
International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.2/3, May 2021

DOI: 10.5121/ijsea.2021.12302 11

EMBEDDING QUALITY INTO SOFTWARE
PRODUCT LINE VARIABILITY ARTIFACTS

Mworia Daniel, Nderu Lawrence and Kimwele Michael

Department of computing, Jommo Kenyatta University of

Agriculture and Technology, Kenya,

ABSTRACT

The success of any software product line development project is closely tied to its domain variability

management. Whereas a lot of effort has been put into functional variability management by the SPL

community, non-functional variability is considered implicit. The result has been dissatisfaction among

clients due to resultant poor quality systems. This work presents an integrated requirement specification

template for quality and functional requirements at software product line variation points. The

implementation of this approach at the analytical description phase increases the visibility of quality

requirements obliging developers to implement them. The approach proposes the use of decision tree

classification techniques to support the weaving of functional quality attributes at respective variation

points. This work, therefore, promotes software product line variability management objectives by

proposing new functional quality artifacts during requirements specification phase. The approach is

illustrated with an exemplar mobile phone family data storage requirements case study.

KEYWORDS

Software Product Line Engineering, Functional and Non-functional requirements, Quality attributes,

variability, integration and requirements specification.

1. INTRODUCTION

Non-functional requirements (NFRs) problems are grouped into definition problems,
classification problems, and representation problems. Representation of NFRs is a big challenge

owing to their fuzzy nature where depending on how we define an NFR; its representation on a

software specification document can make it appear like a functional requirement creating even

more confusion in requirements documentation.

Even though there are many continuing efforts to determine in which stage of software

development to integrate NFRs, researchers agree that taking account of NFRs during the early
phases of any software engineering can improve the quality and agility of software[1].

There are various ways in which NFRs can be represented depending on the reason for their use
and phase of the software development project. Goal-oriented approaches have advanced well-

defined approaches to model NFRs at the early stage of the requirement engineering process

while at the architectural phase NFRs associated with particular components can be used to

justify alternative designs [2].

Another very well-defined approach for representing NFRs is the textual representation which

involves documenting requirements in software requirement specification (SRS) through the use

http://www.airccse.org/journal/ijsea/vol12.html
https://doi.org/10.5121/ijsea.2021.12302

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.2/3, May 2021

12

of templates. The most widely used textual requirements representation methods are the natural
language-based templates [3].

In any software development process, non-functional requirements (NFRs) analysis will yield

performance requirements, business constraints, and non-functional properties or quality
attributes (QAs). This work will focus on quality attributes requirements representation in

software product line engineering (SPLE) where variability is critical and the operationalization

of quality goals is closely interlaced with functional requirements.

In Software product line engineering (SPLE) requirements engineering activities are carried out

in the early stages of domain analysis & engineering (DA&E). A product line is a set of products
that share a common set of requirements, but also exhibit significant variability in requirements.

In the requirements analysis stage, the requirements gathered in the previous stages are analyzed

and further refined. The commonalities and variabilities can be identified either by using product

line-specific techniques or other techniques such as feature-oriented domain analysis (FODA)
and family-oriented abstraction, specification, and translation (FAST) [4].

SPLE exploits the similarities of the systems that belong to a product line and systematically
handles the differences between them. Product line variability defines how product line

applications may differ in terms of features, functionality, and quality requirements they fulfill.

Like commonalities, product line variability is pre-planned by defining whether a given feature,
functional or quality requirement is product line variability or not based on explicit decisions

from all product management stakeholders [5] . Quality attribute variability can be due to

functional variability causing indirect variation in qualities, and vice versa.

Most SPLE approaches typically cover the domain and application engineering processes but set

aside one activity important to companies which is the analysis of non-functional properties

(NFPs) or quality attributes and the evolution of SPL's artifacts. A large part of most SPL
methodologies is the management of functional variability and the minor part of implementing

quality variability is with annotations that are sometimes abandoned after a short period because

of the lack of integration during the SPL development activities.

A literature review demonstrates the aspect of variability in quality attributes has been "neglected

or ignored by most of the researchers and attention is mainly put in the functionality variability of

the products. As observed in[3], most approaches to quality attribute incorporation in software
product line development introduce the variability at the design level (e.g., within sequences

diagrams) instead of modeling the variability of the quality attributes earlier on in the

development process, such as the requirements analysis level or at the architectural level. Our
approach addresses this gap by considering and integrating quality attributes at the domain

requirements analysis and specification phase.

Feature Models are the most widely used variability language, that models variability through
high-level features that are close to requirements specification. During feature model analysis it is

important to consider quality attributes as part of the model variability alongside functional

features to generate more than one solution, the variation points are made explicit and document
the decision models with the knowledge necessary to ponder about the better solution for each

product to be derived. This work, therefore, proposes an approach that will support the

identification and integration of quality attributes with the functional features at respective
variation point levels during the domain requirements analysis phase based on a higher-level

abstraction of common features among variants.

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.2/3, May 2021

13

The contribution of this paper is to provide support, applying domain analysis and variability
management techniques, to the identification and representation of quality requirements in SPL

development. This paper focuses on the analysis and specification of quality requirements

alongside the functional requirements in the early stages of SPL development taking as input the

domain requirement documents together with feature diagrams. The approach proposes the use of
textual integrated requirements template to extract common functional and quality attribute

requirements at the SPL variation point. Further, the approach extends the feature-based analysis

of domain requirements by focusing on the product family variation points to generate common
functional quality attributes among the product family variants which are then stored as aspectual

components to promote reuse.

The remainder of this paper is organized as follows. Section 2 reviews related work. Section 3

describes the proposed approach while Section 4 applies the conceptual approach to a case study.

Finally, Section 5 summarizes the contributions of this work and outlines directions for further

research.

2. RELATED WORK

A range of research works has been carried out that seeks to support the incorporation of NFRs in
the software product line engineering (SPLE) process. Whereas there is no agreed-upon stage of

integrating NFRs into the software development process efforts in the literature focus more on

the solution space (design, architectural choice, evaluation, and testing) than the problem space(

requirements elicitation and analysis) [6]. Some of the relevant approaches addressing this issue
are presented below.

2.1. Quality attributes Integration based on Extension of UML models

To capture the variability of quality attributes using Model-Driven Development (MDD), [7]

recommend annotating the base model employing extensions to the base modeling language.
They add generic annotations related to quality attributes like performance to the UML model

which represents the set of core reusable domain assets. The concrete UML annotations are based

on UML profiles with stereotypes to achieve desired quality attributes modeling. However,
annotations of the application base model prevent its reuse as well as that of derived quality

attributes.

FeatuRSEB is a popular approach that combines FODA and the Reuse-Driven Software
Engineering Business (RSEB) method. In FeatuRSEB UML-like notational constructs are used

for creating Feature Diagrams, with explicit representation of variation points, and variants and

explicit graphical representation for feature constraints and dependencies. Non-functional
requirements are captured as feature constraints. Product Line Use Case modeling for System

and Software engineering (PLUSS) is an approach that borrows from FeatuRSEB to combine

Feature Diagrams and Use Cases. This approach makes explicit decomposition of the operator to
compose a feature by introducing two new types of nodes; single adapters (represent

XORdecomposition) and multiple adapters (OR decomposition). This approach however does not

explicitly handle quality attributes.

2.2. Architectural based Quality Attributes integration Approaches

Extension of the feature model mechanisms from ATAM (Architecture Trade-off Analysis

Method) can be used to represent quality attributes, their variability concerning optionality and

levels, their influence on the quality of the functional, architectural, and implementation features

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.2/3, May 2021

14

(indirect variation). The extended feature model presents both functional and quality concerns as
the fundamental elements used to capture the variability in subsequent phases of design and

implementation.

At the architectural phase, existing works address quality attributes variability jointly with the
variability of base applications. [16] propose the RiPLE-DE (RiSE Product Line Engineering -

Design Engineering) process approach presenting the variability of quality attributes in feature

diagrams and to derive the desired quality attributes the diagrams are enhanced with information
of the base application (e.g., the system's response measure). The variation of attributes is

presented in form of numerical values that will be used in the evaluation of the resulting

architecture designing SPL architectures that involve the systematic transformation of functional
requirements and quality.

Quality-driven Architecture Design and quality Analysis (QADA) is a method for incorporating

attributes into software architectures, which do not however explicitly consider quality. Another
approach in [8] suggests the influence of each feature on a non-functional property be predicted

before generating the configurations. Their approach however focuses on predicting the effects of

the features on individual applications instead of focusing on recurrent quality attributes at the
domain engineering phase to promote reuse.

2.3. Goal Oriented NFR Integration Approaches

[9] conclude that there is an association between software product lines and goal analysis and

thus one can use goal-driven requirements approaches for feature specification. Goal analysis
modeling can support the auto-generation of feature models in SPLE. In the SPLE paradigm, an

integrated modeling framework (F-SIG, Feature-Softgoal Interdependency Graph) extends the

feature modeling with concepts of goal-oriented analysis. This goal-oriented analysis is aimed at
letting developers capture the design rationale of inter-dependencies between variant features and

quality attributes during the design of product line architecture, and evaluate the impact of variant

features selected for a target system.

The goal-driven and Chung's NFR framework approach has been widely used by researchers to

integrate NFRs into the software development process. Whereas functional requirements are

considered as hard goals, non-functional requirements are presented as soft goals in the analysis
specification process. The correlation is shown as a directed graph where the nodes are hard

goals, the target nodes are soft goals and the edges are represented by the + or – characters

However software developers pay more attention to the functional needs of software and NFRs

such as performance, usability, reliability, and security are usually handled later in an ad-hoc
manner mainly during the system testing phase [10].

NFRs can be essential in all aspects of Software Product Line (SPL) like in situations where a
requirement may cut across all product lines and the variation exists in the contextual application.

[10] recommended extending the Product Line Use Case modeling for System and Software

engineering (PLUSS) to include other NFRs other than the performance NFRs only by use of
discrete values to express the degree of satisfice-ability and for security NFR represent the levels

of data protection as outlined in the NIST standard. This approach however focuses on how

single NFRs can be evaluated for satisfiability during product testing.

[11] also proposes an approach of modeling quality attributes with the variability of the base

application based on domain experts' judgments using the Analytic Hierarchical Process (AHP).

This captured quality knowledge of domain experts is used for the quality-aware product. Any

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.2/3, May 2021

15

functionality that affects quality attributes is referred to as a contributor but does not explicitly
deal with the quality attributes.

[12] advanced another interesting approach known as Concern-Oriented Reuse (CORE), a

general-purpose software development that leverages the strength of Model-Driven Engineering
(MDE), Component-Based Software Engineering (CBSE), SPL, feature-oriented and aspect-

oriented software development, and goal modeling to promote reuse. This approach entails

encapsulating all software functional and non-functional Requirements in reusable units called
concerns. As much as they do not explicitly deal with quality attributes, the encapsulation of

concerns is what our proposed approach recommends. The other difference with our work is the

fact that they model the variability of the component interfaces and not the integration of
functional and quality attribute concerns like our proposal suggests.

2.4. Domain Requirements Analysis and Specification

Our paper focuses on the textual representation of quality attributes alongside functional

requirements in the software product line to support documentation and subsequent phases of
development. We, therefore, mention related works in the line of textual analysis and

representation of quality attributes alongside FRs both in SPLE and single-system development

approaches.

According to [13] the most common approaches for analysis and specification for software

product lines can be categorized as product-based specification, where the features of each

product are specified one by one, and feature-based specification, where individual features are
specified without links to any other features. There is also the family-based specification

approach where specification can be written for all the features of the product line with variable

parts for individual features. Our approach to SPLE specification is similar to the family-based
specification with variable parts for individual features presented in a text-based specification

method.

Whereas [14] note that software product lines do not have a de facto standard for requirements
analysis and specification there have been several attempts that promote connecting goal-oriented

approaches with this task. [9] observe that feature modeling is the core of software product line

engineering and a de facto standard in modeling variability in SPL.

Extended feature models can address the representation of domain Quality attributes (such as

performance, availability, security, or safety) including their variation dimensions. This work

extends this approach by considering the quality attributes variability alongside the functional
variability at variation points. Existing requirements documentation methods separate functional

and quality attribute requirements whereas at the variation point there could be common variation

to all possible family members that could be integrated and documented together as aspectual
components for easier reuse.

Volere Requirements Specification Template is a well-established method for recording
requirements in a structured way. The method supports the recording of user goals and

requirements in the template according to their rationale, associated stakeholder, priority, and

contextual details. There are different templates for specific NFRs like usability, maintainability

security among others in the Volere documentation.

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.2/3, May 2021

16

Figure 1. Volere Requirements Specification Template

The Volere Requirements Specification Template documentation inspired several other works

including [15] and [16]. A problem with the usage of such templates is that they are useful only

when a single person is responsible for managing them. However, in a project where many
people are working simultaneously, this can lead to inconsistent, contradicting, and omitted

requirements, and a need for a complex requirements management tool.

Apart from detailed tabular templates and models, several research works provide boilerplates

(reusable sentences); a term referring to limited vocabulary sentences having specific

placeholders to be completed to obtain semi-formal requirement sentences. [17]have presented an

elicitation methodology by the use of their Non-functional Requirements Templates (NoRTs),
which focuses on using generic statements(having a core and optional parts) that become defined

NFRs after adding required information. EARS approach provides a simple boilerplate for

requirement templates that can be used for non-functional requirements as well.

18] use natural language processing techniques for the identification of NFRs from requirements

documents. The approach uses a language model and popular keywords for the identification of
NFRs. This work suffers from the limitation of the lexicon or keywords as most NFRs are

domain-dependent.

There have been different proposals for templates to support textual use case descriptions of

Software Product Lines where fine-grained variation could be specified at the end of the SPL use

cases with a template consisting of the following elements; name, type, line of the use case (the

target of the variation), and description.

Another textual use case template found in [19] aimed at specifying the variation points through

OPT and ALT tags where any text fragment of the textual use case description may be variant is
explicitly marked by pairs of the XML-like tags <variant> and </variant>. [20] proposed a

simpler tag notation where the tags are used only for marking variation points in use case

scenarios of SPL. Each tag is expanded in a section called “Variations” and is mapped to the
Orthogonal Variability Model (OVM).

 [5] further, observe organizations can also use their specification templates or some standardized

Software Requirements Specification (SRS) document structures to specify product line
requirements. To capture the integrated quality attribute requirements at variation points we

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.2/3, May 2021

17

propose to use our specification templates for documenting each variation point based on
structured document templates such as extensible markup language (XML) which allow the

hierarchical representation of common and variable requirements.

It is clear from the literature review that existing SPLE specification models mainly focus on
feature models, use cases, and domain-specific requirements specification languages. These

approaches represent functional and non-functional requirements in separate documents and

diagrams but our proposed approach recommends integrated specification documents based on
structured document templates such as extensible markup language (XML). The aspectual

component development of the extracted functional quality requirement concern and the XML

documentation can be handled using existing techniques in SPLE research. The research
works included in this section can be summarized as follows:

a) Existing models to integrating quality attributes into the SPL development process do it
more in the solution space (design, architectural choice, evaluation, and testing) than the

problem space(requirements elicitation and analysis).

b) All SPLE approaches discussed in related work above support analysis of quality
attributes in respect to the evaluation of achievement degree of non-functional property(

NFP) in the final product but do not address the variation analysis of the quality attributes

at the product family variation points.

c) Most of the text-based tabular templates represent quality attributes as independent

elements of the requirements process. The need for NFRs' relationship with specific

functional requirements is not fulfilled by most of these efforts.

This work, therefore, focuses on textual extraction and integrated representation of functional

quality attributes at respective variation points during the domain requirements analysis phase by

use of suitable decision tree class-attribute classification method. The Functional quality
attributes can then be included in requirements documents to achieve traceability and

incorporation throughout the development process.

3. PROPOSED APPROACH

Software Product Line (SPL) software development methodology is being adopted by many

companies as opposed to single-systems software development. Variability modeling as a key

domain engineering activity is continuously changing but tends to ignore the analysis of non-
functional properties (NFPs) or quality attributes in the evolution of SPL’s artifacts[7]) A few

organizations that attempt to implement NFP variability do so with annotations that are

sometimes abandoned after a short period because of the lack of integration among the SPL
activities.

In SPL development variability exists at different levels of abstraction, including requirements

variability (mainly feature-based), architecture variability (mainly component-based), and
implementation variability (mainly code-based). In most modern software systems variability can

also be classified as variability in functional behavior, variability in non-functional system

properties, and fault-based variability. This work focuses on requirements variability and possible
integrated specification of functional and quality requirements in the early phases of software

product line development.

From domain space knowledge & stakeholders requirements documents, in the feature-oriented

analysis phase, we can extract common functional quality attributes among the variants and use

hierarchical classification algorithms to extract common functional quality requirements and map

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.2/3, May 2021

18

them to respective variation points. The steps in the integrated specification of requirements
using the decision tree classification method at the SPL variation points are as follows.

3.1. Identification of Various Point of Interest from an SPL Feature Model

User requirements and domain knowledge are subjected to Feature-Oriented Domain Analysis

(FODA) to produce a feature model that captures commonalities and variability's of a product-
line system during early development stages in form of a tree-based feature diagram. Functional

features are decomposed into more fine-grained features that are mandatory, optional, or

alternative, and optional features specify variability.

Product family variability is where a feature can have alternative implementations of variant

implementations, which can be chosen to create different products. A variation point is each

point in the software where different variant implementations from a variant population can be
chosen from. Characteristics of a product that can be changed to produce a different product are

called variation points. In terms of realization technique, a variation point can be the point where

a class is chosen to be used or where code fragments are chosen to be run. Once you identify the
related variant features of the product family in the graph a variation point can be marked with

every set of related features [21].

Since a product family variability is occasioned by some stakeholder need in terms of system

property or functions, the variation point could also yield members who also present common and

variable requirements limited by the domain scope. Once the variation point is identified and
labeled we propose an alternative template to specify functional, non-functional, and quality

attributes for that variation point.

3.2. Analysis of requirements at the variation point

One way to incorporate the non-functional requirements early in the development of SPLs is to
consider them at the variation point where common and variable features among the different

variants can be analyzed to identify functional, non-functional, and quality requirements. There

are common quality factors that are associated with functional requirements in each domain such

as security for banking systems, reliability for embedded systems, and usability in general for
most of the applications. These common quality factors in a family of software products when

combined with functional requirements form functional quality requirements (FQAs).

At each variation point, the core functional and non-functional requirements of the family

members can be identified and analyzed according to a structured specification template.

Whereas non-functional requirements can be classified as performance, quality and constraints,

our focus is on quality requirements because of their close relationship with functional
requirements, especially in their operationalization. We, therefore, propose weaving certain

quality factors with functional requirements as a way of embedding the quality factors at the

variation points eventually supporting their satisfaction at the global level.

Considering that the major objective of software product line engineering is maximizing the

commonalities (platform or architecture) while minimizing the cost of variations (i.e., of
individual products) to facilitating reuse in a predictive manner this work contributes to this

endeavor through further extraction of common functional quality attributes (FQAs) at each

variation point. Whereas Feature-Oriented Domain Analysis (FODA) is a popular tool for

variability identification it can be reinforced with a well-structured Natural Language (NL)
requirements specification document as advocated in this and previous attempts [22].

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.2/3, May 2021

19

In the Software product line paradigm, all requirements are captured in form of a feature model
which is the base model or SPL domain knowledge space from which variant products are

generated. Assuming that a domain knowledge space can be built using hierarchical decision tree

classification techniques, all domain requirements can be specified, the variation points can be

labeled as classes at respective nodes, and store variability concerns for that branch. This
variability concerns could be the special functional, non-functional, or quality attributes different

from the previous family requirement dimensions

3.3. Integrated Specification of Functional and Quality Requirements at a Variation

Point

As [3] observed there are situations where a non-functional requirement affects neither a single

functional requirement nor the system as a whole but a specific set of functional requirements.
Such a case requires unique variability specification templates that ensure explicit documentation

and adequate explicit traceability. This work proposes a semi-formal approach using structured

non-mathematical notations to organize information about functional quality requirements.

At the candidate variation point of a feature model, we identify a dominant functional concern

and decompose it into sub-features that contribute to its realization. We also identify a core non-

functional property (quality attribute) of the domain at the variation point and refine it into
specific quality concerns for each possible family member. Quality attributes such as security,

usability, and error handling can be mapped directly to functional components and thus referred

to as functional quality attributes (FQAs). These FQAs are normally required by several
applications in a product line and therefore specialized components can assure their satisfaction.

A hierarchical decision tree classification algorithm can then be used to extract common

functional quality attributes (FQAs) at each variation point and embed them to the node for use
among family members emanating from that node. For a new product in the family line system,

analysts will map it into the base model based on its specific requirements. We, therefore,

propose that functional and non-functional requirements of a candidate product be processed
using appropriate classification methods to identify functional quality attributes that can be added

to the existing set at the respective variation point for future use.

An integrated textual requirements analysis template as in Table 1 can generate possible
functional and non-functional requirements at the variation point exposing common functional

quality attributes which apply to all members of the software product family with a common base

at that variation point. The output of the integrated requirements analysis template can be stored
in the extensible markup language format to support compatibility with most platforms. The

generated FQA artifacts can be developed into aspectual components and through a join, the

relationship is stored at the variation point node of the domain feature model for reuse.

Table 1. Elements of proposed variation point integrated requirements template.

Variation point(Vp) Id (description)

VpFunctional Requirements (description)

VpQuality Requirements (description)

VpQualityConcern (description)

VpFunctional-QualityConcern (description)

The integrated functional-quality requirement becomes a new artifact in the SPL domain

requirement specification space to be used in the subsequent phases of software development

including design decisions. This weaving of quality attributes in functional description activity

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.2/3, May 2021

20

will remind the developers to consider them in all decisions and subsequent phases of software
development [24].

Figure 2. The proposed approach for integrating quality concerns at SPL variation point

CASE STUDY

For practical demonstration of the proposed approach we present case study that consists of a
simplified version of variability requirements from a mobile phone software product line family.

Customizable software is necessary for a broad spectrum of domains (e.g., operating systems for

diverse hardware) and hence our choice of mobile phone family data storage features

programming.

Modern mobile phones are multifunctional and provide the ability to perform a wide range of

actions beyond the common voice communication role. Common mobile phone features and
utility functions include log in, call management, text messaging, storage, camera ringtones

clock, and varying multimedia features. Among increasingly critical functions of a mobile

phone is data storage which can be extended with flash memory card device and online backup.
Phones as storage devices hold personal, organizational and even proprietary data.

Research findings consistently show that a significant portion of mobile phone users are

concerned about security of their mobile device, its data, or its application against “casual” and
unprofessional attack by children, spouses, friends, co-workers etc. Implementing this security

feature for different members of the mobile phone family requires variability management in

terms of functionality and quality attributes of the system. We focus on variability of the phone
data protection and user privacy enforcement mechanisms as requirements that expose functional

quality attributes at the variation points.

i) Identifying variation point dimensions

Input (xi) Process

FQA

Subset Mapping

No

Yes
FQAs

Allocation to

Vp Node in

Domain

Graph
Search next higher level

Output (y j)

Variant

Requirements

(FR, NFR,

FQA)

Variant FQAs

Decision tree

Classifier

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.2/3, May 2021

21

Figure 3: Mobile phone utility functions feature diagram

ii) Requirements analysis and specification at variation point

From Figure 3 we focus on storage features as a critical function in mobile phones today since

they are being used as personal digital assistants (PDAs) for private and even corporate work.

Variants in the mobile phone family line will present different abilities to satisfy that storage

function. Assuming the following set of general user expectations from the phone family line
expectations related to data storage:

Rq6 and Rq7 are non-functional requirements and specific quality requirements which must be

achieved by all variants to some level of satisfaction through different mechanisms. Addressing
the satisfaction of the two quality requirements involves consideration of functional quality

attributes at respective family tree variation points.

At the domain analysis activity, the requirements above will introduce further functional feature

graph decomposition to bring out the different phone hardware mechanisms to operationalize

them and possible limitations. The broad techniques of achieving the requirements are at the

phone login, desktop, database, and external interface points as shown in Figure 4 with further
variability among the possible solutions.

Rq1.The phone shall have the capacity to store data

Rq2. The phone shall have the ability to extend the storage capacity

Rq3. The phone shall have the capacity to clear storage once full
Rq4. The phone may (optionally) permit the transfer of data to other devices

Rq5. The phone shall have the capacity to read different file formats

Rq6. The phone shall ensure the security of data
Rq7. The phone shall ensure user privacy

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.2/3, May 2021

22

Figure 4. Mobile phone data security requirements feature diagram

iii) Integrated specification of Functional quality attribute requirements

Assuming we have three variants of the phone family that differ in their ability to satisfy the
requirements Table 2 illustrates the possible scenarios.

Table 2: Functional quality achievement analysis matrix

Variant Type Ability to Satisfy

Smart Rq1,Rq2,Rq3,Rq4,Rq5

Evolving Rq1,Rq2,Rq3,Rq4

Dumb Rq1,Rq3

To support integrated specification of common functional quality requirements at the variation

points we need to analyze the variants further concerning ability and quality attribute satisfaction
mechanisms.

Looking at the security feature implementation capabilities for the different variants at different
data access interface points a domain features function analysis template can generate the

common functional quality requirements as shown in Table 3.

Table 3: Functional quality achievement analysis matrix

Phone

Variant Login Interface Desktop Interface External Interface

 Pass Bio Patt Pass Bio Patt RW H/w key Enc

SMART X X X X X X X X

EVOLVE X X X X X

DUMB X X

Nb. Symbol (X) in the matrix denotes the variant that supports the associated security

achievement mechanism, Pass (Password), Bio (Biometric) RW (Remote wipe), H/w (Hardware,

Enc (Encryption), and Patt (pattern).

Table 3 presents an analysis template that indicates satisfaction of security and privacy quality

requirements in the three variants phone data storage function happens in three dimensions (at

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.2/3, May 2021

23

login, Desktop, and External interfaces). However, the mechanisms of satisficing the quality
requirements generate both common and variable mechanisms possible in the product line as

follows:

At the Login security variation point, all three variants share the PIN authentication mechanism
of access control, while some support pattern, biometrics, or both.

For Desktop security/privacy point all the three variants share auto- screen lock access control
but differ in unlocking mechanism of PIN, pattern, biometrics, and key- combination.

For the External Storage security variation point, two variants share remote wipe and encryption
capabilities but one has a hardware key and the other does not have the functionality.

The analysis above therefore generates three functional-quality requirements at the variation

points as shown in Table 4.

Table 4. Functional quality achievement analysis matrix.

iv) Storage in the repository inform of XML aspectual component

The four common functional-qualities attributes (FQAs) for the three variants at different
variation points can thus be developed separately as aspectual components to be attached to the

common base architecture at respective join points defined by variation points. To make the

requirements specification systematic and traceable the functional quality attributes can be stored
in XML format in the repository together with the original SRS documents for future reuse.

This approach supports the architects and application engineers while generating new members

or variants of the software product line family that are initially restricted by defined scope.

4. DISCUSSION AND CONCLUSIONS

In this paper, we suggested a practical approach for integrating functional quality requirements in
SPL requirements documentation in an intuitive way. We have outlined steps in the process of

analysis and integration and demonstrated the practicality of the proposed approach with a case

study.

The proposed approach is based on domain feature model analysis and natural language textual

representation, which is the most widely, used method in SPLE. Literature review shows a lot of

variability analysis in functional dimensions while quality variability is considered implicit. Our
approach, therefore, supports early consideration of quality attributes and their subsequent

integration into the SPL documentation.

Since natural language and textual description of software requirements can be used to extract

functional features and identification of variation points is a continuous activity in all phases

Variation Point

Functional- Quality

requirement

Specification ID

Login Interface Authenticate-PIN VPlogin-Auth(PIN)

Desktop Interface Display Lock –Auto/key lock VPDesk-

Lock(KEY)

External Interface Encrypt VPExt-Auth(encrpt)

External Interface Remote wipe VPExt-protect(Rw)

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.2/3, May 2021

24

including requirement gathering, this work attempted to extract quality attributes variations
during analysis that can be represented alongside functional requirements owing to their means of

operationalization. This work however is limited to incorporation and representation of quality

attributes whose realization is based on a functional view of software.

One limitation in this work is the fact that it has not been tested in a complete product line

architecture that specifies the rules on how the aspectual components will be connected as well as

their relationships, interactions, and dependencies among them. For example, very elaborate
security quality component implementation can negatively affect usability attributes and cost

objectives. We, therefore, hope to investigate these scenarios in an industrial scope.

State-of-the-art solutions to modern-day problems demand automation which has not been

accomplished in this work. To encourage adaptability of this approach we intend to develop a

tool to manage automated extraction of functional quality attributes sets from software product

line natural language documentation and map them to respective variation points using
supervised decision tree classification algorithms.

REFERENCES

[1] R. R. Maiti (2016). Capturing, Eliciting, and Prioritizing (CEP) Non-Functional Requirements

Metadata during the Early Stages of Agile Software Development. Doctoral dissertation. Nova

Southeastern University. Retrieved from NSUWorks, College of Engineering and Computing. (968)

https://nsuworks.nova.edu/gscis_etd/968.

[2] L. Chung, B. A. Nixon, E. Yu,. & J. Mylopoulos (2012). Non-functional requirements in
softwareengineering (Vol. 5). Springer Science & Business Media.

[3] G. Carvalho, F. Barros.and A. Sampaio A (2015). "NAT2TEST tool: From natural language

requirements to test cases based on CSP." Software Engineering and Formal Methods. Springer,

Cham, 2015. 283-290.

[4] J. M. Horcas ., M. Pinto & L. Fuentes (2019). Software Product Line Engineering: A Practical

Experience. In 23rd International Systems and Software Product Line Conference - Volume A (SPLC

’19), September 9–13, 2019, Paris, France. ACM, New York, NY, USA, 13 pages. https://doi.org/10.

1145/3336294.3336304

[5] A. Metzger, & K. Pohl, (2014). Software product line engineering and variability management:

Achievements and challenges. FOSE. 10.1145/2593882.2593888

[6] J. M. Horcas (2018). WeaFQAs: A Software Product Line Approach for Customizing and Weaving
efficient Functional Quality Attributes. A Doctoral Dissertation at the university of University of

Malaga, Spain. Accessed online from http://orcid.org/0000-0002-7771-0575

[7] R. Tawhid, & D. C. Petriu, (2011) Automatic derivation of a product performance model from a

software product line model," in 15th International Software Product Line Conference, ser. SPLC,

2011, pp. 80{89. 21

[8] N. Siegmund, M. Rosenm, Muller, C. Kastner, Giarrusso, P. G., S. Apel, and S. S. Kolesnikov,

(2013). Scalable prediction of non-functional properties in software product lines: Footprint and

memory consumption," Information & Software Technology, vol. 55, no. 3, pp. 491{507, 2013.

[Online]. Available: https://doi.org/10.1016/j.infsof.2012.07.020 24, 26

[9] F. Q. Khan, S. Musa, & G. Tsaramirsis (2018). A novel requirements analysis approach in SPL

based on collateral, KAOS and feature model. International Journal of Engineering & Technology, 7

(4.29) (2018) 104-108
[10] Nguyen, Q.L. (2009). Non-Functional Requirements analysis modeling for software product line.

Proceedings of the 2009 ICSE Workshop on Modeling in Software Engineering, Washington, D.C.,

56-61.

[11] G. Zhang, H. Ye, an& Y. Lin, (2014). Quality attribute modeling and quality aware product

configuration in software product lines," Software Quality Journal, vol. 22, no. 3, pp. 365{401, Sep

2014. [Online]. Available: https://doi.org/10.1007/s11219-013-9197-z 20, 24, 26, 29, 78

[12] M. Schottle , O. Alam, J. Kienzle, & G. Mussbacher, (2016).On the modularization provided by

concern-oriented reuse," in Companion Proceedings of the 15th International Conference on

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.2/3, May 2021

25

Modularity, ser. MODULARITY Companion 2016. New York, NY, USA: ACM, 2016, pp. 184{189.

[Online]. Available: http://doi.acm.org/10.1145/2892664.2892697 20, 25, 29, 78

[13] F. Q. Khan, , S. Musa, & G. Tsaramirsis (2018). A novel requirements analysis approach in SPL

based on collateral, KAOS and feature model. International Journal of Engineering & echnology, 7

(4.29) (2018) 104-108
[14] S. Chimalakonda & D. H.Lee. (2016). On the Evolution of Software and Systems Product Line

Standards. SIGSOFT Softw. Eng. Notes 41, 3 (June 2016), 27-30. DOI:

http://dx.doi.org/10.1145/2934240.2934248

[15] C.Porter, E. Letier, & M. A. Sasse, (2014, August). Building a National E-Service using Sentire

experience report on the use of Sentire: A volere-based requirements framework driven by calibrated

personas and simulated user feedback. In 2014 IEEE 22nd International Requirements Engineering

Conference(RE) (pp. 374-383). IEEE.

[16] M. F. A.Carvalhaes, A. F. d.Rocha , A. M. F.Vieira & T. M. G. d.Barbosa (2014). Affective

Embedded Systems: a Requirement Engineering Approach. International Journal of Emerging Trends

& Technology in Computer Science 8(2):70-75. DOI: 10.14445/22312803/IJCTT-V8P113

[17] S. Kopczyńska & J. Nawrocki, (2014, August). Using non-functional requirements templates for

elicitation: A case study. In 2014 IEEE 4th International Workshop on Requirements Patterns (RePa)
(pp. 47-54). IEEE.

[18] M. Younas, K.Wakil, D. N. Jawawi, M. A., Shah & A. Mustafa, (2019). An Automated Approach for

Identification of Non-Functional Requirements using Word2Vec Model. International Journal of

Advanced Computer Science and Applications(IJACSA), 10(8), 2019.

http://dx.doi.org/10.14569/IJACSA.2019.0100871

[19] I. S. Santos, R.M. Andrade, and P.A. Neto (2015).Templates for textual use cases of software

product lines: results from a systematic mapping study and a controlled experiment.. Journal of

Software Engineering Research and Development (2015) 3:5 DOI 10.1186/s40411-015-0020-3

[20] W. Choi, S. Kang, H Choi, , J. Baik (2008) Automated generation of product use case scenarios in

product line development. In: Proceedings of the International Conference on Computer and

Information Technology. IEEE Computer Society,Washington, DC, USA
[21] González-Huerta, J., Insfran, E., Abrahão, S. and McGregor, J. D., 2012. Non-functional

requirements in model-driven software product line engineering. In Proceedings of the Fourth

International Workshop on Nonfunctional System Properties in Domain Specific Modeling

Languages - NFPinDSML ’12. New York, New York, USA: ACM Press, pp. 1–6

[22] A. Fantechi,. , S. Gnesi, & L. Semini, (2019) From Generic Requirements to Variability. Accessed on

5/12/2020 from http://ceur-ws.org/Vol-2376/NLP4RE19_paper16.pdf

[23] J. Jean-Marc (2012). Model-Driven Engineering for Software Product Lines. Review Article in

ISRN Software Engineering Volume 2012, Article ID 670803, 24 pages doi:10.5402/2012/670803

[24] M. A. Gondal, N. A. Qureshi, H. Mukhtar, and H. Ahmed,. (2020). An Engineering Approach to

Integrate Non-Functional Requirements (NFR) to Achieve High Quality Software Process. In

Proceedings of the 22nd International Conference on Enterprise Information Systems - Volume 2:

ICEIS, ISBN 978-989-758-423-7, pages 377-384. DOI: 10.5220/0009568503770384

	Abstract
	Keywords

