
International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.6, November 2020 

DOI: 10.5121/ijsea.2020.11602                                                                                                                     17 

 

LEARNING-BASED ORCHESTRATOR FOR 

INTELLIGENT SOFTWARE-DEFINED  

NETWORKING CONTROLLERS 
 

Imene Elloumi Zitouna 

 

University of Tunis El Manar, École Nationale d'Ingénieurs de Tunis, Laboratoire 

Systems de Communications, Tunisia 
 

ABSTRACT 
 
This paper presents an overview of our learning-based orchestrator for intelligent Open vSwitch that we 

present this using Machine Learning in Software-Defined Networking technology. The first task consists of 

extracting relevant information from the Data flow generated from a SDN and using them to learn, to 

predict and to accurately identify the optimal destination OVS using Reinforcement Learning and Q-

Learning Algorithm. The second task consists to select this using our hybrid orchestrator the optimal 

Intelligent SDN controllers with Supervised Learning. Therefore, we propose as a solution using Intelligent 
Software-Defined Networking controllers (SDN) frameworks, OpenFlow deployments and a new intelligent 

hybrid Orchestration for multi SDN controllers. After that, we feeded these feature to a Convolutional 

Neural Network model to separate the classes that we’re working on. The result was very promising the 

model achieved an accuracy of 72.7% on a database of 16 classes. In any case, this paper sheds light to 

researchers looking for the trade-offs between SDN performance and IA customization 

 

KEYWORDS 
 
Open vSwitch OVS, Artificial Intelligence, Machine Learning, Supervided Learning, Reinforcement 

Learning, Hybrid Orckestrator, Openflow, QoS, QoE, Real time, User Behavior, User Engagements, 

Intelligent Software-Defined Networking ISDN. 

 

1. INTRODUCTION 
 

With the development of Software-Defined Anything, software is already penetrating into the 
Internet and even controlling the network. For example, a software developer can make a 

service/application at the application layer, and directly obtain the original data of the network 

device in the physical layer using southbound APIs [1]. Software technologies are already 

changing traditional network services that are typically provided by servers via application layer 
protocols into new network services that are provided from the network infrastructure (e.g., 

firewall service, QoS service). The network infrastructure also can provide services through open 

APIs, allowing network services to benefit operationally by enabling automated provisioning of 
network applications with different characteristics. This also helps to ensure that specific 

applications are getting the proper network resources that are dynamically allocated to meet 

service requirements (QoS, QoE, encryption, etc.) [1]. Due to these advances, many new service 
models are emerging in the field of networking (SDN/NFV/SD-WAN). 

 

Artificial Intelligence (AI) and Machine Learning (ML) approaches have emerged in the 

networking domain with great promise. They can be clustered into AI/ML techniques for network 
engineering and management, network design for AI/ML applications, and system aspects. 

AI/ML techniques for network management, operations and automation improve the way we 

http://www.airccse.org/journal/ijsea/vol11.html
https://doi.org/10.5121/ijsea.2020.11602


International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.6, November 2020 

18 
 

address networking today [10] [11] [12]. They support efficient, rapid, and trustworthy 
management operations. Machine learning (ML), is a key feature of future networks mainly the 

SDN paradigm. 

 

Our work and interest in softwarization and network programmability fuels the need for 
improved network automation, including edge and fog environments. Moreover, network design 

and optimization for AI/ML applications address the complementary topic of supporting AI/ML-

based systems through novel networking techniques. Including new architectures and 
performance models with great predictive ability in order to guarantee the continuity of QoS/QoE 

[2] [3]. 

  
In this paper, we elaborate an alternate method and enhancements provided. For the purpose of 

tackling the current difficulties, we propose an innovative solution based on the application of 

Artificial Intelligence and supervised and reinforcement Machine Learning techniques in SDN. 

Through SDN network virtualization, its layered architecture and its programmable interfaces, 
overall network control is therefore ensured by the logical centralization of the control function in 

the SDN controllers. Network flows are thus controlled using the OpenFlow protocol. In this 

work we present, a new reinforcement learning model in an SDN infrastructure. Which adds 
"learning" to the control function for better intelligent decision-making at the level of SDN 

controllers [7] [8]. 

 
These results will ultimately bring us a step closer to overcoming the problem of over 

exploitation of network resources, and how they can be deployed more efficiently. 

 

One of the challenges that every machine learning algorithm is faced with is scalability and 
validity to large datasets. Our research devoted to applying, hybrid machine learning, which use 

an orchestrator and a set of intelligent controllers SDN combine supervised and reinforcement 

learning techniques, can improve the key performance metric as well as QoS of different real 
time applications and the QoE. Furthermore, prediction methods for behavior and engagements 

user combining classification techniques have the potential for creating more accurate results 

than the individual methods, particularly for large datasets. 

 
The remainder of this paper is structured as follow: section II discusses a challenge, section III 

ISDN and orchestrator quality requirements, section IV describes our approach, section V 

presents design of reinforcement learning framework of ISDN, section VI describes the 
experimental results of supervised learning of the hybrid orchestrator, testbed, model context, 

dataset, data preparation, model selection and training, model creation and fine-tuning. Finally, 

section VII conclude the paper. 
 

2. CHALLENGE 
 

Adoption of the Service-Oriented Architecture principle in networking has enabled the Network-

as-a-Service paradigm that is expected to play a crucial role. Network services significantly 
impact the performance of higher layer services/applications. The behavior of an end-to-end 

network service is the result of the combination of the individual network function behaviors as 

well as the behaviors of the network infrastructure composition mechanism. 
 

However, this emerging network services are usually are usually compositions of multiple service 

components, APIs or network functions, based on new mechanisms, such as service mesh, 

internet of services, and service function chaining, running on the network layer and/or 
application layer. Meanwhile, machine learning (ML) has seen great success in solving problems 



International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.6, November 2020 

19 
 

from various domains. In order to efficiently organize, manage, maintain and optimize 
networking systems, more intelligence needs to be deployed. 

 

In this case, can we apply the machine learning algorithms in the realm of SDN, from the 

perspective of traffic classification, routing optimization, quality of service/quality of experience 
prediction and resource management ? How can SDN/ML brings us new chances to provide 

intelligence inside the networks ? 

 
The logically centralized control, global view of the network, software-based traffic analysis, and 

dynamic updating of forwarding rules, of SDN make it easier to apply our solution of machine 

learning techniques in the SDN: "The Intelligent Software defined networking, ISDN". 
 

It is believed that ML has high potential the aforementioned challenges in SDN-based networks, 

dynamic service provisioning and adaptive traffic control, as ML is a technology that can 

effectively extract the knowledge from data, and then accurately predict future resource 
requirements of each virtualized software-based appliance and future service demands of each 

user. Therefore, our research tends towards the proposal of a new hybrid orchestrator which 

learns the optimal ISDN controller in a multi-ISDN environment. 
 

In another context, in the absence of a mechanism for evaluating the best SDN controller and best 

OVS in terms of response time in network congestion situations, centralization at the SDN 
controller level operated by OpenFlow increases these response times. Consequently, this will 

allow any attacker who has gained access to the administration network to act at any time on the 

configuration of the OVS. 

 
It is also conceivable for an attacker to place himself in a man-in-the-middle in order to filter the 

commands of a legitimate administrator as well as the feedback of information from the OVS. 

Finally, listening to unencrypted or encrypted OpenFlow messages passively provides a great 
deal of information about the networks maintained by the controller. 

 

Since the memory resources of the controller are likely to be greater than those of the OVS. This 

attack model presupposes the possibility of recording flows on the controller. There is a higher 
risk compared to the system master-slaves. 

 

Therefore, without an intelligent prediction mechanism, it is simple for an opposing SDN 
controller to usurp the role of master, or to prevent a legitimate SDN controller who wishes to be 

master can configure the OVS, or at least have processing times that increase with the traffic rate. 

 
On the other hand, we can measure even longer processing times for large data flows. The goal of 

our work is to be able to integrate intelligence into SDN controllers through the application of 

machine learning algorithms in terms of routing optimization, traffic classification and resource 

management. 
 

3. ISDN AND ORCHESTRATOR QUALITY REQUIREMENTS 
 

The QoS refers to technologies that manages network traffic in order to reduce packet loss, 
latency and jitter. They control and manage network resources by defining priorities for specific 

forms of information on the network. The QoE is a measurement that determines user behavior 

and user engagements and how satisfied the end user is network services [15]. Contrary to QoS, 

QoE takes considers the end-to-end connection and applications presently running over that 
network connection and how multimedia elements are meeting the end user’s demands. 



International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.6, November 2020 

20 
 

• QoS metrics of OVS Flow table [2] [3] [4]: 
 

- PacketIn: this event is raised whenever the controller receives an OpenFlow packet-in 

message from the OVS. This indicates that a packet has arrived at the OVS port and the 

OVS either does not know how to handle this packet or the matching rule action implies 
sending the packet to the controller. This is where the controller performs the overhead 

calculation by incrementing the overhead when the OVS forwards a packet. 

 
- UpStream: this event is triggered in response to the establishment of a new control 

channel with a OVS. 

 
- DownStream: this event is fired when a connection to a OVS is terminated, either 

explicitly or because of OVS rebooting. We utilize this event handler to output the final 

value of measured control overhead. 

 
- TCAM: the OVS support the wire-rate access control list (ACL) and QoS feature with 

use of the ternary content addressable memory (TCAM). The enablement of ACLs and 

policies does not decrease the switching or routing performance of the OVS as long as the 
ACLs are fully loaded in the TCAM. If the TCAM is exhausted, the packets may be 

forwarded via the CPU path, which can decrease performance for those packets. Therefore, 

our learning can be done with the (QoS and ACL) TCAM percentage of the switches. This 
value can be used to determine the reward of the learning agent for the OVS 1. 

 

- Throughput: we aim to measure the maximum flow setup rate a controller can handle per 

period of time. Being aware of the amount of packet-in a controller can process ease the 
choice of SDN controllers appropriate to master network control charge. 

 

- Latency: represents the time consumed by a controller to process and reply an 
outstanding flow request from the OVS. 

 

- Scalability: represents the capacity of a controller to handle a large network with an 

increased number of connected hosts without degrading throughput and latency 
performance. 

  

- ICMP Round Trip Time (RTT): it is important to evaluate the influence of additional 
delay due to communications between OVS and SDN controller for the first ICMP Echo 

packet we target the selection of a controller that shows the lower delay. 

 
- TCP and UDP measurements: the purpose of TCP and UDP measurements is to estimate 

the impact of delay introduced by the communication between controller and OVS on the 

TCP transfer time and UDP packet losses. TCP and UDP evaluation are performed over 

multiple network topologies by Mininet. Single, linear, tree and data center network (DCN) 
topologies. 

 

• User behavior [5] [6] [9]: is the tracking, collecting and assessing of user data and activities 
using monitoring systems. Our purpuse is to determine a baseline of normal activities 

specific to the organization and its individual users. They can also be used to identify 

deviations from normal. We propose to uses machine learning algorithms to assess these 
deviations of user behavior in near-real time. 

 



International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.6, November 2020 

21 
 

• User engagements [5] [6]: is a process comprised of four distinct stages: 1) point of 
engagement, 2) period of sustained engagement, 3) disengagement, and 4) reengagement. 

The period of Engagement Attributes are: Aesthetic and Sensory Appeal, Attention, 

Awareness, Control, Interactivity, Novelty, Challenge, Feedback, Interest and Positive 

Affect. Also we propose to uses machine learning algorithms for specification the new 
SLA of user engagement 

 

4. APPROACH OF LEARNING ORCHESTRATOR 
 

Our intention would be to design an SDN architecture composed of multiple controllers where 

the choice of the suitable and optimal controller and OVS to be implemented in a specific domain 

depends on the controller performance and efficiency to respond to QoS and QoE requirement 

imposed by the service application with machine learning environment. 
 

We extract relevant information from the Data flow generated from a SDN (PacketIn, UpStream, 

DownStream, TCAM, etc.) and using them to learning, to predicting and to accurately identify 
the optimal destination OVS using Reinforcement Learning. Also we extract relevant information 

from the Data flow generated from the optimal Intelligent Software-Defined Networking 

controllers (CPU Throughput, CPU Latency, Scalability, ICMP Round Trip Time (RTT), TCP 
and UDP measurements, etc) with Supervised Learning run in the Hybrid Orchestrator (Figure 1). 

Our performance evaluation considers two well-known centralized controllers and multi OVS. 

The evaluation in terms of throughput, latency, and scalability is performed with Cbench. With 

Mininet and Iperf we evaluate TCP, UDP and ICMP flow over several network topologies. The 
main purpose is to predict and to select the ISDN controller that exhibits the highest throughput, 

scalability, lowest latency, delay, packet loss, TCP transfer time and most rich in features and 

also to predict the optimal OVS with lowest TCAM percentages. This value can be used to 
determine the reward of the learning agent for the session. 

 

We extend this hybrid orchestrator by adding the code to install the selected forwarding North 
Rules (R1(RRD), R2(SRD), R3(RTPD), etc) created by the learning agent prior to handling any 

outcoming traffic. 

 

At the beginning of each emulation experiment, traffic flows are generated into the network 
topology, the state of the flow table in the OVS, and the state of the ISDN controllers is observed. 

To test the controller’s performance in terms of latency, OVS sends an asynchronous message 

toward controller and waits for a reply. Hence, the number of acknowledgments gathered in a test 
period of time is used to calculate the average latency. For the throughput measurements, each 

OVS transfers a burst of packet-in without waiting for a response to estimate maximum flow 

requests a controller can handle per second. Emulated hosts have access to Linux file system 

commands. Like “Iperf”. Therefore, network design can easily move to the real system with 
minor deployment [5]. 

 



International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.6, November 2020 

22 
 

 
 

Figure 1.  Hybrid Learning Orchestrator for multi-ISDN proposed 

 

5. DESIGN OF REINFORCEMENT LEARNING FRAMEWORK OF ISDN  
 

In our approach, the configuration of rules can be defined by two decisive parameters, flow 

match frequency and flow recentness. Therefore, the RL algorithm can be modeled to obtain the 

network configuration that minimizes the long-term control plane overhead [7]. This approach is 
modeled using a Markov Decision Process (MDP), which can be represented as the tuple <S, A, 

P, R>, where S = {s1, s2, . . . , si } is the state-space, A = {a1, a2, . . . , aj } is the action-space, P 

defines the transition probability from state i to state j, and R defines the reward associated with 

various actions a ∈ A. The goal of this MDP is to develop a policy π : S → A that maximizes the 

cumulative rewards obtained in the long term [4][6]. In the problem that we address in this 

research, we can know all the forwarding rules that need to be processed for all tra c ows 

transported on the network. For our problem, the state-space, action-space, and reward function 
are de ned as follows:  

 

In our approach, we utilize the following RL algorithms:  
 

5.1. Reinforcement Learning Framework of ISDN.  
 
In our design, the Q-Learning algorithm is utilized in our emulation experiments. The decision to 

utilize the QLearning algorithm is motivated by the fact that it does not need a model for the 

environment, and it updates the Q-values at each time step based on the estimation of action-
value function. This iterative learning process is conducted in discrete time steps in which the 

agent interacts with the environment. At each step, the agent interacts with the environment. At 

each step, the agent selects an action at ∈ A in the given state st.The agent makes its own 



International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.6, November 2020 

23 
 

decisions to choose an action based on the action selection policy with the goal of maximizing 
the expected reward. The notation Q(s, a) denotes the average Q-value of an action a at state s. 

While the immediate reward is collected, Q(s, a) can be further refined as:  

 

Q(st,at)= r + Q(st,at) - εQ(st,at)+ γ maxQ(st+1,at+1) 
 

where ε (0 < ε ≤ 1) is the learning rate that determines to what degree the newly obtained 

information overrides the old one and γ (0 ≤ γ ≤ 1) is the reward factor that defines the 
importance of future rewards and guarantees convergence of the accumulated reward. In our 

experiments, we use a discount factor of 0.85 as these values are commonly used in practice. 

 
  ALGORITHM : Q-Learning Algorithm  

 

Preconditions: 

Initialize Q-table random 

TCAM percentage Initialize 

state st 

Initialize goal  
Procedure: 

01: improvement measures = 0 

02: repeat 

03: for (step = 0; step < learning_iteration; 

step++) 04: Get action at from st using  

05: Get parameter from st using  

06:  =  –  *(step / learning_iteration) 
07:  Take action at on the parameter and receive reward r, control overhead C 

08: Sample new state st +1 after applied action at  

09: Update Qt←r+ Qt − Qt +γ∗ maxQt+1 

10: Update the corresponding parameter of Qt 

11: improvement measures = get_improvement measures 

(bestt ++, bestt - - ) 12: end for 

13: until improvement measures >    
 

The Q-Learning algorithm can have a chance to explore the action space in the process of 

searching for a better action that produces a better reward. β is used as the action selection policy 
in which the action with the highest Q- value is always picked while the probability of picking 

some other action at random is small. 

 
If the action is chosen to be performed due to its Q-value, the associated parameter value will be 

updated as well. ε represents the terminal objective of the algorithm. Where this algorithm keeps 

track of the chosen parameter corresponding to the Q-value of each action. 

 
This value interval can be divided into four different states as follows: 

 

- State 1: If the value of the TCAM belongs to [0..30]: it is a weak state 
- State 2: If the value of the TCAM belongs to [30..50]: it is an ideal and appreciated state. 

- State 3: If the value of the TCAM belongs to [50..80]: it is a critical state. 

- State 4: If the value of the TCAM belongs to [80..90]: it is a mediocre state 
 

To facilitate the understanding of the different actions of the agent, we can first represent the 

states as follows:  

 



International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.6, November 2020 

24 
 

Table 1. The different states available for each controller 

 

State 1 State 2 

State 4 State 4 

 

The agent's actions are modelled as follows: 
 

Action 1 (go up): transition from state 4 to state 1 or from state 3 to state 2 Action 1 (go up): 

transition from state 4 to state 1 or from state 3 to state 2 Action 3 (turn right): transition from 
state 1 to state 2 or from state 4 to state 3 Action 4 (turn left): transition from state 2 to state 1 or 

from state 3 to state 4 
  

6. EXPERIMENTAL RESULTS 
 

6.1. Testbed Setup 
 

The testbed consists of a single machine with (Intel Core i5-7200U CPU @ 3.1 GHz), 8 GB of 
memory available. The system runs Ubuntu 16.04 LTS-64 bit with VMware Workstation Pro 

version 14.1.1 installed. Controllers, Cbench and Mininet are installed in separate VMs the 

allocated memory is respectively (4GB, 2GB, 2GB). 
 

When it comes to Machine learning, there are four main steps that need to be followed which are: 
 

1. Looking at the big picture 

2. Getting The Data 
3. Preparing the Data for Machine Learning algorithms 

4. Selecting and training, and fine-tuning a model The machine learning libraries used are : 
 

1. TensorFlow : is well known for its flexible architecture which allows for the deployment of 
computation across a variety of platforms like CPUs or GPUs on a desktop, a server, or a 

mobile device. 

2. Keras : is a python-based Deep Learning. It works in a different way than other Deep 

Learning frameworks. Keras does not support low-level computation like TensorFlow 
which is why it uses a tool named Backend. 

3. Scikit-learn : is a Machine Learning Library. It includes a wide array of classification, 

regression, and clustering algorithms. It was conceived in a way to interoperate with other 
mathematical python libraries like Scipy, and NumPy. 

4. Jupyter Notebook : is a Web application allowing the creation and sharing of doc- uments 

containg live code, visualizations, and narrative text. 
5. Anaconda : is a Python and R programming languages distribution which conveniently 

installs them additionally to other packages commonly used in Data science and scientific 

computing. 

 
We have succeded in training a model which is to be implemented on an SDN Controller. its task 

is intelligent control and routing. We will go through these steps one by one while explicitly 

explaining the choices we have made throughout the development process [13] [14]. 
 

6.2. Model Context 
 
For this model, we used Mininet, a network emulator to generate a Network OVS, controllers, 

hosts, and links. in figure .2. The OVS support Openflow protocol for high flexibility when it 

comes to customized routing and SDN. Figure 3, 4 and 5 presents the iteration of our algorithm. 



International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.6, November 2020 

25 
 

6.3. Q-Learning Algoritm Outputs 
 

Starting from the database containing the ternary memory consumption rate of a OVS as a 

function of time, we applied the Q-learning algorithm and we have it trained several times so that 
it converges towards an optimal result and informs us the best OVS in terms of QoS. At each 

iteration, the agent stores the corresponding values (Q-Values) resulting from Bellman's equation 

in a dynamic array named Q-table. Since all of the study and testing is done on a database of 
seven OVS, such a procedure allows us to get two OVS in order to decide which of these two is 

the most efficient. 

 

The different rates of memory consumption existing in our database are quite large. The figure. 2 
below shows part of the database imported into the working environment. 

 

The three previous cases show us different iterations of the algorithm, which ends up deciding in 
the Xth iteration, with X is the length of the database, that the OVS R2 is optimal and we can also 

retain it. 

 

6.4. The Dataset 
  

In order to train a model, we need a Dataset. In our case, we used the emulated network on 
Mininet to generated Data flows and recuperate them using Wireshark, a free opensource packet 

sniffer. A sample of the recuperated data is shown in Table II. 

 

 
 

Figure 2. Percentage of ternary memory consumption as a function of time 

 

 
 

Figure 3. 1st iteration of the algorithm 



International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.6, November 2020 

26 
 

 
 

Figure 4. 5th iteration of the algorithm 

 

 
 

Figure 5. Xth iteration of the algorithm 

 

6.5. Data preparation 
 

To prepare our Data, we first start by eliminating useless information from it. As is shown in the 

Table II., our Dataset contains many columns that our model’s has no use for, which is the 
descriptive information in the last column. Another constraint when it comes to exploiting 

datasets is that Machine Learning algorithms can’t handle String input, for that we had to 

transform Source IP address, Destination IP address and Protocol columns into integers. This 
process can be easily done via simple Python functions. The following Table.I illustrates the 

prepared Dataset. 

 
Following this step, we proceed to dividing our Data into two parts: a Training set and a 

validation set. 

 
Table 2. A Glimpse of the Raw Dataset 

 

 
 



International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.6, November 2020 

27 
 

Table 3. A Glimpse of the Processed Dataset 

 

 
 

6.6. Model Selection and Training 
 

As our Data is labeled, it is natural to choose a Supervised Learning al- gorithm, all the more so 
due to Supervised learning being customizable and frequently used in problems relating to self-

healing networks. This is particularly the case for the OpenDayLight project, a modular open 

platform for the customization and the automatization of networks of all sizes. It is a Project that 
took birth out the SDN movement, clear focusing on Network programmability. 

 

In the following section, we introduce the libraries used from realization of our model. 
 

6.7. Model Creation and Fine-tuning 
 
When it comes to Creating and Fine-tuning Convolutional Neural Network models comes down 

to optimizing the Hyperparameters of the model (e.g. Number de filters, size of each du filter, 

activation function of each layer, etc.). There are many ways to do this. One can try to fiddle with 
them manually until a great combination is found, which can be quite time-consuming, or he can 

try to use pre-installed Scikit-learn search methods like the Randomized search. 

 

In our case, and considering the fact that our Data is not complexe, we used the simplest fine-
tuning method which is Grid search. the resulting optimized CNN structure had the following 

architecture in figure .6. 

 
The following is a break-out of the models layers: 

 

• The Input Layer: this layer contains our input values which we want to predict and train the 
model with, where each neuron in that layer contains a value took from the sample. In our 

case, our dataset contains 6 columns, thus the 6 neurons at the top layer. 

• The Output Layer: is the layer will give us an information about the sample we gave to our 

neural network. In our case, it would be predicting the IP destination address. As our Data 
flow simulation engaged 16 IP addresses, the number of neurons in this layer is 16. 

• The Hidden Layer: The hidden layers can be composed of one or many sublayers whose 

numbers and hyperparameters where determined by the Grid Search. In our case it contains 
two layers. 

 



International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.6, November 2020 

28 
 

 
 

Figure 6. Model Architecture 

 

At this point, we have built our model and pre-processed our Data. All that is left is to compile 

the model, train it, and save it using the previously defined functions compile(), model.fit(), and 
model.save() respectively. 

 

The evaluation of our model using the validation Data gives an accuracy ratio of 72.7%. 

 

6.8. Problems and limitations 
 
When it comes to Machine Learning, the main tasks are the selection of the algorithm and the 

Data, and latter is what we encountered. 

 

• Insufficient Quantity of Data is a Major problem when it comes to training a model. Even 
for very simple problems like ours, we need thousands of examples. For more complex 

problems like sound recognition or image classification, we would need millions of 

examples [16]. 
• Irrelevant Features: As they say: garbage in, garbage out. Our model will only learn 

correctly if the training Data contains many relevant features and not too many 

insignificant ones. These problems, more often than not, lead data scientists to over-fitting 
their Data to the training set, Optimizing the hyperparameters in search for a better 

accuracy ratio at the training without taking into account the global, dynamic context in 

which the mode l will be deployed, which usually leads to bad overall performance after 

deployment. 
 

CONCLUSIONS AND FUTURE WORKS 
 

Supervised machine learning methods, such as neural network (NN), convolutional neural 
network (CNN), and recurrent neural network (RNN) can apply to prediction and classification. 

Furthermore, reinforcement learning methods, are tools for generative networks and 

discriminative networks. 

 



International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.6, November 2020 

29 
 

These methods contribute substantially to improving prediction and classification in relevant 
applications, but there remain issues and limitations that require further attention from the 

research community. 

 

The testing process of Machine Learning on SDN controllers has long been considered critical 
for ISPs around the world. Fortunately, our trained-model confirmed the viability and the 

potential of the combination of the two aforementioned technologies. 

 
For our case, we were implementing a supervised learning algorithm for intelligent routing and a 

reinforcement learning algorithm for to choice the optimal controller. This hybrid learning 

solution is being improved constantly as it self adjusts itself to all the customers. 
 

In this paper, we trained a supervised-learning CNN to predictively routing data frames while 

arguing the choices taken in the process. We additionally presented the used frameworks 

followed by the experimental results. We expend the New Supervised Machine Learning 
Methods to the business layer and try to implemented it in an hybrid orchestrator which will have 

to efficiently choose which controllers ISDN to use in real-time to maximize performance 

indicators with Novel Reinforcement Learning Method where an agent has to take real-time 
decisions which is true for our problem. Despite the fact that the machine learning-based 

approach performs well in our experiments, further development is needed to expand the 

capabilities of our emulation scope. The rest of this work will be the application of Q-learning 
algorithm that we proposed. Currently, implementing the user behavior and the user engagements 

in the learning labels and model training more thoroughly is the focus of our ongoing research. 

 

REFERENCES 
 
[1] J. Wagner. Why Performance Matters. Accessed: Mar. 22, 2019. [Online]. Available: 

https://developers.google.com/web/fundamentals/performance/ why-performance-matters/ 

 

[2] M. Seufert, P. Casas, N. Wehner, L. Gang, and K. Li, “Streambased machine learning for real-time 

QoE analysis of encrypted video streaming traffic,” in Proc. 22nd Conf. Innov. Clouds, Internet 

Netw.Workshops, Feb. 2019, pp. 76–81.  
 

[3] V. Krishnamoorthi, N. Carlsson, E. Halepovic, and E. Petajan, “BUFFEST: Predicting buffer 

conditions and real-time requirements of HTTP (S) adaptive streaming clients,” in Proc. 8th ACM 

Multimedia Syst. Conf., Jun. 2017, pp. 76–87. 

 

[4] M. Lu, W. Deng, and Y. Shi. 2018. TF-idletimeout: Improving e ciency of TCAM in SDN by 

dynamically adjusting ow entry lifecycle. In Proceedings of the 2016 IEEE International Conference 

on Systems, Man, and Cybernetics (SMC). IEEE, Budapest, 2681–2686. 

 

[5] M. H. Mazhar and Z. Shafiq, “Real-time video quality of experience monitoring for HTTPS and 

QUIC,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM), Apr. 2018, pp. 1331–1339. 

 
[6] W. Robitza, “Towards behavior-oriented quality of experience assessment for online video services,” 

in Proc. Int. Conf. Interact. Experiences TV Online Video, Jun. 2017, pp. 123–127. 

 

[7] Tam N. Nguyen, 2018 2nd Cyber Security in Networking Conference (CSNet), The Challenges in 

SDN/ML Based Network Security : A Survey. 4 Apr 2018. 

 

[8] Ting Y, Al-Fuquaha A, Shuaib K, M. Sallabi F, Qadir J, 2018, November. SDN Flow Entry 

Management Using Reinforcement Learning, In 2018 Transactions on Autonomous and Adaptive 

Systems (ACM). 



International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.6, November 2020 

30 
 

[9] Seufert. M, Wassermann. S and Casas. P, IEEE COMMUNICATIONS LETTERS,. Considering User 

Behavior in the Quality of Experience Cycle: Towards Proactive QoE-Aware Traffic Management, 

VOL. 23, NO. 7, JULY 2019. 

 

[10] S. C. Lin, I. F. Akyildiz, P. Wang, and M. Luo. 2016. QoS-aware adaptive routing in multi-layer 
hierarchical software de ned networks: A reinforcement learning approach. In Proceedings of the 

2016 IEEE International Conference  on  Services Computing (SCC). IEEE, San Francisco, CA, 25–

33. 

 

[11] S. Wang, H. Liu, P. H. Gomes, and B. Krishnamachari. 2017. Deep reinforcement learning for 

dynamic multichannel access. In Proceedings of the International Conference on Computing, 

Networking and Communications (ICNC). IEEE, Silicon Valley, 257–265. 

 

[12] S. C. Lin, I. F. Akyildiz, P. Wang, and M. Luo. 2016. QoS-aware adaptive routing in multi-layer 

hierarchical softwaredefined networks: A reinforcement learning approach. In Proceedings of the 

2016 IEEE International Conference on Services Computing (SCC). IEEE, San Francisco, CA, 25–

33. 
 

[13] POX Controller, [Online]. Available: https://github.com/noxrepo/pox. February 2020. 

 

[14] Google DeepMind. [Online]. Available: https://deepmind.com/ . February 2020. 

 

[15] S.Garba, Metric-Based Framework for Testing & Evaluation of Service-Oriented System, 

Intenational Journal of Software Engineering & Application (IJSEA) , Vol.10, No.3, May 2019. 

 

[16] L.Zeheng and H.LiGuo, TRACING REQUIREMENTS AS A PROBLEM OF MACHINE 

LEARNING, International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.4, 

July 2018. 


