
International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016

DOI : 10.5121/ijsea.2016.7602 17

ECONOMIC OUTPUT UNDER THE CONDITIONS

OF SOCIAL FREEDOM IN SOFTWARE

DEVELOPMENT

David Kuhlen1 and Andreas Speck2

1Datenlotsen Informationssysteme GmbH, Technical Consultant,
Beim Strohhause 27, 20095 Hamburg, Germany.

2Christian Albrechts Universität zu Kiel, Head of the Business Information Technology
Group, Hermann-Rodewald-Straße 3, 24098 Kiel, Germany.

ABSTRACT

Software developers organize their work autonomously. Agile development approaches give freedom to

developers. However, the discussion about economy often leads to the comparison with manu-facturing

processes which are tightly organised. If developers spend too much time on inefficient activities, the

performance might decrease. The worst example could be breaks. Breaks could be seen as a reason for

economic problems by the management.

This paper investigates the impact of breaks on the overall performance in software development. The

investigations assume that if developers make pauses in a normal manner, this has not a negative impact

on the profitability.

In practice, the human-centric development process brings together a business process and a social

process. The interaction of both processes was simulated. Due to the execution of 1.500 simulations, we

obtained information on the economic progression of the development process under the influence of

breaks. We determined the impact of breaks on the overall profitability.

This investigation contributes to the discussion of freedom in software development. It helps man-agers to

assess if employees who make breaks harm the profitability. This could lead to the imple-mentation of

further business constraints.

KEYWORDS

Software engineering, Manufacturing process, Self-determination, Operating efficiency

1. ECONOMIC SCHEDULING AND CREATIVE SOCIAL FREEDOM IN SOFTWARE

ENGINEERING

In the past decade multiple software producers fail to predict the effort of requirements. This
leads to wrong assumptions on the costs and the profitability of software development projects.
This fact is surprising, because the development process is well described. Such business process
specifications prescribe how development should take place [28, 151f.]. The problem is that
employees actions differ from what the process dictates. However, the process is not always
followed [11, 27]. As revealed, due to process mining, employees work differs from the model
[33, 3].

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016

18

The way how software is developed is seen as being too slow and too costly [2, 42]. Even if
development is a craft-process“, a lack of clear standard methods leads to heterogeneous
performance and developers who are less productive than others [7, 4]. Often, the compliance of
development approaches is not verified overall [30, 19]. This makes it possible for developers to
act differently from the rules, dictated by the process model. Self-determination is considered to
be a very important success factor in agile development. Often, developers grew up without
classical hierarchy and organize their work autonomously [8, 83].

This freedom is a key success factor which leads to technological innovations. In order to be
successful and sustain the cost pressure, development has to enhance the controlling of their
process costs [15]. The discussion on economy often leads to the comparison with manufacturing
processes. These processes have to pay much attention on constraints such as resource and time
[21, 1777]. In order to adjust this manufacturing-perspective to the case of software development,
we have to consider individual, self-determined actions of developers in the analysis of the effort.

Individual actions and self-determination often lead to the discussion, whether individuality
improves or harms the profitability. If developers spend too much time on inefficient activities,
the performance would decrease. The worst example could be breaks: if developers spend too
much time on breaks, management could see this as a reason for economic problems of the
development. However, there is no evidence which impact pauses have on the profitability.

2. HYPOTHESIS AND CONTRIBUTION

This paper investigates the impact of breaks on the overall performance in software development.
The investigations assume that if developers make pauses in a normal manner, this has no
negative impact on the profitability. Statistical outliers like developers who are lazy and spending
the majority of their time with different activities are not considered in this study. The purpose of
this paper is to analyse if pauses (actions which do not fulfil the sprint goal) have a negative
impact on the economics of software development.

The investigations focus on a normal course of action the development of software takes.
Therefore, the investigations consider that developers who work on requirements which have a
normal priority. This paper focuses on the progression of development. Other contract-related
influences on the development, (like the delivery of intermediate goods), were excluded. Our
objective is to analyse the progression of development itself solely (to answer the above-
mentioned question), in order to deliver information to the management. Based on this
information, management could enhance the planning of development and define aspects of the
contact.

Due to our investigations, it becomes apparent that pauses do not have an impact on the
profitability of software development, overall. The illustrated dependencies between pauses and
the profitability (compare figure 1) lead to the compensation of negative and positive effects of
breaks.
This paper helps to understand the influence of non-value creating actions, like making a break,
on the overall performance in human-centric processes. It enables a new perspective in the
analysis on the procedure how developers act in a process. The insight that pauses have no impact
could allow management to expand the freedom of software developers. This would suit the
developers which honour this with increased performance.

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016

19

3. THEORY OF SOFTWARE ENGINEERING ECONOMY

Our investigations focus on the process of software development. Speck, Franczyk and Kiebusch
define a business process as a sequence of events with a definite beginning and a distinct ending
[14, 439]. Abramowicz describes business processes as a set of related, ordered activities that
contribute to the production of a software [1, 1]. These two mentioned characteristics exclude the
transition of states which arise from recurring individual actions from being a process. It is
reasonable to concentrate the business inspection on higher-level activities. Management is
facilitated by the discussion of elementary activities like making out the production schedule,
reading the quality control report, visiting a customer [26, 8].

However, the performance depends on individual actions. Parnas et al. claim that we will never
find a process which develops software in a perfect rational way [24, 251]. We refuse this
conclusion. Because of the individual actions that could influence the performance, a rational
process to describe how software is developed is hard to find. Developers do more than the
process description demands or allows.

The basic philosophy of breaks is to protect the working capacity of employees. Breaks are
necessary, because employees could not work from the beginning until the end equally efficient
and therefore breaks help them to recover [34]. In manufacturing processes for example, breaks
are included. This allows manufacturers to enhance their control of (process-) costs.

During the software development, developers could decide independently if they have a break. If
developers interrupt their work, this could occur in the personal scheduling. The analysis of
personal schedule in respect of its admissibility shows risks of delays in the instances [9, 216].
The interruption of working process due to breaks [34] could have a negative impact on the flow
time and the number of completed function points.

Breaks are necessary to protect the health and the working capacity of the employees. At the
same time, breaks interrupt the working process and could harm the profitability. To prevent the
emergence of bottlenecks, companies often contemplate to the use of a compliance rule. Such
compliance rules could ensure that business processes and operations are in accordance with
prescribed norms [28, 149]. To implement such compliance, the rules have to be described
formally. Business processing rules require a formal notation that defines the change of state,
precisely [22, 61]. The construction of business rules corresponds to an investment in the process.
As Abramowicz explains, the definition of a fully comprehensive model is a challenging and
demanding task which raises effort [1, 2 – 3]. The effort it takes to develop higher level models
[13, 1367] has to be worthwhile.

Such an investment in the development process offers the potential to enhance the effort
estimation. It facilitates software producers to plan their production capacity. On the opposite,
such a compliance rule contradicts to the esteemed freedom of software developers.
Empowerment of employees could be the basis for value improvement [23, 12]. In order to judge
if freedom could be the basis for performance losses, an analysis of the impact of misspending
(time for pauses) could be advantageous.

4. RELATED WORK

We investigated the impact of social effects, like breaks, on the economic profitability in business
processes. This research has three dimensions: (1) the social freedom of individuals in software
industries, (2) the process of software development, and (3) the profitability of software
development.

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016

20

The dimension of social freedom is investigated e.g. by Eckstein [8]. Especially agile approaches
give freedom to developers, like e.g. Scrum [29]. These facts have been analysed during the
creation of agile procedure models.

Parnas et al. described problems in the development process [24], regarding to the second
dimension. The use of standardized development methodologies was analysed, e.g. by Kuhrmann
et. al [19], [20] and [30]. This topic has strong relations to process analysis and business process
reengineering. Especially the findings of Davenport [6] and Hammer and Champy [12] are used
to analyse approaches which have to improve the profitability of processes. Furthermore, the
dimension of processes in software development is investigated e.g. in our previous work [16].

The productivity of software development was topic of the investigations e.g. of Plewan and
Poensgen [25]. Fundamental work in this dimension was delivered by Boehm, e.g., [4].
Furthermore, Curtis et al. investigated special economic aspects in software development [5].

5. THEORETICAL FRAMEWORK AND METHOD

In order to investigate the impact of breaks, our method needs to distinguish dependent and
independent variables. In our theoretical framework variables which describe the breaks (e.g.
expressed by the key performance indicator number of breaks) represent the independent
variable. In our simulation, we analysed the impact of different constellations of breaks. We
measured the economic output of the progression in each experiment. The variables which
describe the economic output (e. g. expressed by the key performance indicator realized function
points or the Instance duration time) are the dependent variables in our experiments. By the use of
the regression analysis techniques, we analysed the correlation between these variables, on the
basis of simulation results. In our experiments, we simulated the progression of the software
development process, consisting of multiple activities.

During the development, a number of base activities have to be processed [25, 8]. The details are
defined by a standardized development approach. Its process prescribes which activity has to be
performed in order to complete a requirement. The requirement needs to be (1) analysed, then it
has to be (2) prioritized, (3) a concept needs to be written, (4) the software has to be developed, a
(5) quality assurance has to take place, before (6) the solution has to be delivered [25, 8], [16,
160]. Each instance (conform to each requirement) has to pass the activities of development. The
employees are responsible for different activities.

Based on different instances in diverse activities, employees could perform different tasks. Each
task represents an instance (requirement) in an activity (work order) [17]. The figure 1 shows the
progression of employees in the process on a detailed level.

Figure 1 shows the process, how an employee does his work. At first, he picks up a task and then
he performs his work (expressed due to the ad hoc activities within the group “work“). Curtis
explained that the behaviour in software projects has to be analysed in multiple levels [5]. On the
second level, figure 1 shows the effect of different activities on a time frame. The personal level
and the base process are incorporated due to the time frame.

The introduction of compliance rules in this process is regarded as highly problematic from
a practical standpoint [28, 151]. In order to perform the analysis, mutual dependencies need to be
considered. As Speck et al. explained, model checking is an ideal technique especially if the
number of states to be considered does not adventure to run into a state explosion [31]. In this
case the different states have a strong dependent relationship. In order to model the reality
adequately, a vast number of disjoint states could be defined.

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016

21

The relationship leads to states, changing (1) the probability of other states and (2) the behaviour
within other states (intensity and impact). In reality employees often work in different projects
(and thereby on different tasks) simultaneously which has an impact on

Figure 1: Process model which illustrates dependencies and interactions of the effect of pauses in the
progress of software development.

the overall work and performance [25, 127]. Beecham et al. struggled to find a model which
considers all the identified factors which have an impact on developers motivation [3, 24]. Endl
explained that it is impossible to model all the situations which potentially can occur during the
runtime of a process [10, 5]. This challenge needs to be considered due to the method, used to
analyse the above mentioned case. A comprehensive analysis of all effects during the
development would be impossible, because the cardinality of the set of states is nearly infinite. To
reduce the risk of a state explosion we restrict the set of states, we consider in our analysis on a
limited number of six different states [17], knowing that in reality a larger quantity of states (and
therefore also impacts) exists.

In order to analyse the behaviour of a software development team, a convincing model is needed.
Speck et al. require that the model has to be described as finite automata [31, 80]. The illustration
2 shows a brief of our simulation model. It demonstrates the handling of multiple states.

Figure 2 clarifies a state machine which illustrates the behaviour of an employee abstractly.
Each simulation consists of cycles which represent the progression of time. During the whole
experiment we repeat the simulations and measure the results. In each cycle, each employee has
to pick up one state. Therefore, the finite automate of figure 2 is passed in each cycle repeatedly.
The execution of the state machine 2 bases on a list of available actions. An action is an object
which belongs to a state (distinguished by the superior class), [17]. Therefore, each employee
could have a number of multiple tasks, he has to work on. However, in each time unit (cycle) the
developer could just work on one task.

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016

22

6. CONDITIONS AND INITIAL VALUES OF THE SIMULATION ENVIRONMENT

In order to investigate the impact of breaks on the profitability, we performed a simulation. For
each development approach 250 simulations were executed. Each simulation (iteration) consists
of 57.600 cycles. One cycle nearly conforms to one minute. Therefore, multiple simulations of 6
months were performed to simulate a team, developing according to Scrum, Kanban, RUP, TDD
and V-Modell XT. The execution of these 2.496 simulations took about

Figure 2: State diagram which illustrates the actions of developers during the simulation.

3 days plus or minus some hours. We used a Windows Server 2008 R2 Enterprise on an
industrial machine to perform the simulation efficiently.

During the simulation the state machine (see illustration in 2) would be executed for each cycle
multiple times. For each state, we developed an action. Each action belongs to exactly one type of
person (employee or customer) [17]. Each action has a probability and overrides the method act
which is executed during the cycle. Furthermore, an action has a minimum duration. At last,
actions have a boolean attribute finished “which indicates if it has to be executed any longer.

ChooseTaskAction : In this action, the employee inspects every node in the process, he is
responsible for. For every related activity, the employee checks whether open instances have
arrived or not. If multiple instances are available alternatively, the employee selects that one
which is the closest to the end (push for finishing). If the employee has selected an instance, he
takes it and derives a task. Then, the employee creates a Work Action finishes his
ChooseTaskAction. The ChooseTaskAction was defined to have a probability of 35 %.

WorkAction: An object of WorkAction expresses the normal work (like development, quality
assurance, and so on). During an execution of the act method in this action, the employee works
on a task. The task was derived from an instance (requirement) which is located at any activity in
the process, the employee is responsible to. The work action was defined to have a probability of
75 % and a minimum duration of 15 cycles. It is finished if the task has no more remaining
workload. If the activity finishes, an object of the action CommitResultAction has to be created.

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016

23

CommitResultAction: The creation of a CommitResultAction requires a task. The aim of this
action is, to move the related instance to the next step within the process. The progression of the
act ()-method leads to the selection of the next flow that connects the activity (the instance is
located on) to the next node(s). The employee tries to move the instance forward. The recipient of
the instance could be an internal activity. If the product is finished (guided by the process), the
employee sends the finished instance to the customer. In normal cases, it is possible to finish the
movement during one cycle. Depending on the process definition it could be impossible to move
the instance to the target node, maybe because its stock is full. In this case, the
CommitResultAction could not be finished until the instance was moved. The probability of a
CommitResultAction was defined to be 35 %.

StressAction: If employees work on multiple tasks at the same time, it stresses them. The
probability of this action vary, depending on the number of tasks the employee handles parallelly.
For each WorkAction, the probability was defined to be increased by 2 %. Each unfinished
CommitResultAction increases the probability by 1 %. Each WorkerFailAction increases its
probability by 3 %, by definition. If this action is executed, the employee’s health would decrease
by 2 %. Thus, this action expresses the negative impact of stress that increases the risk of failures
(WorkerFailAction) and sickness (AbsenceBecauseSicknessAction). In this way, we modelled
feelings as actions. This simplification could be true, however, it could be that feelings happen
parallel to other actions or even other feelings.

WorkerFailAction: The probability of the WorkerFailAction is defined by pFailure := {x € R |

if (1- knowledge) + (1- health) ≤ 1, 1 – knowledge ≤ x ≤ (1- knowledge) + (1 – health), else 1}

If this action is created, it selects a task, the employee currently performs in a WorkAction. If the
action is executed, it simulates a failure. The failure might concern the quality or the remaining
workload of the task. The action calculates a fail rate (based on the knowledge of the employee)
which expresses the intensity of the failure. With this intensity, the action hurts the task. The
WorkerFailAction reduces the speed of instances. If the quality decreases, the instance has to
iterate again through activities which already have been passed (depending on the compliance
rules of the process). In reality, different solutions like the application of a code generator [18,
92–93] are available to avoid such failures.

AbsenceBecauseSicknessAction: If an employee is sick, we express this case by the
AbsenceBecauseSicknessAction. The probability of this action is defined on the interval of
pSickness := { x € R| 0 ≤x ≤ 1- health}. The duration of an absence varies between 0,5 PT to 5 PT.
After the AbsenceBecauseSicknessAction is finished, the health of the employee is completely
recovered (100 %).

BreakAction: The BreakAction represents a period of cycles, during which the employee would
do nothing. Its probability is defined by the interval ppause := { x € R | 0 ≤ x ≤ (1- motivation)}.
The duration of a break varies between 5 to 40 minutes. If the employee finishes his break, his
health would increase by 5 %. This conforms to the aim of a break [34].

Due to the usage of actions, the attributes of an employee have an impact on the performance and
on the progression of the process. An employee has three percentage attributes: knowledge,
motivation and health [17]. Higher percentages are believed to be better / stronger values. At the
moment, when the employee is created, the attributes were initialized by a rational random value.
In addition to these attributes which describe the personality of an employee, each worker has a
salary. The salary is needed, to determine the costs and financial aspects of the process. Lin et al.
explained that costs of activities come from the costs of resources which are associated to the
activities [21, 1781]. Conform to this, costs of activities are determined by the salary of
employees who are responsible for their progression. To investigate the financial performance,

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016

24

we performed the above mentioned simulation. During these simulations we let the employees
record what they were doing. Based on the summation of information about process instances and
environmental conditions, our simulation engine was able to sum up the costs [32, 3]. After
this, we calculated key performance indicators which express the economic situation of the
development process during the simulation. Therefore, we calculated 2.496 operating numbers on
the financial performance of the process. This values would be compared to the progression of
breaks.

7. EVIDENCE OF THE RELATIONSHIP BETWEEN BREAKS AND ECONOMIC

OUTPUT

In order to investigate the dependency of economic success and breaks, we analysed the above
mentioned 2.496 simulations. The whole number of simulations is divided into two groups. We
executed 1.314 simulations of a model which empowers the employees to make breaks. For
comparison, we executed 1.181 simulations without the permission to make a break.

First, we examine the relation of breaks to accomplished function points. It shows a broad
variance of economic output. Apparently, the average number of breaks in each experiment is
nearly between 480 to 750 breaks. The average number of finished function points varies nearly
between 30 to 150 function points. Mainly, it seems to confirm that breaks have no impact on the
economic output. However, some discordant values exist. They are part of experiments which
have higher number of breaks in combination with fewer completed function points.

To investigate the significance of the above mentioned observation, we calculated a hypothesis
test. Our first hypothesis claims that breaks have no impact on the overall profitability. We
compare the progression of simulations, depending on the permission of breaks. The calculation
in equation starts with the definition of the hypothesis h0. Contrary to normal, we defined our
target hypothesis to be h0. We tried to reject our hypothesis with a (very high) α - risk of 84.5%.
Our calculation revealed that our hypothesis could not be rejected.

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016

25

Conditional probability in spot tests

The significance is (despite of the high α - risk of 84,5%) unknown, because the possible β
uncertainty is unvalued. To analyse if breaks have an impact, we changed our hypothesis h0.
Based on the unity of all experiments that allow employees to make breaks, we calculated the
95% confidence interval of the average finished function points. In the equation the whole test is
calculated. We compared the arithmetic average of produced function points in the experiments
with breaks to the upper and lower bound of the confidence interval. The hypothesis h0 claims
that the real arithmetic average of the produced function points is outside the above mentioned
interval in experiments with breaks. As calculated in, the hypothesis h0 could be rejected.
Therefore, we prove (with an α - risk of 1 %) that the mean number of accomplished function
points is in the same confidence interval, independent from breaks.

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016

26

Statistical hypothesis test to determine if breaks have no impact on accomplished function points
To review our result, we calculated a regression analysis. Instead of comparing breaks to finished
function points, we compared it to the cycle time of instances. Our regression analyses the
influence of breaks on the instance duration time. The result is described in the calculation.
Breaks have a minor impact on instance cycle time which is why the correlation coefficient rXY is
0,27. The adjusted coefficient of determination R2

 is 0,07215.

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016

27

Influence of breaks on the duration time of instances

Figure 3: Influence of breaks on the duration time of instances

As illustrated in figure 3, a very low positive correlation exists. Thus, more working hours
increase the output. However, more breaks do not decrease the productivity. Diagram 4 shows the
spreading of experiments, with regard to the finished function points influenced by breaks. There
is nearly no difference between the experiments, regarding to the impact of breaks.

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016

28

Figure 4: Relation between the number of pauses to accomplished function points

If developers are allowed to make breaks, this does not have any influence on the economic
performance. The hypothesis that breaks have no impact on the profitability could not be rejected.
Rather, it is possible to prove that software development leads to the same number of produced
functions points on average, compared to the 95% confidence interval even if developers are free
to interrupt their work to pause.

Considering other social effects, like the absence of sickness, enable the execution of a
simulation, in order to investigate the impact of breaks. Our experiment proves that breaks have
no impact on the overall profitability. Although breaks reduce working hours, they could reduce
the sickness absence rate and fewer faults (under consideration of conditions in). This could
prevent a loss of working time. Their positive effects might be able to economize the costs of
breaks. Strategies of big companies which empower their employees to work creatively and
organize breaks independently are no faults, economically.

During our investigations we revealed that the independent variables which express the breaks are
not connected to the dependent, economic variables. Precise, we reveal that (under the
prerequisites mentioned above (see)) there is no significant relation between the number of breaks
and the amount of finished function points.

8. CONCLUSION

Current trends suggest organizing software production as a free, creative and self-determined
process. Standardized approaches (agile and conventional) support this freedom. Such trends
contradict to the appropriation, to organize development to be a production process. The idea of
industrial production of software is economically attractive, because it facilitates the scheduling
of output. Management seeks to reduce confounding factors which hamper forecasts. Employees
who pause autonomously could be seen as reason for performance losses.

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016

29

In fact, the human-centric-characteristic of software development leads to two process models
which encounter each other. First, all employees interact in a business process. These business
processes determine a sequence of activities. This business process is prescribed by the
development approach. It becomes performed by a social process. During this social process,
each employee could follow the process, but he is also able to act independently. The
implementation of actions gives freedom the employees to interact.

The whole complexity of the opportunities for social actions exceeds the possibility of a
simulation model. Therefore, the simulation model is a simplification of possible actions, an
employee or a customer could perform. In general, progression happens if the employee works. In
our analysis we investigated if progression is harmed if developers make normal breaks. We
determined the success of a development team within 2.496 simulations and compared it to the
number of breaks. As a result, we observed that breaks have no impact on the profitability of the
development.

Our results indicate that freedom would not harm the profitability in software development. It
does not quit the discussion about the design of a production process. However, it indicates that
developers who are empowered to act independently could not harm the profitability if their
action happens in a normal bound. The results of our investigation are usable in the economic. In
practice, employees could do more than just making a break. It is possible for employees to do a
vast research on a technical subject. As explained above, all potential actions could not be
modelled. We ignore that these other actions have a (maybe small) impact on the success and
concentrate on breaks.

We defined a normal bound of a break, to take between 5 to 40 minutes. In our analysis we
allowed developers to make breaks of this duration, autonomously. The next step has to be a
review of the parameters and calculations that limit and control the progression.

As Recker explains, the constitution of a valid business process model is a field of research that
has just emerged [27, 44f.]. In the context of software development, this leads to the need to
consider more details in the simulation model, in order to improve the match of reality. In further
investigations it might be sensible to append the framework of PAS with functionality to consider
values of parameters, observed in reality.

9. REFERENCES

[1] Witold Abramowicz, Agata Filipowska, Monika Kaczmarek, Carlos Pedrinaci, Monika Starzecka,

and Adam Walczak. Organization structure description for the needs of semantic business process
management. In 3rd international Workshop on Semantic Business Process Management colocated
with 5th European Semantic Web Conference, Poznań, Poland, January 2008. ResearchGate.

[2]P. G. Armour. The business of software estimation is not evil. COMMUNICATIONS OF THE
ACM, 57(1):42–43, 2014.

[3] Sarah Beecham, Nathan Baddoo, Tracy Hall, Hugh Robinson, and Helen Sharp. Mo-tivation in
software engineering: A systematic literature review. Information and software technology,
50(9):860–878, September 2008.

[4] Barry Boehm. Value-based software engineering: Overview and agenda. 2005.
[5] Bill Curtis, Herb Krasner, and Neil Iscoe. A field study of the software design process for large

systems. Communications of the ACM, 31(11):1268–1287, November 1988.
[6] Thomas H Davenport. Process Innovation - Reengineering Work through Information Technology.

Havard Business School Press, Boston, Massachusetts, 1993. Ernst & Young Center for Information
Technology and Strategy.

[7] Thomas H Davenport. The coming commoditization of processes. Harvard business review,
83(6):100–108, 2005.

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016

30

[8] Dipl-Ing Jutta Eckstein. Agilität – ein baustein der dritten industriellen revolution. HMD Praxis der
Wirtschaftsinformatik, 50(2):77–83, 2013.

[9] Johann Eder, Horst Pichler, Wolfgang Gruber, and Michael Ninaus. Personal sched-ules for workflow
systems. In Wil M.P. van der Aalst, Arthur ter Hofstede, Mathias Weske, Gerhard Goos, Juris
Hartmanis, and Jan van Leeuwen, editors, Business Pro-cess Managemment, number LNCS 2678 in
Lecture Notes in Computer Science, pages pp. 216–231, Einhoven, The Netherlands, June 26-27
2003. Springer. International Conference on Business Process Management (BPM 2003).

[10] Rainer Endl and Martin Meyer. Potential of business process modelling with regard to available
workflow management systems. Number 20 in SWORDIES Report. Springer, February 1999.
Published in Scholz-Reiter, B.; Stahlmann, H.-D.; Nethe, A. (Eds) PProcess Modelling"Berlin,
Heidelberg, New-York, 1999.

[11] Abbie Griffin. The effect of project and process characteristics on product development cycle time.
Journal of Marketing Research, pages 24–35, 1997.

[12] Michael Hammer and James Champy. Reengineering the Corporation: A Manifesto for Business
Revolution. HarperBusiness A Division of HarperCollinsPublishers, New York, NY, USA, 1993.

[13] Vlatka Hlupic and Stewart Robinson. Business process modelling and analysis using discrete-event
simulation. In Proceedings of the 30th conference on Winter simulation, pages 1363–1370. IEEE
Computer Society Press, 1998.

[14] Sebastian Kiebusch, Bogdan Franczyk, and Andreas Speck. An unadjusted size mea-surement of
embedded software system families and its validation. Software Process: Improvement and Practice,
11(4):435–446, 2006.

[15] David Kuhlen and Andreas Speck. Wertanalyseverfahren für kundenanforderungen. In Erhard
Plödereder, Lars Grunske, Eric Schneider, and Dominik Ull, editors, IN-FORMATIK 2014 Big Data
- Komplexität meistern, volume P-232 of Lecture Notes in Informatics (LNI) - Proceedings, pages
2317 – 2322, Stuttgart, September 2014. Gesellschaft für Informatik e.V. (GI). Thanks to Prof. Dr.
Andreas Speck and Prof. Dr. Hinrich Schröder.

[16] David Kuhlen and Andreas Speck. Business process analysis by model checking. In 5th International
Symposium on Data-Driven Process Discovery and Analysis SIMPDA 2015, pages 154–170, Vienna,
Austria, December 2015. Ceravolo, Paolo and Rinderle-Ma, Stefanie.

[17] David Kuhlen and Andreas Speck. How to design a simulation software, to evaluate the economic
performance in software development. 2016.

[18] David Kuhlen and Andreas Speck. The potentials of a code generator which faces the stress ratio of
requirements engineering processes in agile development projects. In Modellierung 2016
Workshopband, volume P-255 of Lecture Notes in Informatics, pages 87–96, Karlsruhe, March 2016.
Gesellschaft fÃ¼r Informatik e.V. (GI), Betz, Stefanie and Reimer, Ulrich.

[19] Marco Kuhrmann and Oliver Linssen. Welche vorgehensmodelle nutzt deutschland. PMV 2014,
pages 17–32, 2014.

[20] Marco Kuhrmann and Oliver Linssen. Vorgehensmodelle in deutschland: Nutzung von 2006-2013 im
überblick. Projektmanagement+ Vorgehensmodelle 2014, pages 32–47, 2015.

[21] Huiping Lin, Yushun Fan, and Stephen T Newman. Manufacturing process analysis with support of
workflow modelling and simulation. International Journal of Produc-tion Research, 47(7):1773–1790,
2009.

[22] D. C. McDermid. Integrated business process management: Using state-based busi-ness rules to
communicate between disparate stakeholders. In Wil M.P. van der Aalst, Arthur ter Hofstede,
Mathias Weske, Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen, editors, Business Process
Managemment, Lecture Notes in Computer Sci-ence, Einhoven, The Netherlands, 2003. Interational
Conference BPM, Springer.

[23] John G Mooney, Vijay Gurbaxani, and Kenneth L Kraemer. A process oriented framework for
assessing the business value of information technology. ACM SIGMIS Database, 27(2):68–81, 1996.

[24] David Lorge Parnas and Paul C Clements. A rational design process: How and why to fake it. IEEE
Transactions on Software Engineering, SE-12(2):251–257, February 1986.

[25] Hans-Jürgen Plewan and Benjamin Poensgen. Produktive Softwareentwicklung: Be-wertung und
Verbesserung von Produktivität und Qualität in der Praxis, volume 1. Auflage. dpunkt. verlag,
Heidelberg, Germany, Juli 2011.

[26] William F Pounds. The process of problem finding. Library of the Massachusetts Institute of
Technology, 1965.

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016

31

[27] Jan Recker. A socio-pragmatic constructionist framework for understanding quality in process
modelling. In Australasian Journal of Information Systems, volume 14, pages 43–63. Citeseer, June
2007.

[28] Shazia Sadiq, Guido Governatori, and Kioumars Namiri. Modeling control objectives for business
process compliance. In Business process management, volume 4714 of Lecture Notes in Computer
Science, chapter Business Process Management, pages 149–164. Springer, Brisbane, Australia, 5th
international conference on business pro-cess management edition, 2007.

[29] J. Schwaber, K.; Sutherland. Der scrum guide der gültige leitfaden für scrum: Die spielregeln, July
2013. Zuletzt Abgerufen am 06.09.2014.

[30] F Simon, A Kossmann, M Kuhrmann, and D Mendéz Fernández. Wunsch oder wirk-lichkeit?
professionelle softwareentwicklung âmade in germany â. OBJEKTspektrum (in German), (1):16–23,
2014.

[31] Andreas Speck, Elke Pulvermüller, and Dirk Heuzeroth. Validation of business pro- cess models. In
Proceedings of ECOOP 2003 Workshop Correctness of Model-based Software Composition (CMC),
pages 75–83, 2003.

[32] Patrik Spieß, Dinh Khoa Nguyen, Ingo Weber, Ivan Markovic, and Michael Beigl. Modelling,
simulation, and performance analysis of business processes involving ubiq-uitous systems. In
Advanced Information Systems Engineering, pages 579–582. Springer, 2008.

33] Wil MP van der Aalst. Challenges in business process analysis. LECTURE NOTES IN BUSINESS
INFORMATION PROCESSING, January November 2007.

[34] Günter Wöhe and Ulrich Döring. Einführung in die Allgemeine Betriebswirtschaft-slehre. Verlag
Franz Vahlen München, 23. auflage edition, 2008.

[35] Thomas Zink. Class for aircc journal submissions, 2012. This is an unofficial Latex class for Authors
of AIRCC Papers. Access timestamp: 2016-10-19.

