
International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.3, May 2016

DOI : 10.5121/ijsea.2016.7305 69

SOFTWARE CODE MAINTAINABILITY:

A LITERATURE REVIEW

Berna Seref and Ozgur Tanriover

Department of Computer Engineering, Ankara University, Ankara, Turkey

ABSTRACT

Software Maintainability is one of the most important quality attributes. To increase quality of a software,

to manage software more efficient and to decrease cost of the software, maintainability, maintainability

estimation and maintainability evaluation models have been proposed. However, the practical use of these

models in software engineering tools and practice remained little due to their limitations or threats to

validity. In this paper, results of our Literature Review about maintainability models, maintainability

metrics and maintainability estimation are presented. Aim of this paper is providing a baseline for further

searches and serving the needs of developers and customers.

KEYWORDS

Maintainability Model, Maintainability Metric, Maintainability Estimation, Maintainability Prediction

1. INTRODUCTION

Every software system needs to be modified in order to meet requirements of customers, users

and new technologies. Addition and deletion of codes and adopting the system to a new

operational platform are examples of the modification operations. ISO/IEC 9126 [1] defines

software maintainability as “the capability of the software product to be modified.” Another

definition [2] for software maintainability is as “the ease with which a software system or

component can be modified to correct faults, improve performance or other attributes, or adapt to

a changed environment.” On the other hand, maintainability also depends on the extend of use of

software constructs/patterns, programming paradigms/languages, application frameworks,

programming skill of developers, coding rules, design patterns etc.

It has been observed that maintenance effort in the software life cycle ranges from 65% to 75% of

total software development time [3]. As the majority of the time is spent in maintenance phase,

effort spent to increase maintainability effects software cost in a negative or positive way [4].

Hence, one of the most important aim of software engineers is developing maintainable software.

Maintainability feature of a software increases quality of it. With maintainable software, it is easy

to modify parts of the software, meet user or customer requirements in a shorter time and manage

the software efficiently.

Maintainability Index (MI) estimation calculation is one of the well-known maintainability

estimation techniques. However, MI estimation is still a problem. It is not clear that how MI

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.3, May 2016

70

increases or decreases. There is sometimes no explanation of MI variation. For example, in Figure

1 [5], two versions of the same code are shown. They have different MI values.

Figure 1. Sample codes

In Figure. 1., while MI value of Sample 1 is 71, MI value of Sample 2 is 73. According to the MI

values, Sample 2 is more maintainable. On the other hand, this result is arguable. Count of line of

codes is smaller in Sample 1 and it is more readable but Sample 2 is more maintainable based on

MI values. There is a discussion about these samples at [5]. Contributions about this discussion

are listed below:

• An idea is that declaring all variables at the top (as in Sample 2) is reasonable but

minimizing an identifier's lifespan affects maintainability in a positive way. The counter

idea to it is that location of variables does not affect metrics.

• An idea counter to the sample 2. This idea supports that distance between the declaration of

the variable and where it is used is reduced, variable span is reduced. As a result,

maintainability is increased. However, given samples and results are opposite of this idea.

• An idea supports that MI difference between two samples are because of number of used

operator. Sample 2 has fewer operators that increase maintainability.

As it is seen, MI prediction and its accuracy are not clear. There are more different ideas that

support or not support usefulness of it on maintainability estimation. We think that Sample 1 is

more maintainable for the reason that it is more readable, understandable, effective and has a

fewer line of code.

Another discussion [6] is about MI values, their meanings and if they are dependent on

technology. In this discussion, MI values and their meanings are listed below:

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.3, May 2016

71

• 85 and more: good maintainability

• 65-85: moderate maintainability

• 65 and below: difficult to maintain

In this discussion [6], common idea is it is not a good idea to use these numbers on different

technologies such as C# and Java. We agree with this common idea and we strongly believe that

these numbers can not show degree of maintainability on different technologies and can not

compare maintainability of them. For example, the same MI value of C and Java technologies can

not show that they have the same maintainability. C and Java codes have different syntax and

different terminology. While C code has pointers, Java code has generics. It is meaningless to

compare these two different technologies by using MI values.

A lot of researches have been carried out about maintainability, maintainability models,

maintainability metrics and maintainability prediction to increase maintainability of the software

and as a result, increase quality of the software and decrease software effort and cost. In these

researches; new models are proposed to predict maintainability of software at early stage of its

life cycle, factors which have positive or negative impact on maintainability are identified and

maintainability of software is measured. At these researches, new algorithms are proposed or

hybrid methods are tried to get more accurate results.

In this study, Literature Review about maintainability models, maintainability metrics and

maintainability estimation are presented to provide a baseline for further researches and to serve

the needs of developers and customers.

This paper is structured as follows: Section 2 illustrates review methodology. Results are given in

Section 3. Section 4 includes summary and discussions. Section 5 lists identified future works in

the literature. Section 6 illustrates limitation of this review. Finally, review is concluded in

Section 7.

2. METHOD

In this study, three stages which are defining research questions, designing the search strategy and

selecting the studies are followed.

2.1. Research Questions

In this literature review, we are trying to answer following research questions:

RQ1: Which models are proposed to evaluate maintainability?

Aim of RQ1 is identifying proposed models that evaluate and measure maintainability.

RQ2: Which methods or algorithms are carried out to propose models? At which rate they are

effective?

Aim of RQ2 is focusing on methods or algorithms that are used to propose a model and discuss

effectiveness of this model.

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.3, May 2016

72

RQ3: Which metrics and methods used for maintainability estimation?

Aim of RQ3 is extracting metrics used for maintainability estimation and focusing methods to

estimate maintainability.

RQ4: Which metrics used to improve software maintainability?

Aim of RQ4 is researching usage of metrics to improve maintainability and effect of metrics on

maintainability.

2.2. Search Strategy

To limit the search to the most relevant search term, the listed steps are followed:

1. Major distinct terms are extracted from our research questions.

2. Our search term is updated with keywords.

3. Relevant papers are selected with the condition of having all keywords.

In step 1, candidate search terms are defined: maintainability, maintainability models,

maintainability evaluation, model effectiveness, maintainability estimation, maintainability

metrics, maintainability methods, improvement of maintainability. Then, keywords of the search

term are selected as “maintainability model”, “maintainability metric” and “maintainability

estimation.” Different spelling is accepted such as “maintainability metrics”, “model of system

maintainability”, “estimation of software maintainability” etc.

In step 3, papers which have all keywords in the same or different spelling are accepted for the

search.

Four electronic databases are included to search our review studies: IEEE – Xplore, Springer

Link, Science – Direct, and Wiley Online Library. Advanced search features of the each database

are used to get relevant literature.

Our search includes the period 2005 to 2015. Searching is carried out for conference papers and

journal papers separately for each database. Candidate papers are ordered from most relevant to

least relevant.

2.3. Study Selection

After getting candidate papers, it is aimed to select papers from the top five candidate papers if

they provide conditions to be selected. While selecting papers, for some searches, all of the top

five candidate papers are selected because of providing selection condition. On the other hand, in

some searches, we are not able to select any papers because of not providing selection condition.

Inclusion and exclusion criteria to select papers are listed below:

Inclusion criteria:

• The paper must take place at the first five candidate papers which are ordered from the

most relevant to the least relevant between the period of 2005 to 2015.

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.3, May 2016

73

• The paper title must have search term. For example, in this study, search term is

constructed with two words. The paper’s title must include both of the words.

• Besides providing all conditions, abstract of the paper must be focused on “software” and

searching keywords.

Exclusion criteria:

• Studies does not take part at the first five candidate papers that are proposed by searching

engine.

• Studies does not have all keywords at their titles.

• Studies whose abstracts are not directly related to search area.

• Studies which are selected by us for this search before. (to prevent duplication)

After applying inclusion and exclusion criteria, relevant papers are narrowed to 20 and listed in

Table I with the features of ID, Authors, Addressed Research Questions and References No.

Table 1. Selected studies

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.3, May 2016

74

Figure 2. Distribution of selected papers

0

2

4

6

8

10

12

14

IEEE Wiley

IEEE

Springer

ScienceDirect

Wiley

Figure 3. Distribution of selected studies based on electronic databases

We aimed to select up to date papers to be able to see the last level of maintainability researches.

Figure 2 gives information about distribution of selected studies per year. Figure 3 gives

information about number of selected studies based on electronic databases.

3. RESULTS

Firstly, it is observed that there are relatively few relevant studies matching our search terms

between 2005 and 2012. When Figure 2 is analyzed, it seen that number of studies about the

search term increases year by year and it becomes more active in 2013 and 2015. When Figure 3

is analyzed, it is observed that a large number of the selected studies is belong to IEEE while the

smallest part is belong to Wiley Online Library.

In addition, results show that 35% of the selected studies (7) are journal while the remaining 65%

of them are conference papers (13).

Review results for each research questions are given in the following subsections.

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.3, May 2016

75

3.1. Proposed Maintainability Models

RQ1: Which models are proposed to evaluate maintainability?

I. Heitlager et al. (S1) discuss problems of Maintainability Index such as root cause analysis,

average complexity, computability comment, understandability and control. Then, they propose a

new model to measure maintainability. In this model, by using ISO 9126, source code measures

are mapped onto the sub characteristics of maintainability and a relationship between source code

metrics and ISO 9126 quality characteristics is provided.

F. Ye et al. (S2) propose a model based on multiple classifiers combination which has three parts:

attribute selection, model training and model interpretation.

O. Turetken (S3) discusses applicability of a software maintenance model and choses Software

Improvement Group Maintainability Model (SIG Model).

A. Kaur et al. (S4) discuss Oman and Hagemeister Maintainability Index model, show

ineffectiveness of it. After that, propose two regressions models built by stepwise selection and

backward elimination.

A. Kaur et al. (S5) propose “extensibility” as a sub character and evaluate aspect oriented

software maintainability quality using Analytic Hierarchy Process (AHP).

A.A. Moataz and A.H. Al-Jamimi (S6) propose fuzzy logic-based transparent prediction model.

A. Sheshasaayee and R. Jose (S7) propose aspect oriented maintainability model which is based

on static metrics for aspect oriented systems.

S. MISRA (S8) focuses on relationship between some software metrics and MI to increase

maintainability of a system.

K.T. Al-Sarayreh et al. (S9) propose a reference model of Software FUR (Functional User

Requirements) for identification of system maintainability requirements.

3.2. Methods/Algorithms and Effectiveness of Proposed Models

RQ2: Which methods or algorithms are carried out to propose models? At which rate they are

effective?

S1 decreases problems of MI with proposed model.

S2 uses Genetic Algorithm to select attributes (metrics) and then train the system with Weka tool.

After that, to interpret results of proposed model, uses rule extracting algorithm based on decision

tree. Dataset for this study is 300 classes of open source C++ software system downloaded from

internet. As a result, it is observed that the model trained by selected properties is faster than the

model trained by all properties. In addition, this model has a benefit of enabling developers and

researchers to select best maintainable object oriented software system.

S3 enables business process designers and practitioners to understand deficiencies and pinpoint

parts of the possible improvement places and predict efficiency of maintenance tasks. Doesn’t

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.3, May 2016

76

taking into account cognitive physiology on the understandability of process models is one of the

limitation of this model.

S4 uses different versions of Luceno search engine which are 2.0.0 and 2.1.0 as a dataset and

calculates metrics of them by using CKJM and IntelliJ IDEA tool. Proposed regression models

are built by using Stepwise Selection and Backward Elimination. As a result, it is observed that

proposed models shows better performance when compared to Oman and Hagemeister (O&H)

Maintainability Index (MI) model based on correlation coefficient and Change between models.

Dataset used in this study is written in Java and it is seen as a limitation. As a future work, it is

planned to replicate the study on other software.

S5 evaluates aspect oriented software maintainability quality using Analytic Hierarchy Process

(AHP). The model consists of six attributes which are extensibility, reusability, modifiability,

analyzability, testability and modularity. Value of pair wise relative weights for the characteristics

are defined according to the survey that is carried out with 8 participants by taking mean of

survey results. Then, Eigenvector is computed to get relative ranking of the attributes in relation

to maintainability. As a result, it is observed that the order is: extensibility, reusability,

modifiability, analyzability, testability and modularity. In addition, it is observed that this model

can estimate maintainability of Aspect Oriented projects. In the future, it is planned to compare

maintainability of different Aspect Oriented projects with the weights which are gotten in this

study.

S6 predicts software maintainability using Mamdani fuzzy inference engine. QUES and UIMS

are selected as datasets. The model is compared with T-S-based, SVM (Support Vector Machine),

PNN (Probabilistic Neural Network), RBF (Radial Basis Function), BN (Bayesian Network) and

MARS (Multivariate Adaptive Regression Splines) models. As a result, it is observed that

Mamdani based model offers the best accuracy. Data scarcity is seen as a limitation for this study.

In the future, it is planned to try this model on different datasets.

S7 proposes Aspect Oriented maintainability model which is based on WOM (Weighted

Operations in Module), RFM (Response for a Module), CAE (Coupling on Advice Execution),

CDA (Crosscutting Degree of Aspect), CIM (Coupling on Intercepted Module), CFA (Coupling

on Field Access), CBM (Coupling between Modules), LCCO (Lack of Cohesion in Operation)

and LOCC (Lines of Class Code) metrics. In this study, aim is providing quality attributes to

predict parameters like maintainability, changeability etc. On the other hand, this model is

theoretical.

S8 focuses effect of 20 design/code measures on maintainability. These measures are extracted

using Krakatau metric professional measurement tool from the 50 projects written in C++

language. As a result, it is observed that there is a strong dependence between MI and SLOC

(Source Line of Code) metrics. There is a positive relationship between MI and AHF (Attribute

Hiding Factor), AIF (Attribute Inheritance Factor), AVPATHS (Average Depth of Paths), COF

(Coupling Factor), DIT (Depth of Inheritance Tree), MIF (Method Inheritance Factor) and RFC

(Response for Classes) metrics. There is a strong effect of ACLOC (Average Class Size),

AMLOC (Average Method Size), AVPATHS (Average Depth of Paths), CDENS (Control

Density), COF (Coupling Factor), DIT (Depth of Inheritance Tree), n (Program Vocabulary), N

(Program Length), PPPC (Percentage Public/Protected Members), and WMC (Weighted Methods

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.3, May 2016

77

in Classes) metrics on MI. However, the results are gotten using 50 systems so results are not

universally general for all systems. In the future, it is planned to carry out further theoretical and

experimental studies with the aim of validating the obtained results in this study.

S9 aims to provide a model to identify system maintainability requirements and proposes

Software FUR (Functional User Requirements) model to achieve this aim. As a result, with this

study, budget overruns and missed deadlines are prevented, input requirements are determined

earlier in the project life cycle. However, in this study, only software requirements are allocated,

and the study is not expanded to hardware and manual system requirements.

3.3. Metrics and Methods for Maintainability Estimation

RQ3: Which metrics and methods used for maintainability estimation?

H. Washizaki (S10) proposes CCOF (Component Coupling Factor) metric which takes into

consideration of characteristics of remote components to measure coupling-based complexity of

Component Based Software (CBS) system. As a result, it is observed that CCOF is a useful and

effective index for maintainability. In the future, it is planned to expand number of samples.

L. Kumar et al. (S11) predict maintainability of Quality Evaluation System and User Interface

System using Neuro Genetic Algorithm. Genetic Algorithm is used to find optimum weights in

the Neural Network. Metrics are inputs for the network that will be trained. Mean Absolute Error

(MAE), Mean Absolute Relative Error (MARE), Root Mean Square Error (RMSE) and Standard

Error of the Mean (SEM) are performance evaluation criterions. As a result, it is observed that

this method shows better performance when compared to the last studies. On the other hand, this

model is created using object oriented systems so the model is likely to be valid for the systems

which are developed using object oriented programming languages. In the future, it is planned to

entegrate other techniques such as Particle Swarm Optimization, Fuzzy Logic, Clonal Selection

Algorithm to the network to increase accuracy rate of estimation.

Z.Yuming and X. Baowen (S12) study relationship between a number of metrics and

maintainability, and prediction ability of these metrics for software maintainability. 148 Java

open source software collected from the websites http://sourceforge.net/ and http://java-source.net

 and used as dataset. 15 design metrics are extracted from the dataset and prediction ability of

these metrics are reported when used together. As a result, it is seen that average control flow

complexity per method (OSAVG) is the most important maintainability factor while cohesion and

coupling are less. In addition, multivariate prediction model is showed a good accuracy.

A. Pratap et al. (S13) predict software maintainability using Fuzzy Logic on Matlab Platform. In

this study, while Adaptability (AD), Complexity (CLX), Understandability (USD),

Documentation Quality (DocQ) and Readability (RD) metrics are used as input, maintainability is

used as an output. Triangular Membership Function, Trapezoidal Membership Function and

Gaussian Membership function are chosen membership functions. As a result, it is observed that

this model can be used to predict software maintainability. It is advised that to increase

maintainability of the system, Adaptability (AD), Understandability (USD), Documentation

Quality (DocQ) and Readability (RD) metrics should be high while Complexity (CLX) should be

low. As a future work, it is planned to propose new metrics and new approaches for software

maintainability.

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.3, May 2016

78

H.S. Chae et al. (S14) study relationship between LOC (Line of Code), LCOM (Lack of Cohesion

in Methods), RFC (Response for Classes), DAC (Data Abstraction Coupling) metrics and

software maintenance effort. Dataset is constructed with 4 developers by recording the

maintenance time needed for each class of maintenance action. Correlation analysis is carried out

to observe relationship between the selected metrics and maintenance effort. As a result, it is seen

that selected metrics can not show a good performance for Web-based applications to predict

maintenance effort. In the future, it is planned to propose new metrics that take into account

characteristics of design patterns of Web based applications.

3.4. Metrics to Improve Software Maintainability

RQ4: Which metrics used to improve software maintainability?

N. Yoshida et al. (S15) propose dividing source code into functional segments using cohesion

metric to improve software maintainability. As a result, start and end points of each functional

segment are defined; understandability of the source code is increased. In this study, NCOCP2

(Normalized with number of LCOM (Lack of Cohesion in Methods)) metric is calculated and a

threshold value is set to NCOCP2. Then, functional segments are extracted based on this cohesion

metric. In the future, it is planned to validate the cohesion metric theoretically and propose a

method which add feature names to extracted functionalities.

F. Zhang et al. (S16) focus the effects of six context factors on distribution of software

maintainability metrics. These context factors are application domain, programing language, age,

life span, number of changes and number of downloads. As a dataset, 320 nontrivial software

systems from Source Forge is used. Kruskal Wallis test, Mann-Whitney U test and Cliff’s δ effect

size are selected as statistical methods to analyze 320 software systems. As a result, it is observed

that all context factors affect 39 calculated maintainability metrics. But the most are: application

domain, programming language and number of changes. In the future, it is planned to use more

software system from SourceForge, GoogleCode, and GitHub.

S. Counsell et al. (S17) study relationship between MI and coupling, defects and size features.

Three releases of two Eclipse projects are used as datasets. Class-based metrics are extracted with

JHawk tool. As a result, it is observed that there is a relationship between the features and MI.

D. Baski and S. Misra (S18) propose data weight of a web service description language, distinct

message ratio metric, message entropy metric and message repetition scale metric to evaluate

maintainability of XML Web Service. All metrics are evaluated using Weyuker’s properties and

Caner’s framework. As a result, usefulness of the metrics are proved. In the future, it is planned to

develop an automated tool to compute metrics and make researches to assign right values for

upper and lower boundaries of the complexity values for proposed metrics.

J.M. Conejero et al. (S19) try to find an answer for the question that if a certain crosscutting

characteristics affect software maintainability. Correlation between crosscutting properties and

changeability and stability attributes is focused. As a result, it is observed that certain crosscutting

properties affect changeability and stability in a negative way. In the future, it is planned to carry

out some empirical studies to compare obtained results.

J. de A.G. Saraiva et al. (S20) propose metrics’ categorization to define which metrics can be

used in the experiments to increase rate of maintainability. 7 categories and 17 subcategories are

presented. These are tested using Wilcoxon Test and survey which includes 47 expert opinion

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.3, May 2016

79

about the proposed catalog. As a result, it is observed that proposed approach is useful and has a

positive effect on maintainability. In the future, it is planned to improve catalog generalization

and entegrate GQM (Goal-Question Metric) Model to the study.

4. SUMMARY AND DISCUSSIONS

To achieve maintainability evaluation and estimation, in general, databases and software metrics

are needed. Databases are obtained in two ways: constructing a new databases for the study or

using ready databases. Databases and tools to extract metrics used in the literature are listed in

Table II [8,10,14,17,18,22,23].

Table 2. Databases and tools

Database Tools

300 classes of open source C++ software

system downloaded from internet

Weka

Luceno search engine CKJM and IntelliJ IDEA tool

User Interface Management System

(UIMS) contains 39 classes and Quality

Evaluation System (QUES) contains 71

classes

-

50 projects written in C++ language

downloaded from several websites

static analysis tool

148 Java open source software collected

from the websites http://sourceforge.net/

and http://java-source.net

-

320 nontrivial software systems from

Source Forge

https://bitbucket.org/serap/contextstudy

http://www.scitools.com

Three releases of two Eclipse projects JHawk tool

In Table 2, it is observed that projects that is used as dataset are written in Java or C++. It can be

said that researchers preferred using Java or C++ projects instead of C# or C projects.

As it is seen in the literature, some studies are focused on problems of MI and tried to decrease

these problems with proposing new models and methods and analyzing relationship between MI

and software metrics.

MI is a measure that define how maintainable a system is. Higher values of MI means more

maintainable system. MI was introduced in 1992 by Paul Oman and Jack Hagemeister and

presented at the International Conference on Software Maintenance ICSM 1992 and formulated

in Equation (1) [27].

171-5.2In(HV)-0.23CC-16.2In(LOC)+50.0sin√2.46*COM

 (1)

In Equation (1), HV is Halstead’s Volume, CC is McCabe’s cyclomatic complexity, LOC is line

of code, COM is percentage of comments.

Problems of MI can be listed as follows:

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.3, May 2016

80

• It is not known that why sin operation is used, why CC is multiplied with 0.23 value or how

we can get 171. There are some understandability questions about MI formula but there is

no clear explanation.

• In MI Formula, COM takes place. However, it is one of the arguable points if comments

must take part in the formula.

• MI Formula can mask the presence of high-risk parts especially for object oriented systems

because of power low distribution of complexity and as a result, giving low average

complexity. It is not advised to use MI Formula as a maintainability measure for object

oriented systems.

• HV, CC, LOC and COM are used in MI Formula according to the statistical correlation.

However, there is no clear explanation and strong evidence that there is a causal relation

between the metrics. Because of it, it is hard to tune maintainability index by changing used

metrics in the Formula.

•

To increase performance of MI, some metrics are proposed and relationship between MI and

metrics are analyzed. Relationship between MI and metrics are shown in Table 3 [14,23].

Table 3. Relationship between MI and software metrics

Metric Relationship

AMLOC (Average method size) non-linear correlation

SLOC (Source lines of code) non-linear correlation

AHF (Attribute hiding) positive relationship

AIF (Attribute inheritance

Factor)

positive relationship

AVPATHS (Average depth of paths) positive relationship

COF (Coupling) positive relationship

DIT (Depth of inheritance tree) positive relationship

MIF (Method inheritance) positive relationship

RFC (Response for class) positive relationship

FIN (Number of incoming couplings) Correlation is not significant at the 5%

level or below according to Spearman’s

and Pearson’s coefficient

CBO (Coupling between objects) Correlation is significant at the

1% or 5% level according to Spearman’s

and Pearson’s coefficient

NOS (Number of java statements in a

class)

Correlation is significant at the

1% or 5% level according to Spearman’s

and Pearson’s coefficient

As it is seen in Table 3, there is a non-linear correlation between MI and AMLOC and SLOC.

When AMLOC is increased, method size increases, method becomes more complex and rate of

readability decreases, as a result, maintainability decreases. When SLOC is increased, program

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.3, May 2016

81

size and complexity increases as a result, maintainability decreases. According to the coefficient

of correlation analysis, when attribute hiding, attribute inheritance, method inheritance, average

depth of paths, coupling, depth of inheritance tree and response for class are increased,

maintainability increases. In addition, according to the experiment which is carried on with two

releases of two projects, correlation rate between MI and CBO and NOS are significant at the 1%

or 5% level according to Spearman’s and Pearson’s coefficient but not significant at the 5% level

or below for FIN.

There are some metrics used to predict maintainability of the systems. These metrics, systems and

performance of the metrics are listed in Table 4 [12,16,18-20].

Table 4. Metrics for maintainability estimation

Metric System Performance

CCOF(Component coupling

factor)

Component Based

System (CBS)

useful index for

maintainability, nonredundant

with existing metrics

DIT (Depth of the

inheritance tree)

UIMS dataset

QUES dataset Both

dataset (Merging

UIMS and QUES

Dataset)

Strong Pearson’s correlation

coefficient (-0.43) with

dependent variable CHANGE

(counting the number of lines

in the code which has been

changed during a 3-year

maintenance period) for UIMS

Dataset.

NOC (Number of children) UIMS dataset QUES

dataset Both dataset

(Merging UIMS and

QUES

Dataset)

Strong Pearson’s correlation

coefficient (0.56) with

dependent variable CHANGE

(counting the number of lines

in the code which has been

changed during a 3-year

maintenance period) for UIMS

Dataset.

MPC (Message-passing

coupling)

QUES dataset

UIMS dataset Both

dataset (Merging

UIMS and QUES

Dataset)

Strong Pearson’s correlation

coefficient (0.46) with

dependent variable CHANGE

(counting the number of lines

in the code which has been

changed during a 3-year

maintenance period) for QUES

Dataset.

RFC (Response for a class) UIMS dataset QUES

dataset Both dataset

(Merging UIMS and

QUES

Dataset)

Strong Pearson’s correlation

coefficient (0.64) with

dependent variable CHANGE

(counting the number of lines

in the code which has been

changed during a 3-year

maintenance period) for UIMS

Dataset.

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.3, May 2016

82

LCOM (Lack of cohesion of

methods)

UIMS dataset QUES

dataset Both dataset

(Merging UIMS and

QUES

Dataset)

Strong Pearson’s correlation

coefficient (0.57) with

dependent variable CHANGE

(counting the number of lines

in the code which has been

changed during a 3-year

maintenance period) for UIMS

Dataset.

DAC (Data abstraction

coupling)

UIMS dataset QUES

dataset Both dataset

(Merging UIMS and

QUES

Dataset)

Strong Pearson’s correlation

coefficient (0.63) with

dependent variable CHANGE

(counting the number of lines

in the code which has been

changed during a 3-year

maintenance period) for UIMS

Dataset.

WMC (Weighted method

per class)

Both dataset

(Merging UIMS and

QUES

Dataset)

UIMS dataset

QUES dataset

Strong Pearson’s correlation

coefficient (0.67) with

dependent variable CHANGE

(counting the number of lines

in the code which has been

changed during a 3-year

maintenance period) for both

datasets.

NOM (Number of

methods)

UIMS dataset QUES

dataset Both dataset

(Merging UIMS and

QUES

Dataset)

Strong Pearson’s correlation

coefficient (0.64) with

dependent variable CHANGE

(counting the number of lines

in the code which has been

changed during a 3-year

maintenance period) for UIMS

Dataset.

SIZE1 (Lines of code) Both dataset

(Merging UIMS and

QUES

Dataset)

UIMS dataset QUES

dataset

Strong Pearson’s correlation

coefficient (0.65) with

dependent variable CHANGE

(counting the number of lines

in the code which has been

changed during a 3-year

maintenance period) for both

dataset.

SIZE2 (Number of

properties)

UIMS dataset QUES

dataset Both dataset

(Merging UIMS and

QUES

Dataset)

Strong Pearson’s correlation

coefficient (0.67) with

dependent variable CHANGE

(counting the number of lines

in the code which has been

changed during a 3-year

maintenance period) for UIMS

dataset

OSAVG (Average 148 Java open OSAVG is the most predictive

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.3, May 2016

83

complexity per method)

CSO (Average number of

methods per class)

CSA (Average number of

attributes per class)

SNOC (Average number of

children per class)

source software metric for maintainability

based on multivariate linear

regression model. CSO and

CSA follows it.

AD (Adaptability) CLX

(Complexity)

USD (Understandability)

DocQ (Documentation

Quality)

RD (Readability)

Some values are

assumed for the

metrics

When these metrics are used as

input and maintainability is

used as output, maintainability

can be predicted based on

fuzzy logic.

AD, USD, DocQ and RD

should be high whereas CLX

should be low to improve

maintainability.

RFC (Response for classes)

LCOM (Lack of cohesion in

Methods)

DAC (Data abstraction

coupling)

LOC (Line of code)

Web-based

applications

These metrics are not able to

relate with maintenance for

Web-based applications.

In Table 4, metrics used for maintainability estimation, where they are used and their prediction

performance are listed. It is observed that, some metrics affect maintainability in a positive way

whereas some of them affect negative. In addition, according to this table, it is important to

choose right metrics for the system. For example, in the table, there are some metrics used for

maintainability estimation of Web-based applications but these metrics fail to predict.

Some approaches are tried to improve maintainability of the systems such as using metrics,

analyzing effect of context factors on metrics etc. These approaches are listed with aim of them

and results in Table 5 [21-22].

Table 5. Approaches to improve maintainability

Approach Aim Result

NCOCP2 (Normalized

with Number of Lock of

Cohesion in Methods)

cohesion metric is used.

This metric is used to

divide source code into

functional segments with

the aim of identifying

start and end points of

each functional segments.

Functional segments are

identified. Understandability

of source code is increased,

as a result, maintainability is

increased.

Effect of context factors

(application domain,

programming language,

age, life span, number of

changes, number of

Effect of six context

factors on software

maintainability metrics is

analysed to improve

maintainability.

It is observed that,

application domain,

programming language and

number of changes effect

software maintainability

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.3, May 2016

84

downloads) on

distribution of software

maintainability metrics

are analysed

metrics mostly.

To predict or evaluate maintainability of a system a lot of methods and correlation analysis are

used. Fuzzy Logic, Mamdani Fuzzy Inference Engine, Genetic Algorithm, regression models

built by stepwise selection and backward elimination, classical linear regressions, Kruskal Wallis

test, Mann-Whitney U test, Cliff’s δ effect size and statistical methods are one of the most used

methods to predict or evaluate maintainability of a system.

Maintainability is an important point for software architecture and software design decisions. A

lot of studies are carried out about maintainability of software architecture however; they are not

able to analyze the optimal maintainability of a software architecture very well [28]. Design takes

part in the software architecture development process. Architectural design decisions are taken at

the beginning of project and these decisions affect software maintainability in a significant rate.

For example; merging two components can affect maintainability in a negative way [29]. In the

future, it is needed to focus on effect of design decisions on maintainability and assess

maintainability to the software architecture to improve performance of the systems.

5. FUTURE WORKS IDENTIFIED IN REVIEWED PAPERS

Future works identified in reviewed papers are listed below:

• S1 aims to investigate if their rating schemas could be captured using Bayesian Belief

Nets (BBN) and incorporate ISO 25000 series (SQuaRE) with their proposed

maintainability model.

• S2 aims to take consideration of other object-oriented metrics and increase number of

projects.

• S3 aims to take consideration of the role of cognitive physiology on the understandability

of the models.

• S4 aims to apply the proposed model on other software and validate the model.

• S5 aims to compare maintainability of various Aspect Oriented projects using obtained

weights in the study.

• S6 aims to take consideration of uncertainty which means while some internal attributes

affect some projects in a positive or negative way, these attributes can not affect all of

the projects.

• S8 aims to study the effects of several factors that analysis methods used in this study

depend on. In addition, it is planned to validate the results obtained in this study by using

further theoretical and experimental studies.

• S9 aims to evaluate proposed approach using a number of case studies.

• S10 aims to verify the experimental result and modify the component specification step

of CCOF metric.

• S11 aims to entegrate other techniques such as Particle Swarm Optimization, Fuzzy

Logic and Clonal Selection Algorithm to the neural network to increase accuracy rate of

estimation.

• S13 aims to add new metrics to the system for software maintainability.

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.3, May 2016

85

• S14 aims to apply the study to other web based applications and propose new metrics for

Web-based applications.

• S15 aims to validate the cohesion metric theoretically and propose a method which add

feature names to extracted functionalities.

• S16 aims to use more software system from SourceForge, GoogleCode and GitHub and

derive the thresholds and ranges of metric values according to the results obtained in the

study.

• S18 aims to develop an automated tool to compute metrics and make researches to assign

right values for upper and lower boundaries of the complexity values for proposed

metrics.

• S19 aims to carry out some empirical studies to compare obtained results.

• S20 aims to improve catalog generalization and entegrate GQM (Goal-Question Metric)

Model to the study.

6. LIMITATIONS OF THIS REVIEW

In this study, 4 keywords are searched using 4 search engines. However, number of keywords and

search engines can be increased. Also, different synonyms can be tried to increase number of

papers. For example, in this study, “maintainability estimation” keyword is used to get papers

which are about maintainability estimation. On the other hand, with this keyword, we are not able

to get the papers with title “maintainability prediction” even if they have the same content. Deep

searches can be carried out in the future.

7. CONCLUSION AND FUTURE WORK

In this study, results of a Literature Review about maintainability models, maintainability metrics

and maintainability estimation are presented to provide a baseline for further researches and to

serve the needs of developers and customers.

As a future work, it is planned to increase number of search engine and number of keywords to

get more relevant journals and conferences, focus on effect of design decisions on maintainability

and assess maintainability to the software architecture to improve maintainability.

REFERENCES

[1] ISO/IEC, ISO/IEC 9126. Software Engineering – Product quality 6.5.ISO/IEC, 2001.

[2] IEEE Std. 610.12-1990. 1993. Standard Glossary of Software Engineering Terminology, IEEE

Computer Society Press, Los Alamitos, CA, 1993.

[3] S. Muthanna, K. Konotogiannis, K. Ponnambalam, and B. Stacey, “A maintainability model for

industrial software systems using design level metrics,” In Seventh Working Conference on Reverse

Engineering, pages 248–256, November 2000.

[4] B. Kumar, “A Survey of Key Factors Affecting Software Maintainability,” International Conference

on Computing Sciences, DOI 10.1109/ICCS.2012.5.

[5] http://stackoverflow.com/questions/2749082/why-does-this-maintainability-index-increase

(16.01.2016)

[6] http://stackoverflow.com/questions/592866/maintainability-index (16.01.2016)

[7] I. Heitlager, T. Kuipers and J. Visser,”A Practical Model for Measuring Maintainability”, Sixth

International Conference on the Quality of Information and Communications Technology, pp. 30-39.

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.3, May 2016

86

[8] F.Ye, X. Zhu, Y. Wang, “A New Software Maintainability Evaluation Model Based on Multiple

Classifiers Combination,” 2013 International Conference on Quality, Reliability, Risk, Maintenance,

and Safety Engineering (QR2MSE), pp. 1588-1591.

[9] O. Turetken, “Towards a maintainability model for business processes: Adapting a software

maintainability model (position paper),” 2013 IEEE 1st International Workshop on Communicating

Business Process and Software Models Quality, Understandability, and Maintainability (CPSM), pp.

1 - 4.

[10] A. Kaur, K. Kaur, K. Pathak, “A proposed new model for maintainability index of open source

software,” 2014 3rd International Conference on Reliability, Infocom Technologies and Optimization

(ICRITO) (Trends and Future Directions), pp. 1 - 6.

[11] A. Kaur, P.S. Grover, A. Dixit, “Quantitative evaluation of proposed maintainability model using

AHP method,” 2015 2nd International Conference on Computing for Sustainable Global

Development (INDIACom)”, pp. 1367 – 1371, 2015.

[12] M.A. Ahmed, H.A. Al-Jamimi, “Machine learning approaches for predicting software maintainability:

a fuzzy-based transparent model,” Software, IET, Volume: 7, issue: 6, pp. 317 - 326, DOI:

10.1049/iet-sen.2013.0046.

[13] A. Sheshasaayee, R. Jose, “A Theoretical Framework for the Maintainability Model of Aspect

Oriented Systems”, The 2015 International Conference on Soft Computing and Software Engineering

(SCSE 2015), Procedia Computer Science 62 (2015) 505 – 512.

[14] S. MISRA, “Modeling Design/Coding Factors That Drive Maintainability of Software Systems,”

Software Quality Journal, 13, 297–320, 2005.

[15] K. T. Al-Sarayreh, A. Abran and J. J. Cuadrado-Gallego, “A standards-based model of system

maintainability requirements,” J. Softw.: Evol. and Proc. 2013; 25:459–505.

[16] H.Washizaki, T. Nakagawa, Y. Saito, Y. Fukazawa, “A Coupling-based Complexity Metric for

Remote Component-based Software Systems Toward Maintainability Estimation,” 13th Asia Pacific

Software Engineering Conference (ASPEC 2006), pp. 79 - 86.

[17] L. Kumar, D. Kumar Naik, S. Ku. Rath, “Validating the Effectiveness of Object-Oriented Metrics for

Predicting Maintainability,” Third International Conference on Recent Trends in Computing (ICRTC’

2015), Procedia Computer Science 57 (2015) 798 – 806.

[18] Y. Zhou and B. Xu, “Predicting the Maintainability of Open Source Software Using Design Metrics,”

Wuhan University Journal of Natural Sciences, Vol.13 No.1, 014-020.

[19] A. Pratap, R. Chaudhary, K. Yadav, “Estimation of software maintainability using fuzzy logic

technique,” 2014 International Conference on Issues and Challenges in Intelligent Computing

Techniques (ICICT), pp. 486 - 492.

[20] H.S. Chae, T.Y. Kim, W.S. Jung, J.S. Lee, “Using Metrics for Estimating Maintainability of Web

Applications: An Empirical Study,” pp. 1053 - 1059.

[21] N. Yoshida, M. Kinoshita, H. Iida, “A cohesion metric approach to dividing source code into

functional segments to improve maintainability,” 2012 16th European Conference on Software

Maintenance and Reengineering (CSMR), Pages: 365 - 370.

[22] F. Zhang, A. Mockus, Y. Zou; F. Khomh, A.E. Hassan, “How Does Context Affect the Distribution

of Software Maintainability Metrics?,” 2013 29th IEEE International Conference on Software

Maintenance (ICSM), pp. 350 - 359.

[23] S. Counsell X. Liu, S. Eldh, R. Tonelli, M. Marchesi, G. Concas, A. Murgia, “Re-visiting the

'Maintainability Index' Metric from an Object-Oriented Perspective,” 2015 41st Euromicro

Conference on Software Engineering and Advanced Applications (SEAA), pp. 84 - 87.

[24] D. Baski and S. Misra, “Metrics suite for maintainability of eXtensible Markup Language web

services,” Software, IET, Volume: 5, issue: 3, pp. 320 - 341.

[25] J. M. Conejero, E. Figueiredo, A. Garcia, J. Hernandez, E. Jurado, “On the relationship of concern

metrics and requirements maintainability,” Information and Software Technology 54 (2012) 212–238.

[26] J.A.G. Saraiva, M.S. de França, S. C.B. Soares, F. J.C.L. Filho, R. M.C.R. de Souza, “Classifying

metrics for assessing Object-Oriented Software Maintainability: A family of metrics’catalogs,” The

Journal of Systems and Software 103 (2015) 85–101.

[27] http://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/ (26.12.2015)

[28] http://www.janbosch.com/Articles/OptimalSAMaintainabilityCSMR01.pdf (27.15.2015)

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.3, May 2016

87

[29] F. Oquendo, B. Warboys, R. Morrison, Software Architecture: First European Workshop, EWSA

2004, St Andrews, UK, May 2004, Proceedings, B. Graaf, “Maintainability through Architecture

Development” pp:206 -2010.

Authors

 Berna Seref received the B.S. degree in computer engineering from Anadolu University, Eskisehir,

Turkey, in 2012 and the M.S. degree in computer engineering from Kirikkale University, Kirikkale,

Turkey, in 2015. She is currently pursuing the Ph.D. degree in computer engineering at Ankara University,

Ankara, Turkey and working as a research assistant.

 Ozgur Tanriover received the M.S. and PhD. degrees in information systems from Middle East Technical

University, Ankara, Turkey in 2002 and in 2008 respectively. Since 2012, he has been working as an

assistant professor in computer engineering department at Ankara University.

