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ABSTRACT 

 
The term Cross Browser Incompatibilities (XBI) stands for compatibility issues which can be observed 

while rendering a web application in different browsers, such as: Microsoft Edge, Mozilla Firefox, Google 

Chrome, among others. In order to detect Cross-Browser Incompatibilities - XBIs, Web developers rely on 

manual inspection of every web page of their applications, rendering them in various configuration 

environments (considering multiple OS platforms and browser versions). These manual inspections are 

error-prone and increase the cost of the Web engineering process. This paper has the goal of identify-  ing 

techniques for automatic XBI detection, conducting a Systematic Literature Review (SLR) with focus on 

studies which report XBI automatic detection strategies. The selected studies were compared accord- ing to 

the different technological solutions they implemented and were used to elaborate a XBI detection 

framework which can organize and classify the state-of-the-art techniques and may be used to guide future 

research activities about this topic. 

 

1. INTRODUCTION 
 

Web applications are built on top of a client-server architecture, in which the application is partially 

executed in the server-side through a variety of programming languages, while other components 

are executed in the client-side and can be rendered in different web browsers, such as: Internet 

Explorer, Microsoft Edge, Mozilla Firefox, Opera, Google Chrome, and others [1]. Thus, in order 

to execute the client-side components, users can choose from a broad variety of distinct browser 

implementations. While this flexibility work towards the portability of web applications, it also 

increases the cost and effort spent in the life cycle of the software development.The consistent 

rendering of a web application in different browsers is an essential attribute for high profile web- 

sites [2]. Every element of a web application should be correctly rendered and present the same 

behavior, regardless of the user’s web browser implementation, version, or OS [3]. In this con- 

text, recent studies [1, 4] have referred to the incompatibilities observed in web applications when 

rendered by different browsers as XBI (Cross-Browser Issues/Incompatibilities). 

 

To detect XBIs, developers must load and render web applications in multiple browsers, then man- 

ually inspect their behavior. Currently, there are commercial tools which can be used to alleviate 

the costs of this manual ad-hoc inspection activity, such as Microsoft Expression Web1 and Adobe 

Lab2. These tools automatically generate screenshots of a web application as rendered by multiple 

browsers. However, even though they make the process of identifying XBIs easier, developers still 

have to rely on manual inspection of the screenshots. 

 

According to Choudhary et al., XBIs can be classified in two groups [1]: 

 

Layout Issues: caused by differences in how web browsers initially render a webpage; this type 

of XBI is immediately visible to the user, appearing as different positioning, size, visibility or 

general appearance of elements of a webpage; and 
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Functionality Issues: associated to the functionality/behavior of a web application and the way it 

is executed in different browsers. 

 

The state-of-the-art research in this topic reports on various experimental tools to automatically 

detect XBIs, such as WebDiff [1], CrossCheck [4], X-Pert [2], WebMate [3] and Browserbite [5]. 

These tools employ different techniques to implement a XBI detection solution, and were 

separately developed with the objective of reducing false positives (XBIs not actually observed in 

the web application) and increasing the number of detectable incompatibilities (associated to 

Layout and Funcionality Issues). 

 

This paper presents a SLR (Systematic Literature Review) [6] to identify different approaches  to 

XBI automatic detection.  The results show the evolution of these approaches and classify  the 

studies’ different techniques, comparing them and synthesizing contributions in this topic to 

hopefully guide future efforts in automatic XBI detection. The contributions associated to this 

study are: (1) the elaboration of a XBI detection framework for organizing and classifying the 

technical solutions used in the studies; (2) a comparison between the different technical solutions 

employed to alleviate XBIs detection costs throughout the Software Engineering process; and (3) 

a SLR that can be referred to again in the future so as to evaluate the evolution of research in the 

area of automatic XBI detection. 

 

This paper is structured as follows: Section 2 presents the process of Systematic Literature Review 

and its protocol; Section 3 presents the results of the SLR, with the classification of the XBI 

automatic detection approaches and description of the proposed framework; Section 4 presents 

related work and a discussion on this paper contributions; finally, Section 5 presents final remarks 

and suggests guidelines for future works. 

 

2. SYSTEMATIC LITERATURE REVIEW 
 
A SLR, also known as Systematic Review, is a secondary study which aims to identify, access, 

evaluate, and interpret all of the relevant studies in an attempt to answer certain Research Questions 

(RQs), shedding lights on topics or phenomena of interest [6]. SLRs are focused on gathering and 

synthesizing evidence regarding pre established research topic; their results are supposed to 

uncover the most current, state-of-the-art research on said topic. 

 

According to Kitchenham et al., the SLR process is three-fold [6]: 

 

• Review planning: clarification of key factors. Research questions and a detailed review 

protocol are produced. The review protocol should establish the goal, search method, search 

strings, and inclusion/exclusion criteria; 

 

• Review conduction: search at selected sources, selection of studies based on the inclu- 

sion/exclusion criteria and data extraction; 

 

• Review documentation: interpretation and reporting of results, in order to present them to 

interested parties. This can involve descriptive statistics, demographic information, visual 

information, and several discussions. 

 

This SLR study identified automated approaches to XBI detection. We hereby present a compila- 

tion of our SLR results. 
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2.1. Review Protocol 
 
This section presents the Review protocol which was used to conduct the SLR. The protocol 

attributes are presented next: 

 

Objective: This study’s goal was to identify approaches for the automated detection of XBIs, 

highlighting their strengths and weakness. Additionally, our results support a wide analysis of the 

evolution of automated XBI detection approaches, providing guidelines for future research on the 

topic. 

 

Research Question (RQ): What techniques have been employed by XBI detection approaches 

and how do they compare to one another? 

 

Search Method: The research method adopted by this study consisted of using a generic search 

string for searching different indexed research databases available online. This generic search 

string was defined as follows: 

 

• Keywords: ((“cross-browser" OR “cross browser") AND (compatibility OR incompat- 

ibility OR testing OR test)) 

 

We performed searches on three different scientific databases: ACM Digital Library3, IEEE 

Xplore4, and Springerlink5. The search string was calibrated to each library according to the 

particular rules of its search engine. 

 

We also emplyed a forward snowball technique, which consists of searching for articles that cite 

the review’s previously selected articles [7]. This was done through Google Scholar6 and 

IEEEXplorer. 

 

Inclusion/Exclusion criteria: Aiming at answering our RQs and based on the scope of our re- 

search, we formulated the following inclusion/exclusion criteria: 

 

• Inclusion criteria 1 (IC1): studies addressing the problem of automated detection of 

XBIs which employed Generation 3 - Crawl and capture approaches [2] were in- 

cluded in the SLR. 

 

• Exclusion criteria 1 (EC1): studies addressing approaches for preventing XBIs during 

the coding phase of the development process were excluded; 

 

• Exclusion criteria 2 (EC2): repeated entry (seen in more than one database) were 

excluded; and 

 

• Exclusion criteria 3 (EC3): studies which did not mention XBI detection were ex- 

cluded. 

 

2.2. Conducting The Review 
 
The review process is shown in Figure 1. 
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Figure 1. SLR process with the initial selection and forward snowballing results. 

 

Our generic search string was adapted to execute properly in the search engine of the selected 

databases. We have conducted a two-step search: our initial search was executed on September 

2015, and updated on August 2016. This returned a total of 953 studies (167 from ACM, 183 from 

IEEE Xplore, and 603 from Springer). After applying the inclusion and exclusion criteria to the 

studies, 16 studies were seleted. 

 

After initial selection, the forward snowballing technique was performed. The search for studies 

which referenced the previously selected 16 studies was conducted in August 2017, and returned 

482 studies (416 from Google Scholar and 66 from IEEE Xplore). These 482 studies were sub- 

jected to the same inclusion, exclusion criteria; this resulted in the selection of 7 more studies, in 

a total of 23. 

 

The first selected studies in the SLR were published in 2010, while the year which presents the 

highest number of publications was 2014. Only 4 studies from 2017, were selected. However, it is 

unlikely that all publications from 2017 were included in the search, considering the last search 

update was performed in August 2017. 

 

The next section presents the results of the SLR, with a detailed analysis of the identified auto- 

mated approaches. 

 

3. RESULTS 
 
The 23 selected articles in the SLR reported 8 different tools for detecting XBIs. There were mul- 

tiple articles which reported different experiments and evaluations conducted using the same tool, 

but there were also studies that, although describing technological solutions for the identification 

of XBIs, did not named their approach. 

 

The technological approaches identified in this review were: Structural DOM analysis, Screen- 

shot comparison, Isomorphism in graphs, Machine learning, Relative layout, Adaptive Ran- 

dom Tests, and Record-n-play. Figure 2 illustrates the number of articles which used each tech- 

nological approach. 
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Figure 2. Number of articles which implement each technological approach to detect XBIs. 

 

3.1.  XBI Detection Framework 
 
Based on the XBI detection approaches identified in this paper, we propose a general frame- work 

for classifying and organizing XBI detection approaches in the state-of-the-art and future 

researches in this area. Our proposed framework is illustrated in Figure 3. Design decisions made 

for modeling the framework were based on the analysis of XBI detection approaches proposed in 

the selected papers. The components of the framework were categorized according to two aspects: 

the type of the technical solution used and the XBI detection task. 

 

In the framework we categorize XBI detection approaches in two main groups: DOM-based ap- 

 
 

 
 

Figure 3. The XBI detection framework composed by webpage segmentation, content comparison and 

behavior analysis techniques. 

 

proaches and Computer-vision approaches. The DOM-based group of approaches involves detec- 

tion mechanisms which use the DOM structure of a web application for identifying XBIs. These 

approaches are mainly based on the Selenium API for navigating the DOM tree, collecting DOM 

attributes such as position and size of elements, and rendering the web application in multiple 

browsers. Computer-vision approaches are based mainly on image processing techniques applied 

to the complete screenshot or to screenshots of an specific region or element of the web applica- 

tion. 
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Many of the reviewed studies relied on DOM-based approaches (such as [8] which reported the 

use DOM elements’ attributes for detecting XBIs) or Computer-vision approaches (such as [5, 9– 

11] which developed image processing algorithms for detecting XBIs). However, there were also 

hybrid approaches, which combined DOM-based and Computer-vision approaches (such as [4, 12] 

which used the DOM attributes alongside screenshot comparison for detecting XBIs). 

 

In the studies, we observed the use of different approaches for detecting Layout and Functionality 

incompatibilities. In the framework, we propose decomposing the XBI detection process in three 

separate tasks: Webpage segmentation, which breaks the web application in smaller units of con- 

tent before analyzing them for XBI detection; Content comparison, which employs techniques for 

comparing units of content as rendered by different browsers, detecting Layout incompatibilities; 

and Behavior analysis, which employs techniques for searching for Functional XBIs. 

 

The Webpage segmentation task involved two main approaches, as observed in the reviewd stud- 

ies. The first one was based on segmenting web applications according to their DOM structure, 

having as units of content each constituent DOM element. The second approach was based on 

segmentation using Regions-Of-Interest (ROI) identified from the complete screenshot of the web 

application. It is worth noting that the use of a Webpage segmentation technique also implies the 

use of a segment matching technique for comparing a segment as rendered by different browsers. 

Both approaches present specific segment matching strategies, based on X-Path, DOM attributes, 

position, size, and other characteristics extracted from the DOM structure or the screenshot im- 

age. There were also studies which did not report using any techniques associated to the Webpage 

segmentation task; in these cases, the XBI detection mechanism was based on the complete screen- 

shot of the web application, such as [10], or the segmentation task was not the focus of the study 

[13, 14]. DOM-based webpage segmentation also allows the use of the crawling approach pro- 

posed in [15, 16]. In this approach, crawling process starts from leaf nodes of the DOM structure 

and hiding elements after collecting their data. Paes (2017) suggests this approach would increase 

the precision of the XBI detection approach. Furthermore, DOM-based Webpage segmentation is 

also present in other works associated to the automatic correction of XBIs, using search-based 

approaches [17]. 

 

The Content comparison task has the goal of identifying mainly Layout XBIs by comparing two or 

more corresponding elements/regions as rendered by different browsers. Our framework presents 

the techniques and characteristics which could be used for comparing these elements/regions: 

 

• DOM-based 

 
� DOM Attributes, position, size, text content, extracted from the DOM structure [1, 18]. 

 

� Relative position of parent and sibling nodes; building alignment graphs and compar- ing 

the same graph rendered in different browsers [2, 12, 15, 16, 19, 20]. 

 

• Computer-vision 

 
� Image features extracted from screenshots of the segments which compose the web- page 

[5, 9, 11]. 

 

� Image Diff metric based on counting the number of dissimilar pixels between segments [15, 

16]. 

 

� EMD and χ2 distance of the histograms [4]. 
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� pHash and Perceptual Image Diff algorithms [10]. 

 

� ART for optimizing the image comparison performance [13]. 

 

� IPH and SCS for using specific segment screenshot features for identifying incompat- 

ibilities [14]. 

 

In regards to the Content comparison task, several studies have reported using many of the previ- 

ously defined techniques concurrently, in order to improve the effectiveness of their approaches. 

In these studies, Supervised Learning Classification algorithms were employed for merging the 

results of the different techniques into a single output, and classify the segments as containing 

XBIs or not. 

 

The last part of the proposed framework is the Behavior analysis task. Components for detect- ing 

Functional XBIs were mapped. All approaches identified by the review to execute this task 

propose building a navigation/interaction model for the webpage, similar to a finite state machine 

graph [3, 4, 8, 19–23], then comparing these models as rendered by different browsers, using a 

graph isomorphism algorithm strategy. According to our framework, four technical approaches 

were used for generating these models: Crawljax [4, 8], Webmate [3, 22, 23], Record’n’play 

[19, 20], and WebSPHINX [24]. 

 

The proposed framework presents all technological solutions employed in the state-of-the-art in 

XBI detection approaches. It could be used to organize XBI detection solutions, experiment with 

multiple combinations of techniques and guide future research in the area of XBI detection. 

 

3.2. Technical Solutions For XBI Detection 
 
The technical solutions hereby presented are chronologically ordered according to when they were 

first proposed in the literature. A low-level individual analysis of these technical solutions pro- 

vide insights on specific configuration scenarios and types of XBIs which were identified by each 

approach, highlighting the advantages of using each technique separately, in an attempt to answer 

RQ. 

 

3.2.1. Structural Dom Analysis 
 
The DOM (Document Object Model) defines a logical structure for HTML and XML documents, 

in order to allow programs and scripts to dynamically access and update the content7. The DOM 

represents HTML and XML documents as tree structures, and browsers frequently provide an 

API(Application Programming Interface) to be used by web applications. Many studies selected 

in the SLR process used the DOM structure of a webpage to detect XBIs. These studies compared 

attributes and elements of DOM representations as rendered by different browsers. 

 

Initially, multiple DOM representations of a single webpage are captured. Then, these DOM repre- 

sentations are compared, in order to identify attributes and elements which do not present the same 

value [1–4, 8, 12, 18, 21–23, 25, 26]. In these approaches, if an element presents incompatible 

attribute values in different browsers, it can be marked as a XBI and later reported to developers. 

Most studies used a selected group of attributes verifications in this step. 

 
 

 

The first article to use this approach was [1], in the WebDiff tool. It was further developed in 

other articles, such as [2, 4, 8]. While the studies evolved through time, it was observed that 
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simply comparing the attributes of the DOM structure as rendered by different browsers leads   to 

a high number of false positives, representing XBIs detected by the approaches which were not 

observable in the web application decreasing the precision of the approach. Thus, studies using 

this technique advanced, employing other strategies such as attribute value normalization [4], 

machine learning [4, 15, 16], among other techniques which are described in the next sections of 

this paper. 

 

Still in respect to structural DOM analysis, the studies [1, 2, 4] detalied solutions for matching el- 

ements from different DOM representations. DOM representations rendered by multiple browsers 

might present structural differences which might make it difficult to compare attributes and ele- 

ments which can be miss placed depending on the browser in which it was rendered. Therefore, 

these studies presented a technique based on using attributes such as tagName, id, xpath and a 

hash mapping of the inner content (innerHTML), in order to match similar elements from different 

DOM representations. 

 

Paes (2017) also proposed a specific DOM crawling technique, in which the DOM is crawled 

starting by the leaf nodes and then moving upward in the DOM tree. After collecting features for 

analysis of XBIs presence in a target DOM element (such as position and screenshot), that DOM 

element is hidden in the web application, so that analysis of other DOM elements is not impacted 

by the visual characteristics of the previously collected ones [15, 16]. 

 

3.2.2. Screenshot Comparison 
 

DOM structure information can be used to assist the process of identifying XBIs. However, the 

DOM does not present information about each element’s exact appearance on the screen [1]. Thus, 

in regards to the identification of Layout XBIs, many studies reported the use of screenshot com- 

parison techniques [1, 2, 4, 5, 9, 10, 12, 13, 18, 25]. 

 

The primary method for comparing images is direct matching histograms. However, using a rigid 

comparison of histograms with no consideration for global features (such as symmetry, kurtosis 

and number of peaks) might raise many false positives [9]. In this context, image comparison 

techniques were used in the studies: Earth Mover’s Distance (EMD) [1, 18, 25], χ2 Distance [2, 4, 

12], Image Segmentation with correlation-based image comparison [5, 9], pHash and Perceptual 

Image Diff [10], Iterative Perceptual Hash, and Structure-Color-Saliency [14]. 

 

WebDiff employed EMD to individually compare screenshots taken in different browsers for each 

element of the DOM structure of a webpage [1, 18, 25]. In the WebDiff tool, there was no fixed 

threashold to determine whether two element screenshots were different or not [1]. Instead, the 

threshold was set relative to the size and the color density of each screenshot. 

 

The χ2 distance image comparison technique is adapted from the statistical χ2 hypothesis test, 

which is used to compare the dispersion between two nominal variables, evaluating the correlation 

between qualitative variables. The studies [2, 4, 12] used the χ2 distance method to compare 

screenshots of elements of the webpage. In [2, 12], the comparison was carried out between all 

elements of a webpage. Then, in a later study [4], the χ2 distance method was used to compare 

only the leaf nodes of the DOM tree structure. This strategy was used to reduce XBI false positives. 

In [2, 12], the authors also reported that the χ2 is less expensive computationally and more precise 

than EMD. 
 

The studies [5, 9], which presented the Browserbite tool, reported segmenting screenshots of web 

pages as rendered by different browsers into small rectangles, each identified as a Region Of 

Interest (ROI) based on the image’s borders and color changes. Screenshots of the ROI as captured 
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by different browsers were then compared. These studies employed a correlation-based image 

comparison technique [5]. 

Sanchez and Aquino Jr. used two approaches for screenshot comparison: pHash8 and Perceptual 

Image Diff9 [10]. The pHash algorithm is an implementation of the Perceptual Hash concept, 

defined as a fingerprint hash of a multimedia file derived from various features of its content10. 

Perceptual Image Diff, on the other hand, is an algorithm to identify every dissimilar pixel between 

two images. Firstly, pHash was applied to screenshots captured from different browsers, in order 

to generate a hash code for each image. Subsequently, the hash code of each image was compared 

using the Hamming distance algorithm. The result was used alongside the Perceptual Image Diff 

algorithm to detect XBIs. 

 

In [14], two screenshot comparison algorithms were proposed: IPH - Iterative Perceptual Hash 

and SCS - Structure-color-saliency. IPH uses global and local content discrepancies to avoid under 

or overestimation of changes between screenshots. SCS considers changes in color, structure, 

saliency and location sensitivity to compose a unique index. These approaches were used to 

analyze differences between screenshots of parts of the webpage. In the experiment conducted by 

the authors, IPH outperformed other previously used techniques, such as EMD (CrossCheck [4]) 

and χ2 (X-Pert [12]). 

 

3.2.3. Graphs Isomorphism 
 
The studies [2–4, 8, 12, 21–23, 26] reported the use of different approaches which focused on the 

identification of Functionality XBIs. These approaches consisted of simulating user interac- tion 

scenarios, mainly click events on elements of the webpage, to trigger changes in the DOM 

representation of the web application in different browsers. The These studies mapped the DOM 

representation and click event simulations into a graph, and then used a Graph Isomorphism algo- 

rithm to identify functionalities which were not available depending on the user’s browser. 

 

The first study to use this approach was in CrossT [8]. This study extended an Ajax application 

crawler tool, named Crawljax [27]. CrossT employed the Crawljax for representing the Navigation 

model of the application. Then, the Navigation models rendered by different browsers were com- 

pared and differences in these graphs were reported as Functional XBIs, i.e., click functionalities 

which were observed in one browser and missed in another [8]. 

 

After CrossT, other XBI detection approaches implemented similar strategies, such as [2–4, 12, 

19–23, 26]. Certain approaches reported using an equivalent strategy for generating the models 

[2, 4, 12], other reported doing so through events besides click [3, 21–23] and Record’n’play 

strategies for also mapping non-deterministic events [19, 20]. In these approaches, the studies 

evolved with the goal of increasing the number of DOM structure states analysed and covered by 

their XBI detection technique. 

 

3.2.4. Machine Learning 
 

Machine learning is an area of Artificial Intelligence which has the objective of developing com- 

putational techniques capable of automatically acquiring knowledge on how to perform a specific 

task without being explicitly programmed to do so. All XBI detection studies which reported the 

use of machine learning used supervised learning techniques. In supervised learning, concepts are 

induced into the system from pre-classified examples. Studies employed different character- istics 

of web applications as features in the learning phase and also different machine learning 

algorithms. 
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The first studies which used machine learning techniques for XBI detection were [2, 4, 12], in 

CrossCheck and X-Pert. These studies reported the use of the decision-tree machine learning 

technique. A decision-tree is a simple representation of a classifier used by many machine learning 

systems, such as C4.5 [28]. These studies used a decision tree to classify every element of the 

DOM structure as rendered by different browsers and determine if it was a XBI or not. The 

decision tree, in these articles, was modelled with the following features: Size difference ratio, 

differences in the size of elements as rendered by different browsers; Displacement, the Euclidean 

distance between the position of elements as rendered by different browsers; Area, the smaller 

area of elements as rendered by different browsers; Leaf Node Text Differences, a boolean value 

identifying whether there are differences between the texts of elements as rendered by different 

browsers; and Image distance, the χ2 distance screenshot comparison of elements as rendered by 

different browsers. A simplified classification model of DOM elements was reported in [15, 16], 

making use of the following features: Displacement, Relative position of the element in regards to 

its parent position, Size differences, and image distance of the screenshots. 
 

After [2, 4, 12], in the Browserbite tool, the authors reported the use of decision trees and neural 

networks to detect XBIs in web applications [5, 9]. Neural networks are mathematical models 

inspired by organic neural structures, which acquire knowledge through experience [29]. The 

validation of Browserbite consisted of an experiment to compare how both machine learning ap- 

proaches performed when analyzing a group of websites. Moreover, Browserbite uses the concept 

of regions of interest to identify XBIs [5, 9], differently from other approaches, which employed 

DOM elements comparison. Browserbite’s neural network approach was applied to each region of 

interest as rendered by two browsers using the following features: 10 histogram bins (h0, h1, ..., 

h9) representing the pixel intensity distribution of the region of interest in the baseline browser; 

Correlation-based image comparison between screenshots of region of interest as rendered 

by two browsers; Horizontal and vertical position of the region of interest as rendered by two 

browsers; Height/Width of the region of interest as rendered by two browsers; Configuration 

index indicating the browsers which were used to render the regions of interest; and Mismatch 

density metric, calculated as a coefficient of the number of regions of interest which presented 

differences in the correlation-based image comparison approach and the total number of regions 

of interest in the screenshot of the webpage. 
 

Decision trees and neural network machine learning techniques were used to reduce the number of 

false positive. When evaluating CrossCheck and X-Pert, the authors reported that the use of deci- 

sion trees improved the results of their XBI detection approach. In the evaluation of Browserbite, 

neural networks performed better in comparison to decision trees [5, 9]. However, it is difficult to 

establish a comparison between [2, 4, 12] and [5, 9], since these studies used a different set of 

features and training data. 
 

3.2.5. Relative Layout Comparison 
 

The WebMate tool compared elements considering their relative positions [3, 22, 23]. HTML el- 

ements present a hierarchical structure for rendering the layout of a webpage; hence, if a parent 

element is misaligned, its child elements will also present the same misaligned absolute position- 

ing. Thus, XBI detection approaches using absolute positioning to identify XBIs, might report 

that child elements represent XBIs, when only the parent element was actually misaligned. 
 

X-Pert also explored the relative layout position evaluation strategy [2, 12]. The tool modeled the 

positioning of elements in a webpage as a graph, titled Alignment Graph. The Alignment Graph 

represents the relationships between parent, child and siblings nodes, represented as nodes in the 

graph, and their relative position in regards to one another, represented as transitions between each 

element in the graph. Two alignment graphs extracted from two different browsers can then be 
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checked for equivalence, and any difference observed between the graphs is reported as a XBI. 

 

3.2.6. Adaptive Random Testing (ART) 
 
Adaptive Random Testing - ART is an extension of the Random Testing technique. ART analyses 

the behavior of test results observed in software and generate test input which are more likely to 

produce failures in the software [30]. Generally, similar test cases tend to identify similar failures, 

hence ART is a technique to identify test cases which are more likely to improve the coverage of 

a software input domain. 

 

Selay et al. [13] used ART to compare images for equivalence, employing a screenshot comparison 

approach. The ART approach used in [13] implemented the Fixed Size Candidate Set (FSCS) 

algorithm to randomly chose test cases. This algorithm makes use of a test case similarity metric 

to guarantee that it generates different test cases to explore different parts of the software’s input 

domain [30]. Selay et al. ran an experiment with the goal of improving the performance in terms 

of the time required to identify incompatibilities while comparing two distinct screenshots [13]. 

 

3.2.7. Record’n’play 
 

In order to detect Functional XBIs, the approaches built a navigation graphs for each browser and 

carried out further equivalence analysis of these graphs. Initially these graphs were built from data 

generated by AJAX crawling tools, such as Crawljax and WebMate, which simulate user 

interactionscenarios. However, these approaches do not deal with non-deterministic events in the 

web application, or dynamic content changes generated by the server. 

 

In [19, 20], the use of a proxy-based approach is proposed for recording web application’s dis- 

patched events and replaying the same exact events when rendered in different browsers, through 

the X-Check tool. Besides increasing the precision of the XBI detection approaches, this allowed 

the analysis of specific user interaction scenarios, considering events not priorly programed in 

other crawlers, possibly enhancing the coverage of web applications. In [19, 20], X-Check is 

compared to the X-Pert tool, in which the X-Check showed enhanced effectiveness and higher 

number of XBI detection than X-Pert. 

 

4. RELATED WORK AND DISCUSSION 
 

There are other secondary studies in the area of Web  applications testing [31–33].  Garousi et  al. 

(2013) conducted a Systematic Mapping study [31] for identifying and classifying research effort 

in this area. Their study reported 79 papers from 2000 to 2011 and their classification con- 

sidered aspects such as Testing activity, Testing location, Generated Artifacts, Used Techniques, 

Static/dynamic webpages testing, Synchronous/Asynchronous, Client-tier technologies, Server- 

tier technologies, among other data. 
 

Li et al. (2014) presented a survey to report the evolution of techniques throughout 20 years of Web 

application testing [32]. Their study classified articles according to Motivation (Interoperability, 

Security, Dynamics, among others), Graph and model-based techniques, Mutation testing, Search- 

based Software Engineering testing, Scanning and crawling techniques, Random testing, Fuzz 

testing, Concolic testing and User-based testing. 
 

Dogan et al. (2014) conducted a SLR on Web application testing [33]. The authors selected 95 

papers published from 2000 to 2013. Their SLR was conducted with the goal of listing tools, 

identifying test/fault models used in the studies, map the empirical evaluation methods and their 

relevance for the industry. 
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This paper presented a SLR on strategies for automatically detecting XBIs in web applications. In 

the SLR, 23 studies were selected and 7 XBI detection strategies were identified in these stud- ies: 

Structural DOM analysis, Screenshot comparison, Graphs isomorphism, Machine learning, 

Relative layout comparison, Adaptive random testing and Record’n’play. We described these 

strategies, compared how each study implemented them and synthesized their results. 

 

We also proposed a framework which separated XBI detection strategies into three main steps: 

Webpage segmentation, Content comparison and Behavior analysis. The 23 selected studies are 

situated in distinct parts of this framework, which could be used to organize these studies and 

future research in the area. The framework classifies XBI detection approaches as belonging to 

either of two groups: DOM-based or Computer-vision. The framework presents the components of 

each group and how these components could be used together to form a XBI detection approach. 

These results could also be used to guide future research in the area, and for comparing and 

implementing new approaches. 

 

XBI detection strategies evolved through time, targeting both Layout and Functionality XBIs. 

Multiple approaches have been reported to improve the precision of XBI detection and the range 

of XBIs identified. Web applications consist of multiple web pages and complex built-in func- 

tionalities. The studies aimed to improve precision in XBIs identification and help decrease the 

software development costs. Most validation procedures conducted in the studies consisted of 

applying their XBI detection strategy to a group of websites, then comparing the effectiveness of 

their approach with the results obtained through manual inspection or with other approaches. 

Even though each experiment was conducted while measuring the effectiveness of the proposed 

XBI detection strategies, their results are not comparable, since they were analyzed with different 

websites. The number of articles in relation to each browser used in the experiments were: Mozilla 

Firefox (10 articles), Google Chrome (7 articles), Microsoft Internet Explorer (10 articles), and 

Apple Safari (4 articles). It is worth noting that in [11], the experiment was conducted with 15 

distinct configurations of these browsers, by changing the OS and browser versions. 

 

Even though browser engines have also evolved, research in this area still poses several challenges, 

such as: detecting cross-browser incompatibilities between different platforms (Cross-platform 

incompatibilities) [16, 34], given the increased popularity and variety of mobile devices and alter- 

native operational systems; responsive design failure detection [35] for detecting inconsistencies 

in web applications when rendered in different viewport width scenarios; and automatic correction 

of Cross-browser incompatibilities using Search-Based Software Engineering [17]. 

 

The SLR process was conducted in order to identify all automatic XBI detection approaches 

which were used in the state-of-the-art research. However, there might be studies which report the 

use of XBI detection techniques but were not included.  In order to aleviate this concern,   the 

SLR process was conducted by two researchers; all studies and the applicability of inclu- 

sion/exclusion/quality criteria were discussed and reviewed by them. Futhermore, our SLR pro- 

cess used database searches in ACM, IEEEXplore and SpringerLink, and forward snowballing in 

IEEEXplorer and Google Scholar to search for articles related to XBI detection techniques. The 

results of this SLR could be enhanced if other databases were included and backward snowballing 

was also employed. However, the inclusion of other studies in the SLR would mean the addition 

of other approaches related to the already described ones in this SLR or, at most, the addition of a 

new approach category, not invalidating any of the previously reported results. 

 

 

5. FINAL REMARKS 
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Cross Browser Incompatibilities (XBIs) are frequent in web projects and represent a serious prob- 

lem for web application developers. This article conducted a Systematic Literature Review with 

the goal of identifying different approaches which have been used to automatically detect XBIs. 

The results showed that many studies used Structural DOM Analysis and Screenshot Comparison 

techniques for the automatic detection of XBIs. It was observed that most studies evolved with the 

goal of reducing the number of false positives reported using Machine learning, Graphs isomor- 

phism, Relative layout comparison, ART and Record’n’play strategies. The techniques were also 

organized into a XBI detection framework composed of Webpage segmentation, Content compar- 

ison and Behavior analysis. The classification scheme of different technological approaches, as 

well as the comparison between the XBI detection strategies and the proposed framework, can be 

used to guide the elaboration of new strategies and tools. 

 

Future studies should discuss the implementation of automatic XBIs detection for different plat- 

forms (on desktop and mobile devices), running experiments to compare the effectiveness of dif- 

ferent XBI detection approaches and investigate techniques able to assist the developer in the 

diagnosis and correction of incompatibilities. 
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