
International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.5, September 2016

DOI : 10.5121/ijsea.2016.7503 25

A NOVEL METHOD FOR REDUCING TESTING TIME

IN SCRUM AGILE PROCESS

Dr. Kiran Kumar Jogu

1
, Dr. K. Narendar Reddy

2

1
IBM India Software Lab, Hyderabad, India

2
CVR College of Engineering, Dept. of CSE, Hyderabad, India

ABSTRACT

Recently, the software development in the industry is moving towards agile due to the advantages provided

by the agile development process. Main advantages of agile software development process are: delivering

high quality software in shorter intervals and embracing change. Testing is a vital activity for delivering a

high quality software product. Often testing accounts for more project effort and time than any other

software development activities. Testing strategies for conventional process models are well established,

but these strategies are not directly applicable to agile testing without modifications and changes. In this

paper, a novel method for agile testing in the scrum software development environment is proposed and

presented. The sprint and testing activities which form the context for the proposed testing method are

presented. The proposed method is applied on two cases studies. The results indicated that the testing time

can be reduced considerably by applying the proposed method.

KEYWORDS

Agile software development, scrum, software industry, novel method for testing, testing time reduction.

1. INTRODUCTION

Traditional software development process models are being used for long time in software
development. Present business demands the software products to be delivered in shorter intervals

and software development environment having capability to embrace change at any stage of

development. Traditional process models have difficulty in responding to change which often

contributes success or failure of a software product [1]. Software requirements are dynamic

which are driven by industry market forces. Agile approach to software development is suitable to

such situations [2], [3]. Hence, more software companies are making a transition to agile software

process models from traditional software development process models. Some of the key factors
for success in an agile testing approach are: adopting an agile mindset, automating regression

tests, collaborating and obtaining feedback from customer [4]. Some issues may arise when

transition is made from traditional development to agile development. Common issues for agile

models after migration from traditional models were identified in [5]. They are related to testing,

test coverage, coordination overhead, and software release. In this paper we focused on testing

related issues. Agile methods employ short iterative cycles, with prioritizing the requirements

which actively involve users. Agile process models are iterative, incremental, self organizing and

emergent [6]. One of the agile process models which is being used in the software industry is

“scrum”. Scrum agile process model is defined in [7], [8]. In agile software development, testing

is a vital activity for delivering a high quality software product to the customers. Often testing

accounts for more project effort and time than any other software development activities. Since

testing plays a major role in the success of the product, it is given a lot of importance in software

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.5, September 2016

26

development. Testing strategies for conventional process models are well established, but these

strategies are not directly applicable to agile testing without modifications and changes. One of

the important current research areas is the agile software testing strategies. The main objective for

any agile testing strategy is to reduce the testing time and at the same time ensuring the software

quality. In this paper, a novel method for agile testing in the scrum software development

environment is proposed and applied on two case studies. The results indicate that by applying
this method testing time can be reduced.

The remainder of this article is structured as follows. Related work is briefly described in Section

2. In Section 3, the proposed testing method is described. In Section 4, case studies are presented.

Subsequently, conclusions are presented and future directions are proposed.

2. RELATED WORK

Software industry is transitioning to agile methodologies from traditional approaches. One of the
popular agile process models which is being used in software companies is “scrum”. Scrum main

characteristic is, continuous deployment of working product increment after each sprint. As per

the survey on agile methods given in [9], 54% of the software companies who are using agile

methods are using Scrum. In the survey conducted by [10] on agile projects in different countries

found that six critical factors contribute to agile project success. These factors are: agile software

engineering techniques, customer involvement, project management process, team environment,

team capability, and delivery strategy. One of the attributes related to the critical factor “agile

software engineering techniques” is testing strategies. To address the above mentioned critical

factor and its associated attribute, currently research is being carried out on agile testing strategies

[11], [12]. In this direction, authors of this paper proposed a novel testing method for scrum agile

software development environment.

3. AGILE SOFTWARE DEVELOPMENT USING SCRUM

To provide consumers with continuous deployment of new features rapidly with the capability of
embracing change at any stage of development, scrum is ideally suited for this purpose [7], [8],

[13]. The scrum agile model is an iterative, incremental process of planning, development,

testing, and deployment. In scrum at the end of each sprint a working increment is released and

deployed. In XP (eXtreme Programming) at the end of an iteration, the working product may not

be available. Hence, scrum leads to continuous deployment when compared to XP. Due to

scrum’s main characteristic of continuous deployment, software industry is transitioning to scrum

agile software development. The scrum model is depicted in the Fig. 1 which is adopted from [7].
The model shown in Fig. 1, is depicting the artifacts of their underlying activities. The main

framework activities of the agile process model are: Creation of product backlog, Planning

(Creation of sprint backlog and expanding the sprint backlog), and Sprint (consists of

development activities). The scrum activities are performed by the scrum team which consists of

product owner, development team, and scrum master. Product owner is responsible for creating

and maintaining the requirements in product backlog. He/she creates stories for the requirements

in the product backlog. Development team is responsible for developing the product by

implementing the features in sprint backlog. The development team is cross functional. Cross

functional means, team is responsible for design, development, testing, and deployment. The

responsibility of the scrum master is to ensure that the scrum process is followed properly by the

team.

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.5, September 2016

27

The scrum activities lead to the following artifacts: product backlog, sprint backlog, task list to
achieve sprint backlog, and working software product increment respectively. These artifacts are

briefly discussed below.

Product backlog: The required product features or requirements identified by customer are added

to product backlog. Features are prioritized as desired by the customer. The main source of agility

in scrum model is the prioritized requirements list, which is flexible product backlog [8], [14].

Changes are inevitable. As the needs of the customers change the product backlog is continuously
reprioritized. Hence, the software development is flexible. New features are selected from the

backlog continuously and integrated and released as a working product increment at the end of

the sprint. This means that one can deliver with increasing functionality more frequently, which

provides flexibility and the opportunity for adaptive planning [8].

Sprint backlog: During first part of planning, product owner and development team together

decides which features (user stories) will be part of the next sprint. The high priority features

from product backlog are given preference. These features in this backlog are addressed during

the sprint. Typical time-box for a sprint is 30 days. The changes (addition of new features) to the

features in the ongoing sprint will not be accepted. But, changes (new features) can be added to

the product backlog while the sprint is in progress.

Expanded sprint backlog: During second part of planning, development team analyses the user
stories (features) in the sprint backlog and divides each user story in its tasks. These tasks are

handled by different development team members during sprint.

Working software product increment: During sprint, development activities are carried out

iteratively. Scrum meetings are held daily, typically of 15 minutes duration. Team discusses about

the progress and what to be done in next 24 hours. At the end of sprint (30 days), working

software product increment is delivered (deployed). Delivered product is evaluated by the
customer to ensure that the features in the sprint backlog are implemented. Testing is important,

because it is carried out to ensure the software product quality. Testing consumes most of the time

during the sprint. Any reduction in testing time will help to deliver the product increment in the

given time box of the sprint. Hence, the authors of this paper focused on a novel method to reduce

the testing time. Testing activities and proposed testing method for scrum model are given in the

following section.

 Figure 1. Scrum agile process model

Product

backlog

Sprint

backlog

Backlog items

expanded by

team

Product

increment

30 days

Every 24

hours

Customer

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.5, September 2016

28

3.1 Testing Activities in Scrum

Scrum is a framework for developing software products [15]. Various processes and techniques

can be proposed and employed within the framework. Scrum framework specifies the following

activities: planning, (Creation of sprint backlog and expanding the sprint backlog), Sprint

(consists of activities which can deliver a working software product increment implementing

sprint backlog features in a given time-box(typically 30 days)). To propose a method for testing,

first the sprint activities need to be considered and identified. One of the possible set of sprint

activities can be eXtreme programming (XP) type development activities. The XP development

activities could be: design, test driven development and refactoring, integration and regression

testing, and validation testing before release. XP activities may not produce a working product

increment after completing iteration(s) (in a given time-box). This may be because of the fact that

this model is not based on predefined time-box based product release, hence the authors of this

paper considered sprint activities which can deliver the working software product in predefined

time-box. Sprint activities that are considered, are shown in Fig. 2. The activities are: design,

development (coding), and testing. They are performed iteratively to produce a working product

increment in a given time-box (sprint). The sprint activities are carried out iteratively to

implement the features (user stories) in sprint backlog. The team for sprint contains scrum master
and development team. Development team is cross-functional. They will be able to perform

design, coding, and testing (unit testing and integration testing). Some of the development team

members (testers) can be specifically meant for regression and functional testing. The

responsibilities of the testers are: to plan and update test cases for sprint stories, automate test

scripts if possible, execute the tests and report defects, and run regression tests and functional

tests at the end of the sprint. Testers are also responsible for testing non-functional tests such as

load testing and performance testing.

The testers in scrum agile software development participate in scrum ceremonies which includes

sprint review, planning, daily and retrospective meetings. The testing activities for scrum model

are depicted in Fig. 3. Testing strategy contains: unit testing, continuous integration, and

regression testing which are carried out during the sprint. Whereas, functional and non-functional

testing and user acceptance testing is carried out at the end of the sprint. The testing tasks during a

sprint are incremental and iterative. Unit testing is done by the developer for finding the logical

errors in a module. The bugs found in unit testing are debugged before integrating with other

modules. Continuous integration is performed daily. Continuous integration enables to complete

the increment in the scheduled sprint time. Regression testing is done after every integration test

to ensure that newly integrated module has not introduced any new bugs. Functional test cases are

created based on sprint backlog stories and executed at the end of the sprint.

Figure 2. Sprint activities in scrum

Design

Development Testing

Deliver increment

Create/update

product backlog

Planning

Sprint

Final delivery

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.5, September 2016

29

Testing activities are automated. These testing tasks are conducted repeatedly and frequently,

hence, automation will help to reduce the testing time. Since these tests are conducted iteratively

on small number of features they increase the likely hood of finding bugs early in the project in

intermediate releases (sprints) and in turn reduces the likely hood of magnifying and propagating

the bugs to the final product. Because of this fact the quality of software product is better in agile

software development. During deployment the product increment is tested by the user which is

known as user acceptance testing (UAT) to ensure that all the user stories specified in the sprint
backlog are actually implemented. In addition to testing functional requirements, it is essential to

test non-functional requirements. Some of the typical non-functional requirements are: load

testing, security testing, and performance testing. Tools are used for testing non-functional

requirements. These non-functional tests are executed at the end of the sprint. Software testing

automation is key for the agile testing. Irrespective of agile methodology, testing automation

becomes the core of agile testing [12]. The purpose of software testing automation is to automate

software testing activities. Manual testing is time consuming. Manual testing is not suitable for

scrum agile testing where continuous deployment is required in shorter intervals. Moreover, since

testing tasks are conducted iteratively during a sprint, through testing automation testing time can

be reduced considerably. Tools are available to automate all the testing activities. With

automation, testing efficiency can be improved and testing time can be reduced which enables to

deploy the working product increments in shorter intervals.

3.2 Novel Method for Test Suite Reduction

The proposed testing method is based on the sprint activities and testing activities given in Fig. 2

and Fig.3. The proposed novel method for testing for scrum process model is given in Fig. 4. The

proposed novel method is aimed at reducing the test cases during functional testing and regression

testing. The proposed method contains two phases:

Activity 1: Deriving reduced functional test suite

Activity 2: Deriving reduced regression test suite.

The proposed method is shown in Fig. 4. In Activity 1 the “Reduced Functional Test Suite” is

derived and in Activity 2 the “Reduced Regression Test Suite” is derived by applying a regression

Figure 3. Testing activities in scrum

Design

Development

User acceptance testing &

deployment

Sprint

Unit Testing
Continuous Integration

Regression Testing

Functional Testing

Planning

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.5, September 2016

30

test selection method on the “Reduced Functional Test Suite” that is derived in the Activity 1. How

to apply the proposed method is depicted in Fig. 5.

Activity 1: Deriving Reduced Functional Test Suite

During functional testing a large number of test cases are derived by applying various testing
techniques to test complete functionality of a software product. This test suite contains test cases to

test functionality, boundary values, stress, and performance of the software product. Majority of

these test cases will be test cases that test the functionality and boundary values. The Activity1 of

the proposed method is focused on reducing test cases considering test cases that test functionality

and boundary values.

As part of Activity 1, two aspects functionality and boundary value testing are viewed together.

Single test case situations are identified considering functionality and boundary values which can

be tested in single test case(s) so as to design minimal test cases.

Activity 2: Deriving Reduced Regression Test Suite

Regression testing process involves selecting a subset of the test cases from the original test suite
and if necessary creates some new test cases to test the modified software. In Activity 1 (Fig. 4),

the “Reduced Functional Test Suite” is derived. In Activity 2, existing regression test selection

technique is applied to derive the “Reduced Regression Test Suite” from the “Reduced Functional

Test Suite” of Activity 1. This reduced regression test suite covers the same functionality as the

original regression test suite that is derived without applying our method.

Activity 1: Deriving

Reduced Functional

Test Suite

Original Test

Suite

Identify single test case

situations for functional testing

at the end of sprint by viewing

functionality and boundary

values together

Reduced Functional

Test Suite

Reduced Functional

Test Suite

Identify sub-set for

regression testing during

sprint

Reduced

Regression Test

Suite

Activity 2:

Deriving Reduced

Regression Test

Suite

Figure 4. A novel test suite reduction method for agile process

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.5, September 2016

31

3.2.1 Algorithm to Compute Total Minimized Test Suites

Total number of test cases that are reduced by applying the proposed method in functional testing

and regression testing can be computed using the algorithm given in Fig. 6. Total number of test

cases reduced in functional testing are calculated for n sprints, whereas for regression testing for
n-1 sprints (Sprint number 2 to sprint n). The algorithm to compute reduced (minimized) test

suites is given in Figure. 6. The algorithm contains one outer loop which iterates n times (number

of sprints) and each outer loop contains an inner loop which iterates for j times (number of

iterations in a sprint).

The variables used in the algorithm are explained below.

TTminFTS = Total minimized test cases during functional testing after completion of n sprints.

TTminRTS = Total minimized test cases during regression testing after completion of n sprints.

TminRTS[i] = Total minimized test cases during regression testing in i
th

sprint.

TminFTS[i] = Total minimized test cases during functional testing in i
th

sprint.

TSminRTS[j] = Total minimized test cases during regression testing in j
th

iteration of i
th
 print.

TTnFTS = Total number of test cases during functional testing after completion of n sprints
 (without using proposed approach)

TTnRTS = Total number of test cases during regression testing after completion of n sprints

 (without using proposed approach)

Functional test suite

reduction for Sprint 1 by

applying Activity 1 of the

test suite reduction

method (Fig.4)

Regression test suite

reduction for Sprint 2 by

applying Activity 2 of the

test suite reduction

method

Reduced

functional

test suite

Reduced

regression

test suite

Functional test suite

reduction for Sprint 2 by

applying Activity 1 of the

test suite reduction

method

Reduced

functional

test suite

Regression

testing during

sprint 2

Regression test suite

reduction for Sprint 3 by

applying Activity 2 of the

test suite reduction

method

Functional test suite

reduction for Sprint n-1 by

applying Activity 1 of the

test suite reduction method

Reduced

functional test

suite

Regression test suite

reduction for Sprint n by

applying Activity 2 of the

test suite reduction

method

Regression

testing during

sprint 3

Reduced

regression

test suite

Reduced

regression

test suite

Regression

testing during

sprint n

.

.

.

.

.

.

Figure 5. Applying proposed test suite reduction method during different sprints

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.5, September 2016

32

TiFTS = Total number of test cases during functional testing in ith sprint

 (without using proposed approach)

TiRTS = Total number of test cases during regression testing in i
th
 sprint

 (without using proposed approach)

The algorithm given in Fig. 6 is used to compute minimized test cases for functional testing and

regression testing after every sprint. It also computes total minimized test suites for functional

testing and regression testing after n sprints. The percentages of reductions in test cases are

computed using Eqs. (1) and (2).

Average percentage of reduction in test cases during functional testing (after completion of n

sprints) is computed using Eq.(1).

Figure 6. Algorithm to compute total minimized test cases

n = number of sprints

m=number of iterations in a sprint

TTminFTS = 0

TTminRTS = 0

TminRTS[i] = 0 (for i equals to 1 to n)

Repeat steps 1 to 3 for i = 1 to n

Step 1: If i equals to 1

Then

 Compute TminFTS[i] using proposed method

 End If

Else

Repeat step 1.1 for j=1 to m

Step 1.1: Compute TSminRTS [j] Using TTminFTS

TminRTS[i] = TminRTS[i] + TSminRTS[j]

j=j+1

Step 1.2: Compute TminFTS[i] using proposed

 method

 End Else

Step 2: TTminRTS = TTminRTS + TminRTS[i]

Step 3: TTminFTS = TTminFTS + TminFTS[i]

i = i +1

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.5, September 2016

33

()
(1)100

TT

TTTT
AvgT

nFTS

minFTSnFTS
 redFTS ×

−
=

Average percentage of reduction in regression test cases (after completion of n sprints) is

computed using Eq. (2).

()
(2)100

TT

TTTT
AvgT

nRTS

minRTSnRTS
 redRTS ×

−
=

4. CASE STUDIES

The proposed approach is applied on two real-world ETL tools which are being used by many

customers. The ETL tools are: Teradata ETL DB Component and DB2 ETL DB Component. The

final product of the Teradata ETL DB Component was delivered in four sprints and the DB2 ETL

DB Component was delivered in three sprints. Sprint is of 30 days duration and after every sprint

working increment is deployed.

The Fig. 7 shows the ETL process. The ETL stands for “extract, transform and load”, is the set of

functions combined into one tool or solution that enables companies to “extract” data from

numerous databases, applications and systems, “transform” it to appropriate format, and “load” it

into another databases, a data mart or a data warehouse for analysis, or send it along to another

operational system to support a business process.

The Fig. 8 shows some attributes of a generalized ETL Database Component write process. In

this write process, the source could be an ETL DB Component or a flat file and the target is a

ETL DB Component. In the write process, the target ETL DB Component reads data from the

source component, connects to the respective database using the connection properties specified

and writes that data into the target table.

Transport

Any Source Platform (s) Any Target Platform

Extract

Transform

ETL Source

Preprocess

Exit

Load

ETL Target

ETL Job

Scheduler

Post process

Exit

Transform

Figure 7. The ETL process

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.5, September 2016

34

4.1 Teradata ETL DB Component

This section describes the application of the proposed approach on the Teradata ETL DB

Component and how the test cases are reduced using the proposed approach. The same approach

is applied to all the sprints. The Fig.9 shows the metadata of the table ‘sampletable’ used in the

Teradata ETL DB Component case study. This is a Teradata table that contains 5 columns. The

col1 is integer type, col2 is character type, col3 is varchar type, col4 is float type and col5 is date

type.

Activity 1: Deriving Reduced Functional Test Suite

The Table 1 shows some sample test cases for the Teradata ETL DB Component write process.

Each of these test cases tests a single functionality or scenario of the Teradata ETL DB

Component to ensure that

Database
Component/ Flat
File

ETL Database Tool

Connection

Properties

- Host

- Database

- User

- Password

 Table

Action on Data

- Insert

- Update

- Insert or Update

- Update or insert

- Delete

Clean Data

Query Type

- Built-in

- Repository

Data

Figure 8. The ETL database component write process

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.5, September 2016

35

the particular attribute or function is working properly. The Table 2 shows some sample boundary

value test cases for the Teradata ETL DB Component write process. Each of these test cases tests

a single column or data type to ensure the boundary values of that data type are written properly

to the target table. The steps involved in the activity 1 are applied to the case study (Teradata ETL

DB Component) to derive reduced functional test suite.

View Two Aspects Together:

Many test cases are designed to test complete functionality of a software product. These test cases

include: test cases that focused on functionality (Tf), Boundary Value test cases (Tb) , Stress test

cases (Ts), Performance test cases(Tp) and other test cases (To) like negative test cases. The total

test cases (TTnFTS) is computed using Eq. (3).

(3) T T TTT TT opsbfnFTS +++= +

Most of the test cases in this test suite (TTnFTS) belong to functional test cases and boundary value

test cases. The proposed approach focused on these test cases.

Identify Single Test Case Situations:

The test case TCf1 tests the functionality of the Teradata ETL DB Component when the attribute

‘Action on Data’ is set to ‘Insert’ and the test case TCb1 tests the INTEGER data type boundary
value that is written to the target Teradata table. By using the proposed approach in Phase 1, the

test cases TCf1 and TCb1 are viewed together and designed a single test case TCm1 (Table 3) that

covers both aspects (functionality and boundary values). The minimized test case set designed is

shown in the Table 3.

Figure 9. Meta data of the sample table

Table 1. Functional test cases

CREATE SET TABLE Sample table NO

FALL BACK, NO BEFORE JOURNAL,

NO AFTER JOURNAL,

CHECKSUM=DEFAULT

 (

 col1 INTEGER,

 col2 CHAR(9) CHARACTER SET LAT NOT

CASESPECIFIC,

 col3 VARCHAR(9) CHARACTER SETLATIN NOT

CASESPECIFIC,

 col4 FLOAT,

 col5 DATE FORMAT ‘YY/MM/DD’)

 PRIMARY INDEX (col1);

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.5, September 2016

36

Table 2. Boundary Value Test Cases

Test

Case ID
Description Preconditions Expected Result

Test

Status

Comments

TCb1
Test on writing the data to col1 with

INTEGER data type boundary values

The job should read the INTEGER data

type boundary values from input data

and write to the target table

successfully.

: : : :

TCbj
Test on writing the data to col2 with

CHAR data type boundary values

The job should read the CHAR data

type boundary values from input data

and write to the target table
successfully.

Table 3. The minimized text cases designed using the proposed approach in Activity 1

Test

Case ID
Description Preconditions Expected Result

Test

Status
Comments

TCm1

Test on writing the data to the target

table with Action on data = Insert and

col1 contains INTEGER data type

boundary values

The job should read the input data,

add new rows to the target table

successfully and stop if duplicate

rows are found.

 : : : : : :

TCmk

Test on writing the data to the target

table with Action on data = Update and

col2 contains CHAR data type
boundary values

The job should read the input data

and make changes to existing rows

in the target table with the input
data

Logically Proving Single Test Case(s):

Each test case in the minimized test case set described in Table 3 will test the functionality of the

Teradata ETL DB Component to ensure that the particular attribute is working properly and also

tests the boundary values for various columns in the target table to ensure that the boundary

values of that column data type are written properly. For example, the TCm1 in the minimized test

case that tests whether the Teradata ETL DB Component is working properly when the attribute

‘Action on Data’ is set to ‘Insert’ and also tests whether the INTEGER data type boundary value

is written to the target table properly which are tested by the two test cases TCf1 and TCb1. Since

test case TCm1 is able to test functionality and boundary values together, it is logically correct to

combine TCf1 and TCb1 together into TCm1. The test cases in the minimized test case set {TCm1 –

TCmk} described in Table 3 will test the both aspects of functionality and the boundary values of

Teradata ETL DB Component, otherwise, without combining requires test cases {TCf1-TCfi }

(Table 1) and {TCb1-TCbj }(Table 2)}. In similar way, the proposed approach is also applied on

DB2 ETL DB Component.

Showing and Validating the Test Suite Reduction:

After applying the proposed approach in Activity 1, the percentage of test cases reduction is

calculated using Equation (1). The third column of Table 4 describes the total number of
functional test cases (TTnFTS) before applying the proposed approach in Activity 1, the fourth

column describes the total number of test cases in the minimized functional test case suite

(TTminFTS) and percentage of test case reduction (AvgTredFTS) after applying the proposed

approach in Activity 1 is given in second column of Table 5. In both the case studies the reduced

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.5, September 2016

37

functional test suites covered all the functionalities and boundary values with same defect

coverage as that of original test suites (without applying the proposed method).

Activity 2: Deriving Reduced Regression Test Suite

In Activity 2 of the approach (Fig. 4), an existing regression test selection method is applied on
the “Reduced Functional Test Suite” that is derived in Activity 1. Application of Activity 2

resulted in “Reduced Regression Test Suite”. The results on two real-world case studies are

recorded in Table 4. The ninth column in table 4 describes the number of regression test cases

(TTnRTS) that are derived by applying the existing regression test selection method (before

applying the proposed method). The tenth column in Table 4 describes the “Reduced Regression

Test Suite” (TTminRTS) which is derived by applying the proposed approach. The percentage of

regression tests that are reduced by applying the proposed approach is calculated using Equation

(2). The percentage of reduction (AvgTredRTS) for various case studies is shown in the third

column of the Table 5. Using the algorithm given in Fig. 6, minimized test cases for functional

testing and regression testing after every sprint and after n sprints are computed and presented in

Table 4. The average percentages of reductions in test cases are computed using Equations. (1)

and (2) and given in Table 5.

The proposed approach is applied on the second case study "Db2 ETL DB Component" in the

same way and the results are presented in the Tables 4 and 5. The results in Tables 4 and 5

indicate that the application of proposed approach on two real-world case studies has lead to

considerable reduction in test cases without affecting the test coverage. The testing time is
reduced proportionate to the reduction in test cases.

Case Study
Sprint

TiFTS TminFTS[i] TiRTS TminRTS[i] TTnFTS TTminFTS TTnRTS TTminRTS

Teradata ETL

DB Component

1 847 644 506 506 847 644 506 506

2 1270 965 760 586 2122 1609 1266 1092

3 1186 902 709 546 3308 2511 1975 1638

4 932 708 557 430 4235 3219 2532 2068

DB2 ETL DB

Component

1 1102 827 576 576 1102 827 576 576

2 1360 1020 712 566 2462 1847 1288 1142

3 1176 883 615 491 3638 2730 1903 1633

Case Study AvgTredFTS AvgTredRTS

Teradata ETL DB

Component
24% 18.5%

DB2 ETL DB

Component
25% 14.5%

The results in Tables 4 and 5 indicate that the application of proposed approach on two real-world

case studies has lead to considerable reduction in test cases without affecting the test coverage.

The testing time is reduced proportionate to the reduction in test cases. The average testing time

reduction during functional testing at the end of every sprint is 24.5% and the average testing time

reduction during regression testing of every sprint is 16.5%.

The proposed novel method for testing in scrum agile development offers following advantages.

• Method is simple.

• After every sprint functional test suite is minimized

Table 4. Minimised test cases using proposed testing method

Table 5. Average percentage of reduction in test cases

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.5, September 2016

38

• During sprint regression test suite is minimized.

• At the end of n sprints the average percentage of functional test suite reduction is

significant.

• At the end of n sprints the average percentage of regression test suite reduction is

significant.

• Reduction in test cases reduced testing time proportionately.
• Reduced testing time leads to deploying working increments quickly.

5. CONCLUSIONS

The software development in the industry is moving towards agile due to the advantages provided

by the agile development process. Two main advantages of agile software development process

are: delivering the high quality software to the customers in shorter intervals and having the

capability of embracing the changes in requirements at any stage of software development. In

majority of the situations scrum model is preferred because it delivers working software product
increment in a predefined time-box (typically 30 days). Delivering a working product increment

in shorter intervals (30 days) gives business advantage to the customers. Testing in agile process

model plays a vital role. Testing strategies for traditional process models are well established, but

these strategies are not directly applicable to agile testing without modifications and changes. A

novel method for agile testing in the scrum software development environment is proposed and

presented. The proposed method is applied on two case studies. Results indicate that the

regression testing time is reduced by around 16.5% and functional testing time is reduced by

around 24.5%. Since main goal of agile process is to deploy working increments at shorter

intervals, the proposed method helps to achieve the goal by reducing the testing time.

As part of future work more number of case studies from different domains and applications need

to be studied to get further insight into the research areas of agile software testing strategies and

methods.

REFERENCES

[1] L.Williams and A.Cockburn,(2003) ”Agile software development: it’s about feedback and change”,

IEEE Computer, 36(6), pp. 39-43.

[2] J.Highsmith and A.Cockburn, (2001) “Agile software development: The business of innovation”,

IEEE Computer, 34(9), pp-120-127.

[3] C.R.Jakobsen and J.Sutherland, (2009) ”Scrum and CMMI going from good to great”, Agile

Conference (AGILE), pp. 333-337.

[4] L.Crispin and J.Gregory, (2009) “Agile testing: A practical guide for testers and agile teams”,

Addison-Wesley.

[5] Kai Petersen and Claes Wohlin, (2010) ”The effect of moving from a plan-driven to an incremental

software development approach with agile practices: an industrial case study”, Empirical Software

Engineering, 15(6), pp.654-693.

[6] B.Boehm and R.Turner, (2005) ”Management challenges to implementing agile processes in

traditional development organizations”, IEEE Software, 22(5), pp.30-39.

[7] K.Schwaber and M.Beedle, (2002), Agile software development with scrum, Prentice Hall.

[8] K.Schwaber, (2004), Agile project management with scrum, Microsoft Press.

[9] VersionOne, (2013) “7th Annual State of Agile Development Survey”. Retrieved in November 2013

from http://www.versionone.com/pdf/7th-Annual-State-of-Agile-Development-Survey.pdf.

[10] T.Chow and D.Cao, (2007) ”A survey study of critical success factors in agile software projects”,

The Journal of Systems and Software, pp. 961-971.

[11] Theodore D. Hellmann, Abhishek Sharma, Jennifer Ferreira, and Frank Maurer, (2012) ”Agile

testing: past, present, and future – charting a systematic map of testing in agile software

development”, Agile Conference (AGILE), pp. 55-63.

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.5, September 2016

39

[12] E.Collins, A.Dias-Neto, and V.F.de Lucena, (2012) ”Strategies for agile software testing automation:

An industrial experience”, IEEE 36th Annual Computer Software and Applications Conference

Workshops (COMPSACW), pp. 440-445.

[13] Puneet Agarwal,(2011) ”Continuous SCRUM: Agile management of SAAS products”, ISEC’ 11:

Proceedings of the 4th India Software Engineering Conference, February 2011.

[14] K.Lukasiewicz and J.Miler, (2012) ”Improving agility and discipline of software development with

the Scrum and CMMI”, IET Software, pp. 416-422.

[15] K.Schwaber and J.Sutherland, (2013) ”The scrum guide: The definitive guide to scrum: The rules of

the game”, https://www/scrum.org/Portals/0/Documents/Scrum%20Guides/2013/Scrum-

Guide.pdf#zoom=100.

Authors:

Dr. Kiran Kumar Jogu received his Ph.D. in Computer Science & Engineering in the year 2012 from

JNTU, Anantapur, Andhra Pradesh. He is a Technical Lead (Senior Software Engineer) at IBM India

Software Labs , Hyderabad, Telangana. He has 12 years of software industry and research experience with

15 research publications. His areas of interest include Software Testing, Design, Computational Intelligence

based Software Engineering. He is a member of International Association of Engineers and ACM.

Dr.K.Narendar Reddy received his Ph.D. in Computer Science & Engineering in the year 2013 from

JNTUA, Anantapur, Andhra Pradesh. He is a Professor in the Department of Computer Science &

Engineering at CVR College of Engineering, JNTUH, Hyderabad, Telangana. He has 25 years of teaching

and research experience with 17 research publications. His areas of interest include Software Design,

Testing, Computational Intelligence based Software Engineering, and Computational Biology. He is a

Member of ACM and Institution of Engineers(I).

