
International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.3, May 2016 

 

 
DOI : 10.5121/ijsea.2016.7305                                                                                                                       69                                           

 

SOFTWARE CODE MAINTAINABILITY:                            

A LITERATURE REVIEW  

 
Berna Seref and Ozgur Tanriover 

 

Department of Computer Engineering, Ankara University, Ankara, Turkey 
 

 

ABSTRACT 
 
Software Maintainability is one of the most important quality attributes. To increase quality of a software, 

to manage software more efficient and to decrease cost of the software, maintainability, maintainability 

estimation and maintainability evaluation models have been proposed. However, the practical use of these 

models in software engineering tools and practice remained little due to their limitations or threats to 

validity. In this paper, results of our Literature Review about maintainability models, maintainability 

metrics and maintainability estimation are presented. Aim of this paper is providing a baseline for further 

searches and serving the needs of developers and customers. 
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1. INTRODUCTION 
 

Every software system needs to be modified in order to meet requirements of customers, users 

and new technologies. Addition and deletion of codes and adopting the system to a new 

operational platform are examples of the modification operations. ISO/IEC 9126 [1] defines 

software maintainability as “the capability of the software product to be modified.” Another 

definition [2] for software maintainability is as “the ease with which a software system or 

component can be modified to correct faults, improve performance or other attributes, or adapt to 

a changed environment.” On the other hand, maintainability also depends on the extend of use of 

software constructs/patterns, programming paradigms/languages, application frameworks, 

programming skill of developers, coding rules, design patterns etc. 

 

It has been observed that maintenance effort in the software life cycle ranges from 65% to 75% of 

total software development time [3]. As the majority of the time is spent in maintenance phase, 

effort spent to increase maintainability effects software cost in a negative or positive way [4]. 

Hence, one of the most important aim of software engineers is developing maintainable software. 

Maintainability feature of a software increases quality of it. With maintainable software, it is easy 

to modify parts of the software, meet user or customer requirements in a shorter time and manage 

the software efficiently. 

 

Maintainability Index (MI) estimation calculation is one of the well-known maintainability 

estimation techniques. However, MI estimation is still a problem. It is not clear that how MI 
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increases or decreases. There is sometimes no explanation of MI variation. For example, in Figure 

1 [5], two versions of the same code are shown. They have different MI values. 

 

 
 

Figure 1. Sample codes 

 

In Figure. 1., while MI value of Sample 1 is 71, MI value of Sample 2 is 73. According to the MI 

values, Sample 2 is more maintainable. On the other hand, this result is arguable. Count of line of 

codes is smaller in Sample 1 and it is more readable but Sample 2 is more maintainable based on 

MI values. There is a discussion about these samples at [5]. Contributions about this discussion 

are listed below: 

 

• An idea is that declaring all variables at the top (as in Sample 2) is reasonable but 

minimizing an identifier's lifespan affects maintainability in a positive way. The counter 

idea to it is that location of variables does not affect metrics.  

 

• An idea counter to the sample 2. This idea supports that distance between the declaration of 

the variable and where it is used is reduced, variable span is reduced. As a result, 

maintainability is increased. However, given samples and results are opposite of this idea. 

 

• An idea supports that MI difference between two samples are because of number of used 

operator. Sample 2 has fewer operators that increase maintainability.  

 

As it is seen, MI prediction and its accuracy are not clear. There are more different ideas that 

support or not support usefulness of it on maintainability estimation. We think that Sample 1 is 

more maintainable for the reason that it is more readable, understandable, effective and has a 

fewer line of code.  

 

Another discussion [6] is about MI values, their meanings and if they are dependent on 

technology. In this discussion, MI values and their meanings are listed below: 
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• 85 and more: good maintainability  

• 65-85: moderate maintainability 

• 65 and below: difficult to maintain  

 

In this discussion [6], common idea is it is not a good idea to use these numbers on different 

technologies such as C# and Java. We agree with this common idea and we strongly believe that 

these numbers can not show degree of maintainability on different technologies and can not 

compare maintainability of them. For example, the same MI value of C and Java technologies can 

not show that they have the same maintainability. C and Java codes have different syntax and 

different terminology. While C code has pointers, Java code has generics. It is meaningless to 

compare these two different technologies by using MI values. 

 

A lot of researches have been carried out about maintainability, maintainability models, 

maintainability metrics and maintainability prediction to increase maintainability of the software 

and as a result, increase quality of the software and decrease software effort and cost. In these 

researches; new models are proposed to predict maintainability of software at early stage of its 

life cycle, factors which have positive or negative impact on maintainability are identified and 

maintainability of software is measured. At these researches, new algorithms are proposed or 

hybrid methods are tried to get more accurate results.  
 

In this study, Literature Review about maintainability models, maintainability metrics and 

maintainability estimation are presented to provide a baseline for further researches and to serve 

the needs of developers and customers. 

 

This paper is structured as follows: Section 2 illustrates review methodology. Results are given in 

Section 3. Section 4 includes summary and discussions. Section 5 lists identified future works in 

the literature. Section 6 illustrates limitation of this review. Finally, review is concluded in 

Section 7. 

 

2. METHOD 
 

In this study, three stages which are defining research questions, designing the search strategy and 

selecting the studies are followed. 

 

2.1. Research Questions 
 

In this literature review, we are trying to answer following research questions:  

 

RQ1: Which models are proposed to evaluate maintainability? 

 
Aim of RQ1 is identifying proposed models that evaluate and measure maintainability.  

 

RQ2: Which methods or algorithms are carried out to propose models? At which rate they are 

effective? 

 
Aim of RQ2 is focusing on methods or algorithms that are used to propose a model and discuss 

effectiveness of this model. 
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RQ3: Which metrics and methods used for maintainability estimation? 

 
Aim of RQ3 is extracting metrics used for maintainability estimation and focusing methods to 

estimate maintainability. 

 

 

RQ4: Which metrics used to improve software maintainability? 

 
Aim of RQ4 is researching usage of metrics to improve maintainability and effect of metrics on 

maintainability. 

 

2.2. Search Strategy 
 

To limit the search to the most relevant search term, the listed steps are followed: 

 

1. Major distinct terms are extracted from our research questions. 

2. Our search term is updated with keywords. 

3. Relevant papers are selected with the condition of having all keywords. 

 

In step 1, candidate search terms are defined: maintainability, maintainability models, 

maintainability evaluation, model effectiveness, maintainability estimation, maintainability 

metrics, maintainability methods, improvement of maintainability. Then, keywords of the search 

term are selected as “maintainability model”, “maintainability metric” and “maintainability 

estimation.” Different spelling is accepted such as “maintainability metrics”, “model of system 

maintainability”, “estimation of software maintainability” etc.  

 

In step 3, papers which have all keywords in the same or different spelling are accepted for the 

search.  

 

Four electronic databases are included to search our review studies: IEEE – Xplore, Springer 

Link, Science – Direct, and Wiley Online Library. Advanced search features of the each database 

are used to get relevant literature. 

 

Our search includes the period 2005 to 2015. Searching is carried out for conference papers and 

journal papers separately for each database. Candidate papers are ordered from most relevant to 

least relevant. 

 

2.3. Study Selection 
 

After getting candidate papers, it is aimed to select papers from the top five candidate papers if 

they provide conditions to be selected. While selecting papers, for some searches, all of the top 

five candidate papers are selected because of providing selection condition. On the other hand, in 

some searches, we are not able to select any papers because of not providing selection condition.  

Inclusion and exclusion criteria to select papers are listed below: 

 

Inclusion criteria: 

 

• The paper must take place at the first five candidate papers which are ordered from the 

most relevant to the least relevant between the period of 2005 to 2015. 



International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.3, May 2016 

73 

 

• The paper title must have search term. For example, in this study, search term is 

constructed with two words. The paper’s title must include both of the words. 

 

• Besides providing all conditions, abstract of the paper must be focused on “software” and 

searching keywords. 

 

Exclusion criteria: 

 

• Studies does not take part at the first five candidate papers that are proposed by searching 

engine. 
 

• Studies does not have all keywords at their titles. 

 

• Studies whose abstracts are not directly related to search area. 

 

• Studies which are selected by us for this search before. (to prevent duplication) 

 

After applying inclusion and exclusion criteria, relevant papers are narrowed to 20 and listed in 

Table I with the features of ID, Authors, Addressed Research Questions and References No. 

  
Table 1. Selected studies 
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Figure 2. Distribution of selected papers  
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Figure 3. Distribution of selected studies based on electronic databases 

 

We aimed to select up to date papers to be able to see the last level of maintainability researches. 

Figure 2 gives information about distribution of selected studies per year. Figure 3 gives 

information about number of selected studies based on electronic databases. 

 

3. RESULTS 
 

Firstly, it is observed that there are relatively few relevant studies matching our search terms 

between 2005 and 2012. When Figure 2 is analyzed, it seen that number of studies about the 

search term increases year by year and it becomes more active in 2013 and 2015. When Figure 3 

is analyzed, it is observed that a large number of the selected studies is belong to IEEE while the 

smallest part is belong to Wiley Online Library. 

 

In addition, results show that 35% of the selected studies (7) are journal while the remaining 65% 

of them are conference papers (13). 

 

Review results for each research questions are given in the following subsections. 
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3.1. Proposed Maintainability Models 
 

RQ1: Which models are proposed to evaluate maintainability? 

 
I. Heitlager et al. (S1) discuss problems of Maintainability Index such as root cause analysis, 

average complexity, computability comment, understandability and control. Then, they propose a 

new model to measure maintainability. In this model, by using ISO 9126, source code measures 

are mapped onto the sub characteristics of maintainability and a relationship between source code 

metrics and ISO 9126 quality characteristics is provided. 

 

F. Ye et al. (S2) propose a model based on multiple classifiers combination which has three parts: 

attribute selection, model training and model interpretation. 

 

O. Turetken (S3) discusses applicability of a software maintenance model and choses Software 

Improvement Group Maintainability Model (SIG Model). 

 

A. Kaur et al. (S4) discuss Oman and Hagemeister Maintainability Index model, show 

ineffectiveness of it. After that, propose two regressions models built by stepwise selection and 

backward elimination. 

 

A. Kaur et al. (S5) propose “extensibility” as a sub character and evaluate aspect oriented 

software maintainability quality using Analytic Hierarchy Process (AHP). 

 

A.A.  Moataz and A.H. Al-Jamimi (S6) propose fuzzy logic-based transparent prediction model.  

A. Sheshasaayee and R.  Jose (S7) propose aspect oriented maintainability model which is based 

on static metrics for aspect oriented systems. 

 

S.  MISRA (S8) focuses on relationship between some software metrics and MI to increase 

maintainability of a system. 

 

K.T.  Al-Sarayreh et al. (S9) propose a reference model of Software FUR (Functional User 

Requirements) for identification of system maintainability requirements. 

 

3.2. Methods/Algorithms and Effectiveness of Proposed Models 

 
RQ2: Which methods or algorithms are carried out to propose models? At which rate they are 

effective? 

 
S1 decreases problems of MI with proposed model.  

 

S2 uses Genetic Algorithm to select attributes (metrics) and then train the system with Weka tool. 

After that, to interpret results of proposed model, uses rule extracting algorithm based on decision 

tree. Dataset for this study is 300 classes of open source C++ software system downloaded from 

internet. As a result, it is observed that the model trained by selected properties is faster than the 

model trained by all properties. In addition, this model has a benefit of enabling developers and 

researchers to select best maintainable object oriented software system. 

 

S3 enables business process designers and practitioners to understand deficiencies and pinpoint 

parts of the possible improvement places and predict efficiency of maintenance tasks. Doesn’t 
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taking into account cognitive physiology on the understandability of process models is one of the 

limitation of this model. 

 

S4 uses different versions of Luceno search engine which are 2.0.0 and 2.1.0 as a dataset and 

calculates metrics of them by using CKJM and IntelliJ IDEA tool. Proposed regression models 

are built by using Stepwise Selection and Backward Elimination. As a result, it is observed that 

proposed models shows better performance when compared to Oman and Hagemeister (O&H) 

Maintainability Index (MI) model based on correlation coefficient and Change between models. 

Dataset used in this study is written in Java and it is seen as a limitation. As a future work, it is 

planned to replicate the study on other software.  

 

S5 evaluates aspect oriented software maintainability quality using Analytic Hierarchy Process 

(AHP). The model consists of six attributes which are extensibility, reusability, modifiability, 

analyzability, testability and modularity. Value of pair wise relative weights for the characteristics 

are defined according to the survey that is carried out with 8 participants by taking mean of 

survey results. Then, Eigenvector is computed to get relative ranking of the attributes in relation 

to maintainability. As a result, it is observed that the order is: extensibility, reusability, 

modifiability, analyzability, testability and modularity. In addition, it is observed that this model 

can estimate maintainability of Aspect Oriented projects. In the future, it is planned to compare 

maintainability of different Aspect Oriented projects with the weights which are gotten in this 

study. 

 

S6 predicts software maintainability using Mamdani fuzzy inference engine. QUES and UIMS 

are selected as datasets. The model is compared with T-S-based, SVM (Support Vector Machine), 

PNN (Probabilistic Neural Network), RBF (Radial Basis Function), BN (Bayesian Network) and 

MARS (Multivariate Adaptive Regression Splines) models. As a result, it is observed that 

Mamdani based model offers the best accuracy. Data scarcity is seen as a limitation for this study. 

In the future, it is planned to try this model on different datasets. 

 

S7 proposes Aspect Oriented maintainability model which is based on WOM (Weighted 

Operations in Module), RFM (Response for a Module), CAE (Coupling on Advice Execution),  

 

 

CDA (Crosscutting Degree of Aspect), CIM (Coupling on Intercepted Module), CFA (Coupling 

on Field Access), CBM (Coupling between Modules), LCCO (Lack of Cohesion in Operation) 

and LOCC (Lines of Class Code) metrics. In this study, aim is providing quality attributes to 

predict parameters like maintainability, changeability etc. On the other hand, this model is 

theoretical. 

 

S8 focuses effect of 20 design/code measures on maintainability. These measures are extracted 

using Krakatau metric professional measurement tool from the 50 projects written in C++ 

language. As a result, it is observed that there is a strong dependence between MI and SLOC 

(Source Line of Code) metrics. There is a positive relationship between MI and AHF (Attribute 

Hiding Factor), AIF (Attribute Inheritance Factor), AVPATHS (Average Depth of Paths), COF 

(Coupling Factor), DIT (Depth of Inheritance Tree), MIF (Method Inheritance Factor) and RFC 

(Response for Classes) metrics. There is a strong effect of ACLOC (Average Class Size), 

AMLOC (Average Method Size), AVPATHS (Average Depth of Paths), CDENS (Control 

Density), COF (Coupling Factor), DIT (Depth of Inheritance Tree), n (Program Vocabulary), N 

(Program Length), PPPC (Percentage Public/Protected Members), and WMC (Weighted Methods 
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in Classes) metrics on MI. However, the results are gotten using 50 systems so results are not 

universally general for all systems. In the future, it is planned to carry out further theoretical and 

experimental studies with the aim of validating the obtained results in this study.  

 

S9 aims to provide a model to identify system maintainability requirements and proposes 

Software FUR (Functional User Requirements) model to achieve this aim. As a result, with this 

study, budget overruns and missed deadlines are prevented, input requirements are determined 

earlier in the project life cycle. However, in this study, only software requirements are allocated, 

and the study is not expanded to hardware and manual system requirements. 

 

3.3. Metrics and Methods for Maintainability Estimation 
 

RQ3: Which metrics and methods used for maintainability estimation? 

 
H. Washizaki (S10) proposes CCOF (Component Coupling Factor) metric which takes into 

consideration of characteristics of remote components to measure coupling-based complexity of 

Component Based Software (CBS) system. As a result, it is observed that CCOF is a useful and 

effective index for maintainability. In the future, it is planned to expand number of samples. 

L. Kumar et al.  (S11) predict maintainability of Quality Evaluation System and User Interface 

System using Neuro Genetic Algorithm. Genetic Algorithm is used to find optimum weights in 

the Neural Network. Metrics are inputs for the network that will be trained. Mean Absolute Error 

(MAE), Mean Absolute Relative Error (MARE), Root Mean Square Error (RMSE) and Standard 

Error of the Mean (SEM) are performance evaluation criterions. As a result, it is observed that 

this method shows better performance when compared to the last studies. On the other hand, this 

model is created using object oriented systems so the model is likely to be valid for the systems 

which are developed using object oriented programming languages. In the future, it is planned to 

entegrate other techniques such as Particle Swarm Optimization, Fuzzy Logic, Clonal Selection 

Algorithm to the network to increase accuracy rate of estimation. 

 

Z.Yuming and X. Baowen (S12) study relationship between a number of metrics and 

maintainability, and prediction ability of these metrics for software maintainability. 148 Java 

open source software collected from the websites http://sourceforge.net/ and http://java-source.net 

 

 and used as dataset. 15 design metrics are extracted from the dataset and prediction ability of 

these metrics are reported when used together. As a result, it is seen that average control flow 

complexity per method (OSAVG) is the most important maintainability factor while cohesion and 

coupling are less. In addition, multivariate prediction model is showed a good accuracy. 

  

A. Pratap et al. (S13) predict software maintainability using Fuzzy Logic on Matlab Platform. In 

this study, while Adaptability (AD), Complexity (CLX), Understandability (USD), 

Documentation Quality (DocQ) and Readability (RD) metrics are used as input, maintainability is 

used as an output. Triangular Membership Function, Trapezoidal Membership Function and 

Gaussian Membership function are chosen membership functions. As a result, it is observed that 

this model can be used to predict software maintainability. It is advised that to increase 

maintainability of the system, Adaptability (AD), Understandability (USD), Documentation 

Quality (DocQ) and Readability (RD) metrics should be high while Complexity (CLX) should be 

low. As a future work, it is planned to propose new metrics and new approaches for software 

maintainability. 
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H.S. Chae et al. (S14) study relationship between LOC (Line of Code), LCOM (Lack of Cohesion 

in Methods), RFC (Response for Classes), DAC (Data Abstraction Coupling) metrics and 

software maintenance effort. Dataset is constructed with 4 developers by recording the 

maintenance time needed for each class of maintenance action. Correlation analysis is carried out 

to observe relationship between the selected metrics and maintenance effort. As a result, it is seen 

that selected metrics can not show a good performance for Web-based applications to predict 

maintenance effort. In the future, it is planned to propose new metrics that take into account 

characteristics of design patterns of Web based applications.  

 

3.4. Metrics to Improve Software Maintainability 
 

RQ4: Which metrics used to improve software maintainability? 

 
N.  Yoshida et al. (S15) propose dividing source code into functional segments using cohesion 

metric to improve software maintainability. As a result, start and end points of each functional 

segment are defined; understandability of the source code is increased. In this study, NCOCP2  

(Normalized with number of LCOM (Lack of Cohesion in Methods)) metric is calculated and a 

threshold value is set to NCOCP2. Then, functional segments are extracted based on this cohesion 

metric. In the future, it is planned to validate the cohesion metric theoretically and propose a 

method which add feature names to extracted functionalities. 

 

F. Zhang et al. (S16) focus the effects of six context factors on distribution of software 

maintainability metrics. These context factors are application domain, programing language, age, 

life span, number of changes and number of downloads. As a dataset, 320 nontrivial software 

systems from Source Forge is used. Kruskal Wallis test, Mann-Whitney U test and Cliff’s δ effect 

size are selected as statistical methods to analyze 320 software systems. As a result, it is observed 

that all context factors affect 39 calculated maintainability metrics. But the most are: application 

domain, programming language and number of changes. In the future, it is planned to use more 

software system from SourceForge, GoogleCode, and GitHub. 

 

S. Counsell et al. (S17) study relationship between MI and coupling, defects and size features. 

Three releases of two Eclipse projects are used as datasets. Class-based metrics are extracted with 

JHawk tool. As a result, it is observed that there is a relationship between the features and MI. 

D. Baski and S. Misra (S18) propose data weight of a web service description language, distinct 

message ratio metric, message entropy metric and message repetition scale metric to evaluate 

maintainability of XML Web Service. All metrics are evaluated using Weyuker’s properties and 

Caner’s framework. As a result, usefulness of the metrics are proved. In the future, it is planned to 

develop an automated tool to compute metrics and make researches to assign right values for 

upper and lower boundaries of the complexity values for proposed metrics. 

 

J.M. Conejero et al. (S19) try to find an answer for the question that if a certain crosscutting 

characteristics affect software maintainability. Correlation between crosscutting properties and 

changeability and stability attributes is focused. As a result, it is observed that certain crosscutting 

properties affect changeability and stability in a negative way. In the future, it is planned to carry 

out some empirical studies to compare obtained results. 

 

J. de A.G. Saraiva et al. (S20) propose metrics’ categorization to define which metrics can be 

used in the experiments to increase rate of maintainability. 7 categories and 17 subcategories are 

presented. These are tested using Wilcoxon Test and survey which includes 47 expert opinion 



International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.3, May 2016 

79 

 

about the proposed catalog. As a result, it is observed that proposed approach is useful and has a 

positive effect on maintainability. In the future, it is planned to improve catalog generalization 

and entegrate GQM (Goal-Question Metric) Model to the study. 

 

4. SUMMARY AND DISCUSSIONS 
 

To achieve maintainability evaluation and estimation, in general, databases and software metrics 

are needed. Databases are obtained in two ways: constructing a new databases for the study or 

using ready databases. Databases and tools to extract metrics used in the literature are listed in 

Table II [8,10,14,17,18,22,23]. 

 
Table 2. Databases and tools 

 

Database Tools 

300 classes of open source C++ software 

system downloaded from internet 

Weka 

Luceno search engine CKJM and IntelliJ IDEA tool 

User Interface Management System 

(UIMS) contains 39 classes and Quality 

Evaluation System (QUES) contains 71 

classes 

- 

50 projects written in C++ language 

downloaded from several websites 

static analysis tool 

148 Java open source software collected 

from the websites http://sourceforge.net/ 

and http://java-source.net 

- 

320 nontrivial software systems from 

Source Forge 

https://bitbucket.org/serap/contextstudy 

http://www.scitools.com 

Three releases of two Eclipse projects  JHawk tool 

 

In Table 2, it is observed that projects that is used as dataset are written in Java or C++. It can be 

said that researchers preferred using Java or C++ projects instead of C# or C projects. 

As it is seen in the literature, some studies are focused on problems of MI and tried to decrease 

these problems with proposing new models and methods and analyzing relationship between MI 

and software metrics. 

 

MI is a measure that define how maintainable a system is. Higher values of MI means more 

maintainable system. MI was introduced in 1992 by Paul Oman and Jack Hagemeister and 

presented at the International Conference on Software Maintenance ICSM 1992 and formulated 

in Equation (1) [27].  

 

171-5.2In(HV)-0.23CC-16.2In(LOC)+50.0sin√2.46*COM                                                                 

                                                                                                         (1) 

 

In Equation (1), HV is Halstead’s Volume, CC is McCabe’s cyclomatic complexity, LOC is line 

of code, COM is percentage of comments.  

 

Problems of MI can be listed as follows: 
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• It is not known that why sin operation is used, why CC is multiplied with 0.23 value or how 

we can get 171. There are some understandability questions about MI formula but there is 

no clear explanation.  

• In MI Formula, COM takes place. However, it is one of the arguable points if comments 

must take part in the formula. 

• MI Formula can mask the presence of high-risk parts especially for object oriented systems 

because of power low distribution of complexity and as a result, giving low average 

complexity. It is not advised to use MI Formula as a maintainability measure for object 

oriented systems.  

• HV, CC, LOC and COM are used in MI Formula according to the statistical correlation. 

However, there is no clear explanation and strong evidence that there is a causal relation 

between the metrics. Because of it, it is hard to tune maintainability index by changing used 

metrics in the Formula. 

•  

To increase performance of MI, some metrics are proposed and relationship between MI and 

metrics are analyzed. Relationship between MI and metrics are shown in Table 3 [14,23]. 

 
Table 3. Relationship between MI and software metrics 

 

Metric Relationship 

AMLOC (Average method size) non-linear correlation 

SLOC (Source lines of code) non-linear correlation 

AHF (Attribute hiding) positive relationship 

AIF (Attribute inheritance 

Factor) 

positive relationship 

AVPATHS (Average depth of paths) positive relationship 

COF (Coupling) positive relationship 

DIT (Depth of inheritance tree) positive relationship 

MIF (Method inheritance) positive relationship 

RFC (Response for class) positive relationship 

FIN (Number of incoming couplings) Correlation is not significant at the 5% 

level or below according to Spearman’s 

and Pearson’s coefficient  

CBO (Coupling between objects) Correlation is significant at the 

1% or 5% level according to Spearman’s 

and Pearson’s coefficient 

NOS (Number of java statements in a 

class) 

Correlation is significant at the 

1% or 5% level according to Spearman’s 

and Pearson’s coefficient 

 

As it is seen in Table 3, there is a non-linear correlation between MI and AMLOC and SLOC. 

When AMLOC is increased, method size increases, method becomes more complex and rate of 

readability decreases, as a result, maintainability decreases. When SLOC is increased, program 



International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.3, May 2016 

81 

 

size and complexity increases as a result, maintainability decreases. According to the coefficient 

of correlation analysis, when attribute hiding, attribute inheritance, method inheritance, average 

depth of paths, coupling, depth of inheritance tree and response for class are increased, 

maintainability increases. In addition, according to the experiment which is carried on with two 

releases of two projects, correlation rate between MI and CBO and NOS are significant at the 1% 

or 5% level according to Spearman’s and Pearson’s coefficient but not significant at the 5% level 

or below for FIN. 

 

There are some metrics used to predict maintainability of the systems. These metrics, systems and 

performance of the metrics are listed in Table 4 [12,16,18-20]. 

 
Table 4. Metrics for maintainability estimation 

 

Metric System Performance 

CCOF(Component coupling 

factor) 

Component Based 

System (CBS) 

useful index for 

maintainability, nonredundant 

with existing metrics 

DIT (Depth of the 

inheritance tree) 

UIMS dataset    

QUES dataset Both 

dataset (Merging 

UIMS and  QUES 

Dataset) 

 

Strong Pearson’s correlation 

coefficient (-0.43) with 

dependent variable CHANGE 

(counting the number of lines 

in the code which has been 

changed during a 3-year 

maintenance period) for UIMS 

Dataset. 

NOC (Number of children) UIMS dataset QUES 

dataset Both dataset 

(Merging UIMS and  

QUES 

Dataset) 

 

Strong Pearson’s correlation 

coefficient (0.56) with 

dependent variable CHANGE 

(counting the number of lines 

in the code which has been 

changed during a 3-year 

maintenance period) for UIMS 

Dataset. 

MPC (Message-passing 

coupling) 

QUES dataset 

UIMS dataset Both 

dataset (Merging 

UIMS and  QUES 

Dataset) 

Strong Pearson’s correlation 

coefficient (0.46) with 

dependent variable CHANGE 

(counting the number of lines 

in the code which has been 

changed during a 3-year 

maintenance period) for QUES 

Dataset. 

RFC (Response for a class) UIMS dataset QUES 

dataset Both dataset 

(Merging UIMS and  

QUES 

Dataset) 

 

Strong Pearson’s correlation 

coefficient (0.64) with 

dependent variable CHANGE 

(counting the number of lines 

in the code which has been 

changed during a 3-year 

maintenance period) for UIMS 

Dataset. 
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LCOM (Lack of cohesion of 

methods) 

UIMS dataset QUES 

dataset Both dataset 

(Merging UIMS and  

QUES 

Dataset) 

 

Strong Pearson’s correlation 

coefficient (0.57) with 

dependent variable CHANGE 

(counting the number of lines 

in the code which has been 

changed during a 3-year 

maintenance period) for UIMS 

Dataset. 

DAC (Data abstraction 

coupling) 

UIMS dataset QUES 

dataset Both dataset 

(Merging UIMS and  

QUES 

Dataset) 

 

Strong Pearson’s correlation 

coefficient (0.63) with 

dependent variable CHANGE 

(counting the number of lines 

in the code which has been 

changed during a 3-year 

maintenance period) for UIMS 

Dataset. 

WMC (Weighted method 

per class) 

Both dataset 

(Merging UIMS and  

QUES 

Dataset) 

UIMS dataset 

QUES dataset 

 

 

Strong Pearson’s correlation 

coefficient (0.67) with 

dependent variable CHANGE 

(counting the number of lines 

in the code which has been 

changed during a 3-year 

maintenance period) for both 

datasets. 

NOM (Number of 

methods) 

UIMS dataset QUES 

dataset Both dataset 

(Merging UIMS and  

QUES 

Dataset) 

 

Strong Pearson’s correlation 

coefficient (0.64) with 

dependent variable CHANGE 

(counting the number of lines 

in the code which has been 

changed during a 3-year 

maintenance period) for UIMS 

Dataset. 

SIZE1 (Lines of code) Both dataset 

(Merging UIMS and  

QUES 

Dataset) 

UIMS dataset QUES 

dataset 

 

Strong Pearson’s correlation 

coefficient (0.65) with 

dependent variable CHANGE 

(counting the number of lines 

in the code which has been 

changed during a 3-year 

maintenance period) for both 

dataset. 

SIZE2 (Number of 

properties) 

UIMS dataset QUES 

dataset Both dataset 

(Merging UIMS and  

QUES 

Dataset) 

 

Strong Pearson’s correlation 

coefficient (0.67) with 

dependent variable CHANGE 

(counting the number of lines 

in the code which has been 

changed during a 3-year 

maintenance period) for UIMS 

dataset 

OSAVG (Average 148 Java open OSAVG is the most predictive 
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complexity per method) 

CSO (Average number of 

methods per class) 

CSA (Average number of 

attributes per class) 

SNOC (Average number of 

children per class) 

 

source software metric for maintainability 

based on multivariate linear 

regression model. CSO and 

CSA follows it.  

AD (Adaptability) CLX 

(Complexity)  

USD (Understandability)  

DocQ (Documentation 

Quality) 

RD (Readability)  

Some values are 

assumed for the 

metrics 

When these metrics are used as 

input and maintainability is 

used as output, maintainability 

can be predicted based on 

fuzzy logic.  

AD, USD, DocQ and RD 

should be high whereas CLX 

should be low to improve 

maintainability. 

RFC (Response for classes) 

LCOM (Lack of cohesion in 

Methods) 

DAC (Data abstraction 

coupling) 

LOC (Line of code) 

Web-based 

applications 

These metrics are not able to 

relate with maintenance for 

Web-based applications. 

 

In Table 4, metrics used for maintainability estimation, where they are used and their prediction 

performance are listed. It is observed that, some metrics affect maintainability in a positive way 

whereas some of them affect negative. In addition, according to this table, it is important to 

choose right metrics for the system. For example, in the table, there are some metrics used for 

maintainability estimation of Web-based applications but these metrics fail to predict. 

 

Some approaches are tried to improve maintainability of the systems such as using metrics, 

analyzing effect of context factors on metrics etc. These approaches are listed with aim of them 

and results in Table 5 [21-22]. 

 

 
Table 5. Approaches to improve maintainability 

 

Approach Aim Result 

NCOCP2 (Normalized 

with Number of Lock of 

Cohesion in Methods) 

cohesion metric is used. 

This metric is used to 

divide source code into 

functional segments with 

the aim of identifying 

start and end points of 

each functional segments. 

Functional segments are 

identified. Understandability 

of source code is increased, 

as a result, maintainability is 

increased.  

Effect of context factors 

(application domain, 

programming language, 

age, life span, number of 

changes, number of 

Effect of six context 

factors on software 

maintainability metrics is 

analysed to improve 

maintainability. 

It is observed that, 

application domain, 

programming language and 

number of changes effect 

software maintainability 
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downloads) on 

distribution of software 

maintainability metrics  

are analysed 

metrics mostly. 

 

To predict or evaluate maintainability of a system a lot of methods and correlation analysis are 

used. Fuzzy Logic, Mamdani Fuzzy Inference Engine, Genetic Algorithm, regression models 

built by stepwise selection and backward elimination, classical linear regressions, Kruskal Wallis 

test, Mann-Whitney U test, Cliff’s δ effect size and statistical methods are one of the most used 

methods to predict or evaluate maintainability of a system.  

 

Maintainability is an important point for software architecture and software design decisions. A 

lot of studies are carried out about maintainability of software architecture however; they are not 

able to analyze the optimal maintainability of a software architecture very well [28]. Design takes 

part in the software architecture development process. Architectural design decisions are taken at 

the beginning of project and these decisions affect software maintainability in a significant rate. 

For example; merging two components can affect maintainability in a negative way [29]. In the 

future, it is needed to focus on effect of design decisions on maintainability and assess 

maintainability to the software architecture to improve performance of the systems. 

 

5. FUTURE WORKS IDENTIFIED IN REVIEWED PAPERS 
 

Future works identified in reviewed papers are listed below: 

 

• S1 aims to investigate if their rating schemas could be captured using Bayesian Belief 

Nets (BBN) and incorporate ISO 25000 series (SQuaRE) with their proposed 

maintainability model. 

• S2 aims to take consideration of other object-oriented metrics and increase number of 

projects.  

• S3 aims to take consideration of the role of cognitive physiology on the understandability 

of the models. 

• S4 aims to apply the proposed model on other software and validate the model. 

• S5 aims to compare maintainability of various Aspect Oriented projects using obtained 

weights in the study.  

• S6 aims to take consideration of uncertainty which means while some internal attributes 

affect some projects in a positive or negative way, these attributes can not affect all of 

the projects. 

• S8 aims to study the effects of several factors that analysis methods used in this study 

depend on. In addition, it is planned to validate the results obtained in this study by using 

further theoretical and experimental studies. 

• S9 aims to evaluate proposed approach using a number of case studies. 

• S10 aims to verify the experimental result and modify the component specification step 

of CCOF metric. 

• S11 aims to entegrate other techniques such as Particle Swarm Optimization, Fuzzy 

Logic and Clonal Selection Algorithm to the neural network to increase accuracy rate of 

estimation. 

• S13 aims to add new metrics to the system for software maintainability. 
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• S14 aims to apply the study to other web based applications and propose new metrics for 

Web-based applications. 

• S15 aims to validate the cohesion metric theoretically and propose a method which add 

feature names to extracted functionalities. 

• S16 aims to use more software system from SourceForge, GoogleCode and GitHub and 

derive the thresholds and ranges of metric values according to the results obtained in the 

study. 

• S18 aims to develop an automated tool to compute metrics and make researches to assign 

right values for upper and lower boundaries of the complexity values for proposed 

metrics. 

• S19 aims to carry out some empirical studies to compare obtained results. 

• S20 aims to improve catalog generalization and entegrate GQM (Goal-Question Metric) 

Model to the study. 

 

6. LIMITATIONS OF THIS REVIEW 
 

In this study, 4 keywords are searched using 4 search engines. However, number of keywords and 

search engines can be increased. Also, different synonyms can be tried to increase number of 

papers. For example, in this study, “maintainability estimation” keyword is used to get papers 

which are about maintainability estimation. On the other hand, with this keyword, we are not able 

to get the papers with title “maintainability prediction” even if they have the same content. Deep 

searches can be carried out in the future. 

 

7. CONCLUSION AND FUTURE WORK 
 

In this study, results of a Literature Review about maintainability models, maintainability metrics 

and maintainability estimation are presented to provide a baseline for further researches and to 

serve the needs of developers and customers. 

 

As a future work, it is planned to increase number of search engine and number of keywords to 

get more relevant journals and conferences, focus on effect of design decisions on maintainability 

and assess maintainability to the software architecture to improve maintainability. 
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