to be handled in another state as shown in Figure 2. A state is drawn with a round

rectangle with one or more regions.

Waiting

for PIN

PIN Entered

PIN Rejected

PIN

verification

Card

swiped
PIN

Authentication

International Journal of Software Engineering & Applications (IJSEA), Vol.10, No.4, July 2019

31

Figure 2. Parts of a State

2.2. Events

An event is a stimulus that triggers state changes. Events are representations of requests from

other objects. In [13, 26] an event is defined as the specifications of noteworthy occurrence that

has an allocation in time and space. Events trigger transitions in state machines. Events can be

shown externally by transitions. Events are written simply as text strings. There are four types of

event: 1) Call event – a call event is explained as a request for a specific operation to be invoked

in an instance of the context class [13, 26]; 2) Signal event – a signal event represents the

reception of a signal. A signal is modeled as a stereotyped class that holds the information to be

communicated in its attributes; 3) Change event – a change event models an event that occurs

when the guard condition becomes true as a result of a change in the value of one or more

attributes; 4) Time event – a time event represents the elapsed time. The keyword when species a

particular time at which the event is triggered; after keyword specifies a threshold time after

which the event is triggered.

2.3. Transitions

A transition is a change from one state to another. A transition has five parts, namely, source

state, event trigger, guard condition, action, and target state. Transitions in behavioral state

machines have a simple syntax that may be used for external transitions or internal transitions as

shown in Figure 3. A transition can either have zero or more events, zero or more guards and zero

or more actions [26]. A transition is drawn with an arrow labeled with a guard or action to

perform.

Figure 3. Internal and External Transitions

3. COMPLEXITY OF STATECHART DIAGRAMS

Complexity is the state of being difficult. Statechart diagrams have undesirable features that may

affect their cognitive effectiveness. Cognitive effectiveness is the mental difficulties for

At work

Entry/unlock door

Do/prepare materials

Telephone rings/defer

Exit/lock door

State A

Entry/entryAction

Exit/exitAction

Event/Internal transition

State B State C

External transition

Internal

Transition

International Journal of Software Engineering & Applications (IJSEA), Vol.10, No.4, July 2019

32

performing a task such as understanding code or a software system. UML understandability is

influenced by the size and complexity of the diagrams [3, 5]. As the cognitive load of statechart

diagrams increases, the task of the engineers in designing and validating the system becomes

increasingly difficult. Statechart diagrams are associated with the following complexities: 1)

Symbol Redundancy – symbol redundancy occurs when multiple graphical symbols are used to

represent one semantic construct. Symbol redundancy in a modeling notation can confuse

modelers as to which notation to use, leading to confusion concerning their referent semantic [1];

2) Symbol Overload – symbol overload in UML means that one graphical symbol represents

multiple semantic constructs. A construct overload occurs when one UML graphical construct

represents two or more UML concepts. Symbol overload leads to confusion as to the precise

meaning of a symbol leading to misunderstanding and misinterpretation on the actual meaning of

the graphical symbols [1]; 3) Dual Coding – dual coding is the act of describing diagrams using

text. The theory of dual coding states that using text to complement graphical symbols improves

the cognitive effectiveness of a notation. Therefore, the text allows meaning to be created from

the diagrams. However, the statechart diagrams notation does not utilize dual coding which

affects the cognitive effectiveness of these diagrams [1]; 4) Inadequacy of UML Diagrams –

UML diagrams are huge, complex and some UML notations are not differentiated enough [32].

Inconsistency and confusing diagrams in UML impact the effectiveness of compiling declarative

knowledge into procedural knowledge of modeling an aspect of a system using UML [27]. Also,

the number of concepts is not captured using UML notation which makes the learning of UML

diagrams difficult [27]; 5) The ambiguity of UML Semantics – UML lacks formal semantics and

some semantics are not precisely defined. Meanings are hidden under the diagrams which create

ambiguities at the implementation level. The ambiguity of UML semantics is an inherent problem

due to the unifying process which produces UML from many different object-oriented modeling

techniques [27]. The ambiguity of UML semantics makes it hard for engineers to generate codes

from models that make it difficult to learn and understand the diagrams; 6) A large number of

UML Constructs – UML constructs serve as the building block of UML diagrams. UML diagram

provides a large set of constructs and notations which are poorly defined. A large number of

constructs confuse designers as to which notation to use during software development hence

increasing the difficulty in learning UML diagrams [27].

4. EXISTING COGNITIVE COMPLEXITY METRICS FOR UML DIAGRAMS

Cognitive complexity measures take into account both the internal structures of software and

input/output processes. Several researchers have attempted to study software metrics. The

following section presents existing cognitive complexity metrics for UML diagrams.

(i) Cognitive Functional Size (CFS)

The Cognitive functional size (CFS) measure has been proposed for measuring the cognitive

functional size (CFS) of software [30]. According to these authors, the cognitive complexity of

software depends on three factors: internal architectural control-flows, input data, and output data.

The CFS metric is defined as follows:

CFS= (Ni +No) *Wc

Where Ni is the number of inputs, No is the number of outputs, and Wc is the total cognitive

weight of all control-flow blocks in the program. The Wc assigned to different control-flow

structures is 1 for a sequence, 2 for a branch, 3 for a loop and 4 for a parallel structure.

CFS has been validated theoretically and with case studies [19]. It, however, excludes some

essential details of cognitive complexity such as information that is contained in operators and

International Journal of Software Engineering & Applications (IJSEA), Vol.10, No.4, July 2019

33

operands hence cannot be used to measure the cognitive complexity aspect of UML statechart

diagrams. Also, it does not consider some unique features of the object-oriented paradigm such as

inheritance [23].

(ii) Modified Cognitive Complexity Measure (MCCM)

The modified cognitive complexity measure (MCCM) was a modification of cognitive functional

size (CFS) [20]. The author considered the number of operators and operands and the cognitive

weights due to the basic control structures. The complexity due to operators and operands is

defined:

SOO= Ni1 +Ni2

Where Ni1 is the total number of occurrences of operators, Ni2 is the total number of occurrences

of Operands and SOO is the total number of operators and operands.

The modified Cognitive Complexity Measure is computed by multiplying the SOO and Wc. The

formula is defined as follows:

MCCM = SOO *Wc

MCCM is reasonable from the cognitive informatics works and has not been used for statechart

diagrams measurement. The metric has been criticized for providing complexity values high in

number [11, 23].

(iii) Cognitive Program Complexity Measure (CPCM)

 The Cognitive Program Complexity Measure (CPCM) was proposed in line with the rules of

cognitive informatics [21]. The metric depends on operands (total occurrences of inputs and

outputs) and cognitive weights (weights of the basic control structures). CPCM is defined as:

CPCM= Sio+ Wc.

Where Sio is the complexity due to the occurrences of input and output variables and Wc is the

cognitive weight of all basic control structures. CPCM depends on operands only unlike MCCM

which depends on both operators and operands.

CPCM has been criticized for being unclear and ambiguously interpreted [10, 23]. It has also

been criticized for not including complexity due to operators is not included in its formulation

[11, 24].

(iv) Cognitive Information Complexity Measure (CICM)

The proponents of Cognitive Information Complexity Measure (CICM) agree that there are two

factors that lead to complexity weighted information count of software and basic control

structures [15]. CICM is defined as:

CICM = WICS*Wc

Where WICS is the sum of the weighted information count of every line of code of a given

software and Wc is the cognitive weight of the basic control structure.

International Journal of Software Engineering & Applications (IJSEA), Vol.10, No.4, July 2019

34

Cognitive Information Complexity Measure remains in the software domain and has not been

used for statechart diagrams measurement. The metric has been criticized for being difficult to

compute especially where the software contains many lines of code [23].

(v) New Cognitive Complexity of Program (NCCoP)

The New Cognitive Complexity of Program (NCCoP) measure is based on data objects, internal

behavior of the software, the operands, and the individual weight of BCSs of every line of code

[10]. The measure is defined as:

NCCoP = ∑ ∑ �� ∗ ��() ��
�
 � � �

��
�
 � � �

This means that NCCoP is a function of constant lines of codes, variables, and basic control

structure weight.

The New Cognitive Complexity of Program has been criticized for being unclear and ambiguous

in the process of counting the number of variables per line of code [10, 16].

(vi) Cognitive Complexity for Business Process Model (CCBP)

Cognitive complexity is a state of the mental burden that involves the ease or difficulty to

perceive a given task [16]. The cognitive complexity for business process model (CCBP) extends

the cognitive functional size measure (CFS) in the software engineering field to measure the

cognitive complexity of business process models. The cognitive complexity for business process

model (CCBP) metric is a function of the total input, output information flows and the total

cognitive weight (Wc) of the structured activities in a process model [24]. These information

flows are represented by input and output activities found within a BPEL process model. The

input and output information represents the coupling-related information between the process

model and its clients/partners while the weights are fixed values for the different control-flow

structures. The weights represent the psychological effort needed by a designer to comprehend a

control-flow block of the process model [24].

To calculate CCBP, a count of the input and output activities in the process model is obtained and

then multiplied by the total cognitive weight (Wc) for all structured activities within the model.

CCBP is defined as follows:

CCBP= (NOIA+NOOA)*Wc.

Where NOIA is the number of input activities, NOOA is the number of output activities and Wc

is the total cognitive weight of all control-flow blocks within the model.

Cognitive Complexity for Business Process Model has been validated both theoretically and

empirically. However, the metrics can only be applied to business processes hence cannot be used

on the measurement of the cognitive complexity of statechart diagrams.

5. EXISTING STATECHART DIAGRAM COMPLEXITY METRICS

Several researchers have attempted to study the complexity of the statechart diagram. This section

present metrics related to statechart diagrams.

(i) Size and Structural Complexity metrics for UML statechart diagrams

International Journal of Software Engineering & Applications (IJSEA), Vol.10, No.4, July 2019

35

Genero et al. [8] proposed size and structural complexity metrics to measure the understandability

of statechart diagrams. These include the number of entry actions (NEntryA), number of exit

actions (NexitA) number of activities (NA), number of simple states (NSS), number of

composite states (NCS), number of events (NE), number of guards (NG), and number of

transitions (NT).

The NEntryA metric calculates the total number of entry actions in a state in the statechart

diagram while the NexitA metric calculates the total number of exit actions performed each time

a state is left. In addition, the NA metric counts the total number of activities in a statechart

diagram, the NSS metric counts the total number of simple states in a statechart diagram, the NCS

metric counts the total number of composite states in a statechart diagram, the NE metric counts

the total number of events in a statechart diagram, the NG metric counts the total number of guard

conditions in a statechart diagram while the NT metric counts the total number of transitions in a

statechart diagram.

Genero et al. [8] also modified the McCabe’s cyclomatic complexity metric by defining it as

|NSS|-|NT|+2.

The metrics have been validated both theoretically and empirically. However, the metrics do not

employ the cognitive weight aspect of software thus cannot be used to measure the cognitive

complexity of statechart diagrams.

(ii) Cohesion and Coupling Metrics for Statechart Diagrams

Dalijeet & Lavleen [4] proposed a set of metrics for statechart diagrams. These metrics are used

for analyzing the cohesion and coupling of statechart diagrams using slicing techniques.

To measure the cohesiveness of statechart diagrams, Dalijeet & Lavleen [4] proposed Average

Cohesiveness of States (ACOS) metric. This is a cohesion metric for a state diagram which is

computed by averaging cohesiveness values of all states. ACOS of a state diagram (SD) is

defined as follows:

ACOS (SD) = (SsS COS(s) / |S|

 ACOS of a state diagram is defined to be between 0 and 1. ACOS is 1 if the cohesion of each

state in SD is 1. This means that all states are only one semantic. On the other hand, low ACOS

suggests that each state has low cohesion.

To measure the coupling of statechart diagrams, Dalijeet & Lavleen [4], proposed the average

number of similar states of states (ASSOS) metric. This is a coupling metric for a state diagram

defined as the average number of similar states of each state in the state diagram. ASSOS of a

state diagram (SD) can be formulated as follows:

ASSOS (SD) = (SsS |SS(s)|) / |S|

 Where ASSOS (SD) can be more than or equal or 0.

The metrics are reasonable from the software perspective. However, the metrics do not employ

the cognitive weight perspective thus cannot be used to measure the cognitive complexity of

statechart diagrams.

6. CONCLUSIONS AND FUTURE WORK

Findings in this study indicate that statechart diagrams have undesirable features that may affect

their cognitive effectiveness. The study also indicates that cognitive complexity metrics for UML

International Journal of Software Engineering & Applications (IJSEA), Vol.10, No.4, July 2019

36

statechart diagrams are lacking. Each of the discussed existing cognitive complexity metrics has

its limitations. The study shows that the proposed metrics related to statechart diagrams do not

employ the cognitive weight aspect of software hence cannot be used to compute the cognitive

complexity of UML statechart diagrams.

To address the lack of statechart complexity measures that employ the cognitive weight aspect,

future studies should focus on defining new weight-based complexity metrics for statechart

diagrams.

REFERENCES

[1] Anwer, S., & El-Attar, M. (2014). An evaluation of the statechart diagrams visual syntax. In 2014

International Conference on Information Science and Applications (ICISA) (pp. 1-4). IEEE.

[2] Briand, L. C., Bunse, C. & Daly, J. W. (2001). A controlled Experiment for Evaluating Quality

Guidelines on Maintainability of Object Oriented Design. IEEE Transactions on Software Eng.2 (6):

513–530.

[3] Cruz-Lemus, J. A., Genero, M., Manso, M. E., Morasca, S., & Piattini, M. (2009). Assessing the

understandability of UML statechart diagrams with composite states—A family of empirical

studies. Empirical Software Engineering, 14(6), 685-719.

[4] Daljeet, S., & Lavleen, K. (2012). Analyzing the Cohesion and Coupling of Statechart Diagrams using

Program Slicing Techniques. International Journal of Computer Science and Technology,3, 69-72.

[5] Dori, D., Wengrowicz, N., & Dori, Y. J. (2014). A comparative study of languages for model-based

systems-of-systems engineering (MBSSE). In 2014 World Automation Congress (WAC) (pp. 790-

796). IEEE.

[6] Fahad A. (2012). State Based Static and Dynamic Formal Analysis of UML State Diagrams. Journal

of Software Engineering and Applications, 5, 483-491.

[7] Fitsilis, P., Gerogiannis, V. C., & Anthopoulos, L. (2013). Role of Unified Modelling Language in

Software Development in Greece-results from an exploratory study. IET Software,

 8(4), pp. 143-153.

[8] Genero, M., Miranda, D., & Piattini, M. (2003). Defining Metrics for UML Statechart Diagrams in a

Methodological way. In International Conference on Conceptual Modelling, (pp.118-128).

[9] IEEE Standard 1061 (1992). Standard for a Software Quality Metrics Methodology. Institute of

Electrical and Electronics Engineers. New York.

[10] Jakhar, A.K & Rajnish, K. (2014). A new cognitive approach to measure the complexity of

software's. International Journal of Software Engineering & its Applications, vol. 8, no. 7, pp. 185-

198.

[11] Jakhar, A. K., & Rajnish, K. (2015). Measurement of complexity and comprehension of a program

through a cognitive approach. International Journal of Engineering-Transactions B:

Applications, 28(11), 1579-1588.

[12] Jamal, M., & Zafar, N. A. (2016). Formalizing structural semantics of UML 2.5 activity diagram in Z

Notation. In 2016 International Conference on Open Source Systems & Technologies (ICOSST) (pp.

66-71). IEEE.

[13] Jama, O.M., (2009). A Case Study on Evaluating UML Modelling in Software Testing (Master’s

thesis, University of OSLO).

International Journal of Software Engineering & Applications (IJSEA), Vol.10, No.4, July 2019

37

[14] Kumar, A., & Khalsa, S. K. (2012). Determine cohesion and coupling for class diagram through

slicing techniques. IJACE, 4(1), 19-24.

[15] Kushwaha, D. S. & Misra, A. K., (2006). Robustness Analysis of Cognitive Information Complexity

Measure using Weyuker Properties. ACM SIGSOFT Software Engineer Notes, 31(1), 1–6.

[16] Maheswaran, K., & Aloysius, A. (2017). An Analysis of Object Oriented Complexity

Metrics. International Journal of Scientific Research in Computer Science, Engineering and

Information Technology, 2, 768-775.

[17] Maylawati, D. S., Darmalaksana, W., & Ramdhani, M. A. (2018). Systematic design of expert system

using unified modelling language. In IOP Conference Series: Materials Science and

Engineering (Vol. 288, No. 1, p. 012047).

[18] Miles, R. & Hamilton, K. (2006). Learning UML 2.0. “O’Reilly Media, Inc.”.

[19] Misra, S. (2004). Evaluating cognitive complexity measure with Weyuker’s properties. 3rd IEEE

International Conference on Cognitive Informatics (ICCI’04): 103-108.

[20] Misra, S. (2006). Modified cognitive complexity measure.LNCS 4263: 1050-1059.

[21] Misra, S. (2007a). Cognitive program complexity measure. 6th IEEE International Conference on

Cognitive Informatics: 120-125.

[22] Misra, S. (2011). Cognitive complexity measures: An analysis. Modern Software Engineering

Concepts and Practices: Advanced Approaches, (pp. 263-279), IGI Global.

[23] Misra, S., Adewumi, A., Fernandez-Sanz, L., & Damasevicius, R. (2018). A Suite of Object Oriented

Cognitive Complexity Metrics. IEEE Access, 6, 8782–8796.

[24] Muketha, G.M. (2011). Size and complexity metrics as indicators of maintainability of business

process execution language process models (Doctoral dissertation, Universiti Putra Malaysia).

[25] OMER, O. S. D., & Sahraoui, A. E. (2017). From Requirements Engineering to UML using Natural

Language Processing–Survey Study.

[26] Rambaugh, J., Jacobsen, I. & Booch, G. (2005). The Unified Modelling Language Reference Manual,

second Edition. Pearson Higher Education.

[27] Siau, K., & Loo, P.P. (2006). Identifying difficulties in learning UML. Information Systems

Management, 23(3), 43-51.

[28] Sikka, P., & Kaur, K. (2016). Mingling of Program Slicing to Designing Phase. Indian Journal of

Science and Technology, 9(44).

[29] UML, O. (2012a). Information technology-Object Management Group Unified Modelling Language

(OMG UML), Infrastructure.

[30] Wang, Y. & Shao J., (2003). A new Measure of Software Complexity Based on Cognitive Weights.

Journal of Electrical and Computer Engineering, 28(2), 69-74.

[31] Wang, Y. (2004). On the Cognitive Informatics Foundations of Software Engineering. In Proceedings

of the Third IEEE International Conference on Cognitive Informatics, pp. 22-31.

[32] Zafar, N. A. (2013). Model analysis of equivalence classes in UML events relations. Journal of

Software Engineering and Applications, 6(12), 653.

International Journal of Software Engineering & Applications (IJSEA), Vol.10, No.4, July 2019

38

AUTHORS

Ann Wambui King’ori is an ICT Assistant Lecturer at the Department

of Information Communication Technology at Nkabune Technical Training

Institute, Kenya. She earned her Bachelor of Technology Education

(Computer Studies) from the University of Eldoret, Kenya in 2014. She is

currently pursuing her MSc. in Information Technology at Murang’a University

of Technology, Kenya. Her research interests include software metrics,

software quality, and business intelligence.

Geoffrey Muchiri Muketha is an Associate Professor and Dean of the School

of Computing and Information Technology, Murang' a University of Technology,

Kenya. He received his BSc. in Information Science from Moi University in 1995,

his MSc. in Computer Science from Periyar University, India in 2004, and his

Ph.D. in Software Engineering from Universiti Putra Malaysia in 2011. He has

wide experience in teaching and supervision of postgraduate students. His

research interests include software and business process metrics, software

quality, verification and validation, empirical methods in software

engineering, and component-based software engineering. He is a member of

the International Association of Engineers (IAENG).

Elyjoy Muthoni Micheni is a Senior Lecturer in Information Systems in the

Department of Management Science and Technology at The Technical University

of Kenya. She holds a Ph.D. (Information Technology) from Masinde Muliro

University of Science and Technology, Master of Science (Computer Based

Information Systems) from Sunderland University, (UK); Bachelor of Education

from Kenyatta University; Post Graduate Diploma in Project Management from

Kenya Institute of Management. She has taught Management Information System

courses for many years at the University level. She has presented papers in

scientific conferences and has many publications in refereed journals. She has also

co-authored a book for Middle-level colleges entitled: “Computerized Document

Processing”. Her career objective is to tap computer-based knowledge as a tool to

advance business activities, promote research in ICT and enhance quality service.

