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ABSTRACT 

 

Statechart diagrams have inherent complexity which keeps increasing every time the diagrams are modified. 

This complexity poses problems in comprehending statechart diagrams. The study of cognitive complexity 

has over the years provided valuable information for the design of improved software systems. Researchers 

have proposed numerous metrics that have been used to measure and therefore control the complexity of 

software. However, there is inadequate literature related to cognitive complexity metrics that can apply to 

measure statechart diagrams. In this study, a literature survey of statechart diagrams is conducted to 

investigate if there are any gaps in the literature. Initially, a description of UML and statechart diagrams is 

presented, followed by the complexities associated with statechart diagrams and finally an analysis of 

existing cognitive complexity metrics and metrics related to statechart diagrams. Findings indicate that 

metrics that employ cognitive weights to measure statechart diagrams are lacking. 

 

KEYWORDS 

 

UML, Statechart diagrams, Software metrics, Cognitive complexity metrics, statechart complexity metrics 

 

1. INTRODUCTION 
 

Unified Modeling Language (UML) is a language that represents a software system visually [29]. 

The language is currently one of the most widely used for modeling of systems programs using 

object-oriented technology [6, 12, 17, 18]. UML diagrams can be divided into two categories, 

namely, structural UML diagrams that show how the system is structured, and behavioural UML 

diagrams that visualize the dynamic behavior of the system [7, 14, 25, 28]. 
 

Researchers have recognized the importance of UML models in today’s software development. 

The benefits associated with modeling using UML language include reduction of the software 

development expenses, speeding up the process of the building system software, and development 

of good quality system programs [7]. 

 

A statechart is one of the pillar diagrams of UML used to model the dynamic nature of a system. 

A typical statechart diagram is composed of states, transitions, and events. These states are 

changed by events. Statechart diagrams have inherent complexity that keeps growing with age 

which may affect their cognitive effectiveness. Researchers agree that high cognitive complexity 
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indicates poor design, which sometimes can be unmanageable thus leading to low- quality 

diagrams [2, 23]. Researchers have proposed numerous metrics that have been used to measure 

and therefore control the complexity of these diagrams. However, there is a lack of literature that 

documents the statecharts cognitive complexity. 
 

This paper is, therefore, a literature survey of existing cognitive complexity metrics for UML 

diagrams and existing metrics for statechart diagrams. The survey is conducted to investigate if 

there are any gaps in the literature.  
 

The rest of this paper is structured as follows: Section two presents a short overview of the basic 

concepts on statechart diagrams, section three presents the complexity of statechart diagrams, and 

sections four and five covers the existing cognitive complexity metrics for UML diagrams and 

existing metrics for statechart diagrams respectively. Section six presents the conclusions.  
 

2. BASIC CONCEPTS OF STATECHART DIAGRAMS 
 

Statechart diagrams capture the life cycles of objects, subsystems, and systems. The diagrams 

show states, transitions, events, and activities of a software system. They also describe the 

different states of an object and how internal and external events can change those states [13]. 

These events include received messages, the time elapsed, errors and conditions becoming true. A 

statechart diagram should be attached to all classes that have identifiable states and complex 

behavior. A statechart also shows different events that change the state and activities that take 

place in a particular state. Researchers have identified three key elements of statecharts diagrams 

namely; states, events, and transitions. Figure1 shows states, transitions, and actions performed 

when a card is swiped-in on an automated teller machine. 

 

 

 

 

 

 

 
 

 

 

 

Figure 1. Statechart for an ATM 

 

2.1. States 
 

A state represents a discrete, continuous segment of time where the object’s behavior will be 

stable. The object remains in a state until an event triggers a state change. In [26] a state is 

defined as a condition or situation during the life of an object during which it satisfies some 

condition, performs some activity, or waits for an event. The state of an object is dependent on 

how it interacts with other objects and the entry, do and, exit activities it is performing [26]. A 

state has five parts namely; state name, entry (action performed upon entry to a state), do activity, 

exit state (action performed on leaving a state) and deferrable triggers which are events that are 

postponed to be handled in another state as shown in Figure 2. A state is drawn with a round 

rectangle with one or more regions.  
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Figure 2. Parts of a State 

 

2.2. Events 
 
An event is a stimulus that triggers state changes. Events are representations of requests from 

other objects. In [13, 26] an event is defined as the specifications of noteworthy occurrence that 

has an allocation in time and space. Events trigger transitions in state machines. Events can be 

shown externally by transitions.  Events are written simply as text strings. There are four types of 

event: 1) Call event – a call event is explained as a request for a specific operation to be invoked 

in an instance of the context class [13, 26]; 2) Signal event – a signal event represents the 

reception of a signal. A signal is modeled as a stereotyped class that holds the information to be 

communicated in its attributes; 3) Change event – a change event models an event that occurs 

when the guard condition becomes true as a result of a change in the value of one or more 

attributes; 4) Time event – a time event represents the elapsed time. The keyword when species a 

particular time at which the event is triggered; after keyword specifies a threshold time after 

which the event is triggered. 

 

2.3. Transitions 
 

A transition is a change from one state to another. A transition has five parts, namely, source 

state, event trigger, guard condition, action, and target state. Transitions in behavioral state 

machines have a simple syntax that may be used for external transitions or internal transitions as 

shown in Figure 3. A transition can either have zero or more events, zero or more guards and zero 

or more actions [26]. A transition is drawn with an arrow labeled with a guard or action to 

perform. 

 

 

 

 

 

 

 

 

 
Figure 3. Internal and External Transitions 

 

 
 

3. COMPLEXITY OF STATECHART DIAGRAMS 
 

Complexity is the state of being difficult. Statechart diagrams have undesirable features that may 

affect their cognitive effectiveness. Cognitive effectiveness is the mental difficulties for 

At work 

Entry/unlock door 

Do/prepare materials 

Telephone rings/defer 

Exit/lock door 

State A 

Entry/entryAction 

Exit/exitAction 

Event/Internal transition 

State B State C 

External transition 

Internal  

Transition 



International Journal of Software Engineering & Applications (IJSEA), Vol.10, No.4, July 2019 

32 

performing a task such as understanding code or a software system. UML understandability is 

influenced by the size and complexity of the diagrams [3, 5].  As the cognitive load of statechart 

diagrams increases, the task of the engineers in designing and validating the system becomes 

increasingly difficult. Statechart diagrams are associated with the following complexities: 1) 

Symbol Redundancy – symbol redundancy occurs when multiple graphical symbols are used to 

represent one semantic construct. Symbol redundancy in a modeling notation can confuse 

modelers as to which notation to use, leading to confusion concerning their referent semantic [1]; 

2) Symbol Overload – symbol overload in UML means that one graphical symbol represents 

multiple semantic constructs. A construct overload occurs when one UML graphical construct 

represents two or more UML concepts. Symbol overload leads to confusion as to the precise 

meaning of a symbol leading to misunderstanding and misinterpretation on the actual meaning of 

the graphical symbols [1]; 3) Dual Coding – dual coding is the act of describing diagrams using 

text. The theory of dual coding states that using text to complement graphical symbols improves 

the cognitive effectiveness of a notation. Therefore, the text allows meaning to be created from 

the diagrams. However, the statechart diagrams notation does not utilize dual coding which 

affects the cognitive effectiveness of these diagrams [1]; 4) Inadequacy of UML Diagrams – 

UML diagrams are huge, complex and some UML notations are not differentiated enough [32]. 

Inconsistency and confusing diagrams in UML impact the effectiveness of compiling declarative 

knowledge into procedural knowledge of modeling an aspect of a system using UML [27]. Also, 

the number of concepts is not captured using UML notation which makes the learning of UML 

diagrams difficult [27]; 5) The ambiguity of UML Semantics – UML lacks formal semantics and 

some semantics are not precisely defined. Meanings are hidden under the diagrams which create 

ambiguities at the implementation level. The ambiguity of UML semantics is an inherent problem 

due to the unifying process which produces UML from many different object-oriented modeling 

techniques [27]. The ambiguity of UML semantics makes it hard for engineers to generate codes 

from models that make it difficult to learn and understand the diagrams; 6) A large number of 

UML Constructs – UML constructs serve as the building block of UML diagrams. UML diagram 

provides a large set of constructs and notations which are poorly defined. A large number of 

constructs confuse designers as to which notation to use during software development hence 

increasing the difficulty in learning UML diagrams [27]. 

 

4. EXISTING COGNITIVE COMPLEXITY METRICS FOR UML  DIAGRAMS  
 

Cognitive complexity measures take into account both the internal structures of software and 

input/output processes. Several researchers have attempted to study software metrics. The 

following section presents existing cognitive complexity metrics for UML diagrams.  
 

(i) Cognitive Functional Size (CFS) 
 

The Cognitive functional size (CFS) measure has been proposed for measuring the cognitive 

functional size (CFS) of software [30]. According to these authors, the cognitive complexity of 

software depends on three factors: internal architectural control-flows, input data, and output data. 

The CFS metric is defined as follows: 
 

CFS= (Ni +No) *Wc 
 

Where Ni is the number of inputs, No is the number of outputs, and Wc is the total cognitive 

weight of all control-flow blocks in the program. The Wc assigned to different control-flow 

structures is 1 for a sequence, 2 for a branch, 3 for a loop and 4 for a parallel structure.  

  

CFS has been validated theoretically and with case studies [19]. It, however, excludes some 

essential details of cognitive complexity such as information that is contained in operators and 
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operands hence cannot be used to measure the cognitive complexity aspect of UML statechart 

diagrams. Also, it does not consider some unique features of the object-oriented paradigm such as 

inheritance [23].   
 

(ii) Modified Cognitive Complexity Measure (MCCM) 
 

The modified cognitive complexity measure (MCCM) was a modification of cognitive functional 

size (CFS) [20]. The author considered the number of operators and operands and the cognitive 

weights due to the basic control structures. The complexity due to operators and operands is 

defined:  
 

SOO= Ni1 +Ni2 
 

Where Ni1 is the total number of occurrences of operators, Ni2 is the total number of occurrences 

of Operands and SOO is the total number of operators and operands.  
 

The modified Cognitive Complexity Measure is computed by multiplying the SOO and Wc. The 

formula is defined as follows: 
 

MCCM = SOO *Wc 
 

MCCM is reasonable from the cognitive informatics works and has not been used for statechart 

diagrams measurement. The metric has been criticized for providing complexity values high in 

number [11, 23]. 
 

(iii) Cognitive Program Complexity Measure (CPCM) 
 

 The Cognitive Program Complexity Measure (CPCM) was proposed in line with the rules of 

cognitive informatics [21]. The metric depends on operands (total occurrences of inputs and 

outputs) and cognitive weights (weights of the basic control structures).  CPCM is defined as: 
 

CPCM= Sio+ Wc. 
 

Where Sio is the complexity due to the occurrences of input and output variables and Wc is the 

cognitive weight of all basic control structures. CPCM depends on operands only unlike MCCM 

which depends on both operators and operands.  
 

CPCM has been criticized for being unclear and ambiguously interpreted [10, 23]. It has also 

been criticized for not including complexity due to operators is not included in its formulation 

[11, 24]. 
 

(iv) Cognitive Information Complexity Measure (CICM) 
 
The proponents of Cognitive Information Complexity Measure (CICM) agree that there are two 

factors that lead to complexity weighted information count of software and basic control 

structures [15]. CICM is defined as: 
 

CICM = WICS*Wc 

 

Where WICS is the sum of the weighted information count of every line of code of a given 

software and Wc is the cognitive weight of the basic control structure.  

 



International Journal of Software Engineering & Applications (IJSEA), Vol.10, No.4, July 2019 

34 

Cognitive Information Complexity Measure remains in the software domain and has not been 

used for statechart diagrams measurement. The metric has been criticized for being difficult to 

compute especially where the software contains many lines of code [23]. 

 

(v) New Cognitive Complexity of Program (NCCoP) 
 

The New Cognitive Complexity of Program (NCCoP) measure is based on data objects, internal 

behavior of the software, the operands, and the individual weight of BCSs of every line of code 

[10]. The measure is defined as: 

 

NCCoP = ∑  ∑  �� ∗ ��(	)  ��
�
 � � �

��
�
 � � �  

 

This means that NCCoP is a function of constant lines of codes, variables, and basic control 

structure weight. 
 

The New Cognitive Complexity of Program has been criticized for being unclear and ambiguous 

in the process of counting the number of variables per line of code [10, 16]. 
 

(vi) Cognitive Complexity for Business Process Model (CCBP) 
 

Cognitive complexity is a state of the mental burden that involves the ease or difficulty to 

perceive a given task [16]. The cognitive complexity for business process model (CCBP) extends 

the cognitive functional size measure (CFS) in the software engineering field to measure the 

cognitive complexity of business process models. The cognitive complexity for business process 

model (CCBP) metric is a function of the total input, output information flows and the total 

cognitive weight (Wc) of the structured activities in a process model [24]. These information 

flows are represented by input and output activities found within a BPEL process model. The 

input and output information represents the coupling-related information between the process 

model and its clients/partners while the weights are fixed values for the different control-flow 

structures. The weights represent the psychological effort needed by a designer to comprehend a 

control-flow block of the process model [24]. 
 

To calculate CCBP, a count of the input and output activities in the process model is obtained and 

then multiplied by the total cognitive weight (Wc) for all structured activities within the model. 

CCBP is defined as follows: 
 

CCBP= (NOIA+NOOA)*Wc. 
 

Where NOIA is the number of input activities, NOOA is the number of output activities and Wc 

is the total cognitive weight of all control-flow blocks within the model. 
 

Cognitive Complexity for Business Process Model has been validated both theoretically and 

empirically. However, the metrics can only be applied to business processes hence cannot be used 

on the measurement of the cognitive complexity of statechart diagrams. 
 

5. EXISTING STATECHART DIAGRAM COMPLEXITY METRICS  
 

Several researchers have attempted to study the complexity of the statechart diagram. This section 

present metrics related to statechart diagrams. 
 

(i) Size and Structural Complexity metrics for UML statechart diagrams 
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Genero et al. [8] proposed size and structural complexity metrics to measure the understandability 

of statechart diagrams.  These include the number of entry actions (NEntryA), number of exit 

actions (NexitA) number of activities (NA), number of simple states (NSS),  number of 

composite states (NCS), number of events (NE), number of guards (NG), and number of 

transitions (NT). 

The  NEntryA metric calculates the total number of entry actions in a state in the statechart 

diagram while the NexitA metric calculates the total number of exit actions performed each time 

a state is left. In addition, the NA metric counts the total number of activities in a statechart 

diagram, the NSS metric counts the total number of simple states in a statechart diagram, the NCS 

metric counts the total number of composite states in a statechart diagram,  the NE metric counts 

the total number of events in a statechart diagram, the NG metric counts the total number of guard 

conditions in a statechart diagram while the NT metric counts the total number of transitions in a 

statechart diagram.  
 

Genero et al. [8] also modified the McCabe’s cyclomatic complexity metric by defining it as 

|NSS|-|NT|+2. 
 

The metrics have been validated both theoretically and empirically. However, the metrics do not 

employ the cognitive weight aspect of software thus cannot be used to measure the cognitive 

complexity of statechart diagrams. 
 

(ii) Cohesion and Coupling Metrics for Statechart Diagrams 
 

Dalijeet & Lavleen [4] proposed a set of metrics for statechart diagrams. These metrics are used 

for analyzing the cohesion and coupling of statechart diagrams using slicing techniques. 

To measure the cohesiveness of statechart diagrams, Dalijeet & Lavleen [4] proposed Average 

Cohesiveness of States (ACOS) metric. This is a cohesion metric for a state diagram which is 

computed by averaging cohesiveness values of all states. ACOS of a state diagram (SD) is 

defined as follows: 
 

ACOS (SD) = (SsS COS(s) / |S| 
 

 ACOS of a state diagram is defined to be between 0 and 1. ACOS is 1 if the cohesion of each 

state in SD is 1. This means that all states are only one semantic. On the other hand, low ACOS 

suggests that each state has low cohesion. 

 

To measure the coupling of statechart diagrams, Dalijeet & Lavleen [4], proposed the average 

number of similar states of states (ASSOS) metric. This is a coupling metric for a state diagram 

defined as the average number of similar states of each state in the state diagram. ASSOS of a 

state diagram (SD) can be formulated as follows: 
 

ASSOS (SD) = (SsS |SS(s)|) / |S| 
 

 Where   ASSOS (SD) can be more than or equal or 0. 
 

The metrics are reasonable from the software perspective. However, the metrics do not employ 

the cognitive weight perspective thus cannot be used to measure the cognitive complexity of 

statechart diagrams. 
 

6. CONCLUSIONS AND FUTURE WORK 
 

Findings in this study indicate that statechart diagrams have undesirable features that may affect 

their cognitive effectiveness. The study also indicates that cognitive complexity metrics for UML 
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statechart diagrams are lacking. Each of the discussed existing cognitive complexity metrics has 

its limitations. The study shows that the proposed metrics related to statechart diagrams do not 

employ the cognitive weight aspect of software hence cannot be used to compute the cognitive 

complexity of UML statechart diagrams.  

To address the lack of statechart complexity measures that employ the cognitive weight aspect, 

future studies should focus on defining new weight-based complexity metrics for statechart 

diagrams. 
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