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ABSTRACT 
 

This article is an extended version of a previously published conference paper. In this research, JHotDraw 

(JHD), a well-tested and widely used open source Java-based graphics framework developed with the best 

software engineering practice was selected as a test suite. Six versions of this software were profiled, and 

data collected dynamically, from which four metrics namely (1) entropy (2) software maturity index, 

COCOMO effort and duration metrics were used to analyze software degradation, maturity level and use 

the obtained results as input to time series analysis in order to predict effort and duration period that may 

be needed for the development of future versions. The novel idea is that, historical evolution data is used to 

project, predict and forecast resource requirements for future developments. The technique presented in 

this paper will empower software development decision makers with a viable tool for planning and decision 

making. 
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1. INTRODUCTION 

 

After a software system is developed, there is a high possibility that it may undergo some 

evolution due to change in business dynamics, response to environmental change, improving 

design, preventive maintenance or intentional modifications for overall improvement of the 

performance of the software system. A small change in an object-oriented software system 

however, may produce major local and nonlocal ripple effects across the software system.  When 

software evolves a lot can be learned such as complexity, degradation; this provides an 

opportunity to collect data that can be analyzed to project or forecast development duration and 

number of people (person-hours) required for future build.  

 

Due to the need to deliver software products on time and the need to satisfy customer’s 

satisfaction, software companies are compelled to release software at the optimal time. Gauging 

when software is ready to be released has been a very difficult factor to determine. At some point, 

a decision will be made that testing should be concluded and the product be released for 

customers use. The release decision is usually based on an evaluation of the software’s expected 

quality balanced against its release date commitment [1]. 
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This article is an extended version of a paper previously published by [2], in ICCSEA 

conference). Added to the previous paper are issues related to release readiness.  In addition to 

entropy and maturity index, two more additional metrics (the COCOMO effort and duration) 

were added in the mix. The two more added metrics used COCOMO prediction model as 

presented by [3]. These additional metrics help us study and determine the effort required for 

each version build and consequently the expected time to build each version as the software 

evolves.  

 

From JHotDraw data collected from the [4] archives, we already have the ‘exact time duration’ it 

took to build each version therefore, we can determine the optimal time from these two sets of 

data.  The obtained results can then be used to forecast future build effort (person-hours) and the 

(time to build). Details of how these metrics were used are presented in the methodology section. 

According to [5], software maintenance includes corrective, adaptive and perfective maintenance 

enhancements which are technically not a part of software maintenance but, being a post-release 

activity.  Identifying potential consequences of a change or estimating what needs to be modified 

to accomplish a change may be a daunting task. According to [6], when a software system 

undergoes modifications, enhancements and continuous change, the complexity of software 

system eventually increases, with a possibility that some level of disorder may be introduced, 

making the software system becoming disorganized as it grows, thereby losing its original design 

structure. 

 

On the issue of measuring software degradation, [7 and 8] suggest the use of entropy as an 

effective measure, and opined that software declines in quality, maintainability, and 

understandability as it goes through its lifetime.  This paper sets out to study six consecutive 

versions of JHotDraw, a matured and well-structured open source graphics software framework 

that has been widely used in many research projects as test subject software.  Each of the test 

versions was subjected to dynamic profiling and tracing routine that collected data from which 

Shannon entropy and software maturity index were derived.  The goal was to observe the entropy 

level change, and whether there is any correlation between entropy and software maturity index 

as the software system evolves from one version to another. 

 

The rest of this article is organized as follows:  Section 2 presents relevance of the research, 

section 3 discusses related research, section 4 presents the methodology used, section 5 presents 

analysis of results and section 6 concludes. 

 

2. RELEVANCE 

 
Considering the size and complexity of the modern software systems, tracking and discovering 

parts of the software impacted, risks associated with change, and consequences of a change 

cannot be overemphasized. Other reasons that support the need for the study of software 

evolution include the consequences of ripple-effects, and providing guidance for the 

implementation of the software system. During transition of the software evolution, a lot of 

information can be deduced from the data collected; such as complexity, extendibility and 

degradation. With the incorporation of COCOMO effort and duration metrics and time series, 

software release readiness can be predicted, and the required resources such as (person-hours) and 

(development duration) can easily be projected and predicted. The predicted values equip and 

empower software development decision makers with a viable decision tools.  

 

According to [9], the two most common meanings of software maintenance include defect repairs 

and enhancements or adding new features to existing software applications. Another view 

expressed by [9] also opined that the word “maintenance” is surprisingly ambiguous in a software 

context and that in normal usage it can span some twenty-one forms of modification to existing 
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Applications. According to [10], almost 50% of software life cycle cost is attributed to 

maintenance; and yet, relatively very little is known about the software maintenance process and 

the factors that influence its cost. With regards to release readiness, [11] opined that, a poor 

understanding of the confidence in the quality level increases decision risk leading potentially to 

a bad release decision that possibly could have been avoided had the confidence in the quality 

been better known. A well-known critical system at jpl was used as a case study to investigate the 

value of certification to improve the mandated software readiness certification record (srcr) 

process.   

 

Considering the cost magnitude associated with maintenance and the ever-increasing size and 

sophistication of modern day software systems; it is then clear that software maintenance cost 

decisions and associated evolution risks and prediction of required resources for future 

evolutional developments cannot be taken lightly. If data collected during inter-evolution 

transitions is properly analyzed, valuable information can be deduced to forecast required 

resources for future evolution and implementation of the software system. This is what this paper 

sets out to achieve. 

 

3. RELATED STUDIES 

 
In a software evolution research, [12], analyzed change of software complexity and size during 

software evolution process, and discussed the characteristics related to the Lehman's Second Law 

(Lehman et al., 1997), which deals with complexity in the evolution of large software systems 

and suggests the need for reducing complexity that increases, as new features are added to the 

system during maintenance activities. Also, [12] opined that addition of features leads to the 

change of basic software characteristics (such as complexity/entropy) in the system. Their paper 

used this change as a means to determine different stages of evolution of a software system, 

proposing a software evolution visualization method called Evolution curve (or E-curve). 

 

Discussing software maintenance consequences, [9] also observed that in every industry, 

maintenance tends to require more personnel than those building new products. For the software 

industry, the number of personnel required to perform maintenance is unusually large and may 

top 75% of all technical software workers. The main reasons for the high maintenance efforts in 

the software industry are the intrinsic difficulties of working with aging software, and the 

growing impact of mass updates. In an empirical study conducted by [13], thirteen versions of 

JHotDraw and 16 versions of Rhino released over the period of ten years were studied, where 

Object-Oriented metrics were measured and analyzed. The observed changes and the applicability 

of Lehman’s Laws of Software Evolution on Object Oriented software systems were tested and 

compared. 

 

In a research paper, [14] presented how graph-based characterization can be used to capture 

software system evolution and facilitate development that helps estimate bug severity, prioritize 

refactoring efforts, and predict defect-prone releases.  Also, [15] presented a set of approaches to 

address some problems in high-confidence software evolution. In particular, a history-based 

matching approach was presented to identify a set of transformation rules between different 

APIs to support framework evolution, and a transformation language to support automatic 

transformation. 

 

[16] Presented an indicator which is sufficient for a mature software development organization to 

predict the time in weeks to release the product. [17] introduced the release readiness assessment 

where proprietary software is assessed on its ability to be released as open source/ open 

ecosystem. 

 



International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016 

52 

In a statement, [18] believed that “software readiness is often assessed more subjectively and 

qualitatively, and stated that quite often, there is no explicit linkage to original performance and 

reliability requirements for the software, and that the criteria are primarily process-oriented 

(versus product oriented) and/or subjective. Such an approach to deciding software readiness 

increases the risk of poor field performance and unhappy customers”.  The author also stated that 

“unfortunately, creating meaningful and useful quantitative in-process metrics for software 

development has been notoriously difficult”. 

 

In a research work, [19] investigated the use of product measures during the intra-release cycles 

of an application. The measures include those derived from the Chidamber and Kemerer metric 

suite and some coupling measures of their own.  the research uses successive monthly snapshots 

during systems re-structuring, maintenance and testing cycles over a two year period on a 

commercial application written in C++, and examined the prevailing trends which the measures 

reveal at both component class and application level. 

 

In contrast, this paper focuses on measuring software degradation in the evolution of six versions 

of a `large-scale open-source software system with a special focus on investigating the 

introduction of disorder and observing the software maturity level as the software system evolves 

from one version to another.  In addition, the information collected is used to predict or forecast 

required resources for future evolution cycles as the software evolves. 

 

4. METHODOLOGY 

 
In addition to exploring and investigating the effect of change and its impact on the amount of 

disorder introduced as a software system evolves from one version to another, this study added 

two more metrics and incorporate time series analysis with a view to introducing a method of 

assessing software release readiness of various versions of a software system as it evolves from 

one version to another. 

 

These six versions were produced in a period of about five years (2006 to 2011), reflecting its 

natural evolution as new requirements were added, existing functionalities modified or enhanced, 

and some were deleted. Six versions of our test software JHotDraw (JHD) were studied and 

analyzed in this research project. 

 

4.1 Test Program (JHotDraw) 

 

JHotDraw is a very popular, mature and well documented widely used open-source Java-based 

graphics framework that has been used extensively in many software engineering research 

projects as a test suite. This framework provides a skeleton for developing highly structured 

drawing editors and production of document-oriented applications. The framework is known to 

be heavily loaded with numerous design patterns, developed based on the solid object-oriented 

principles, and based on the best software engineering practices. 

 

To justify using the six different versions of JHotDraw in this research, we referred to some 

authors who have used them previously; this includes [12] and [13] where they recommended the 

use of JHotDraw as an Aspect Mining validation benchmark. Also, [20] and [21] used JHotDraw 

as a benchmark test suite in their research work. In addition, [8] used JHD as one of the test suites 

in his project. 

 

Since JHotDraw is a mature and widely used test software programs, this research project also 

adopted it as a test program.  It should be noted that, although there are ten documented versions 

of JHotDraw, seven versions are considered in this research study because the difference between 
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Table 1. Characteristics of the six versions of JHotDraw 
 

 
 

Seven different versions of JHotDraw are evaluated and tested (see table 1). Each of the versions 

of JHotDraw) were dynamically profiled and traced through the use of AspectJ run-timed weaver.  

(AspectJ runtime weaver is discussed in (section 4.2). In order to maximize code coverage, forty-

six of the major functionalities of each of the JHD applet versions were exercised as they execute. 

The granularity level adopted in targeting the various test program artifacts for data collection in 

this project is at the method level, rather than at class level.  

 

One of the reasons for the choice is that methods in Object Oriented programming represent a 

modular unit by which programmers attribute well-defined abstraction of ideas and concepts. 

[22], defined methods in object-oriented paradigm as self-contained units where distinct tasks are 

defined, and where implementation details reside, making software reusability possible. 

According to [23], methods are less complex than classes, are easier to compare, and provide 

significant coverage and easy distinction, and have a high probability of informal reuse. [24] 

Observed that all known dynamic Aspect Mining techniques are structural and behavioral and 

work at method granularity level. 

 

Event traces were dynamically collected as the test software versions were executed, with the 

AspectJ runtime weaver seamlessly running in the background.  The runtime weaver has the 

capability to dynamically insert probes at selected points in the target test software (in this case 

class methods) at specify   points known as (joinpoints), where all method executions were traced 

and data collected. In this project, we are interested in the sequence and frequency of calls, rather 

than method fan-in and fan-out.  Frequency counts for each method calls were tallied, from which 

probabilities of method invocation were calculated and assigned. 

 

Note that, since methods with the same name in different classes may be counted as one and the 

same, we left the class prefix along with method names to make sure that such methods are 

counted distinctly and correctly.  Note also that duplicate method calls were left intact in the data 

collected, since removing such duplicate calls will distort the frequency counts of the method 

invocations. 

 

The assigned probabilities represent the probability that such code units will be invoked as the 

system is run. It is from this frequency count that the entropy is calculated as the software 

changes from one version to another.  The other metric used was software maturity index (SMI); 

this was derived from the static data collected from documentations produced by [22].  

Explanation on how these two metrics are used are discussed in the next few pages. 

 

4.2 Dynamic Data Collection tool (AspectJ Weaver)  
 

AspectJ runtime weaver allows probes to be inserted at specific points of interest statically or 

dynamically when the software source code to be profiled executes. Code that allows observing 
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tracing or changing the software source code is weaved according to the required action specified 

in what is called (pointcut).  The weaved/inserted code logs the behaviors of the test software, 

track its actions based on the given behavior specified by pointcut; in our case, tracing and 

profiling each of the methods in our test software system as they are executed or invoked.  

AspectJ runtime weaver can be used to seamlessly and dynamically collect data on the test 

software as it executes. 

 

The weaver evaluates the pointcut expressions and determines the (joinpoints) where code from 

the aspects is added. This may happen dynamically at runtime or statically at compile time.  The 

runtime weaver then creates a combined source by weaving the source code of the aspects into 

the sources of the program under investigation. The generated program code is then compiled 

with the compiler of the component language, which is Java in our case. 

 

 
Figure 1. Example of how AspectJ Weaver works 

 

4.3 Metrics derived from collected data  
 

To assess, evaluate and study the nature of the test software as it evolves from one version to 

another, two software metrics were considered in this research project.  Included are the 

Shannon's Entropy and Software maturity Index (SMI). These metrics were derived from the 

datum collected as the test programs run. 

 

4.3.1 Shannon's Entropy 

 

Within the context of software evolution, entropy can be thought of as the tendency for a software 

system that undergoes continuous change eventually become more complex and disorganized as 

it grows over time, thereby becoming more difficult and costly to maintain. 

 

One of the metrics derived in this project is Entropy, with this metric; we will be able to find a 

way to assess whether the test software versions get degraded as they evolve from one version to 

another.  According to [8], when investigating and studying the effect of a change in a software 

system, Shannon’s equation may be better than complexity averaging.  According to [5], in 

addition to measuring disorder introduced into software evolution, entropy also provides a 

measure of the complexity of the software system.  [7], [27] stated that entropy can anecdotally 

Within the context of software evolution, entropy can be thought of as the tendency for a software 

system that undergoes continuous change eventually become more complex and disorganized as 

it grows over time, thereby becoming more difficult and costly to maintain. 

 

One of the metrics derived in this project is Entropy, with this metric; we will be able to find a 

way to assess whether the test software versions get degraded as they evolve from one version to 
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another.  According to [8], when investigating and studying the effect of a change in a software 

system, Shannon’s equation may be better than complexity averaging.  According to [5], in 

addition to measuring disorder introduced into software evolution, entropy also provides a 

measure of the complexity of the software system.  [7], [27] stated that entropy can anecdotally 

be defined to mean that software declines in quality, maintainability, and understandability 

through its lifetime. For effective measurement and assessment of software degradation, [8] 

recommended the use of entropy for the study of software degradation.  

 

Many variations of Shannon’s entropy formula is presented in academic papers, but the 

generalized Shannon’s entropy formula is expressed as follows: 

 

 
 

Where 

 

H = System Complexity Entropy, 

pi = Probability that method mi in test software is invoked 

i = Integer value 1, 2…j, representing each of the categories considered.    

 

Note that the negative sign in the equation is introduced to cancel the negative sign induced by 

taking the log of a number less than 1. 

 

As explained earlier in the introduction section, the entropy probability in this project is derived 

based on the method invocation frequency counts collected when the different versions of the test 

programs are executed and exercised. As an example of how entropy is derived in this project, 

consider the example of a software system S with three classes C1, C2, C3. Methods (m11, m21) 

are contained in C1, methods (m12, m22, m32) contained in C2, and (m13, m23, m33, m43, 

m53) contained in C3. The numbers shown beside class methods are representations of the 

frequency of method invocations when the test software was exercised. 

 

 
Figure 2. Example of method invocation from three different classes in (software S) 

 

Based on the given example of the three classes and the associated method invocations shown in 

figure 2 above, we can construct probability required for the calculation of the entropies for all 

methods in the software being tested as shown in table 2 below.   
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Table 2. Example of calculation of probability of method invocation 

 
 

Figure 3 below shows a graph of chronological change of JHD entropy values from one version 

to another.  To construct the graphs displayed in figure 3, entropy calculated for a version was 

compared to the previous one.  As depicted, it should be noted that initially, the entropy remains 

stubbornly the same, but at a later stage, the entropy dropped consistently as the test software 

versions transition from one version to another. 

 

 
Figure 3 Entropy graph Version to Version 
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The graph shown in figure 3a is for the initial version of JHD (version 7.0.1) before any change is 

made. The subsequent figures (3b through 3f) are a superimposition of entropy values 

representing transitions from one version to another (two versions at a time). From these graphs, a 

gradual decrease in entropy values can be observed.  The high spikes in the middle of each graph 

are indications of changes reused packets and other add-in modules have undergone throughout 

the transitional evolution of the test software system. 
 

 

4.3.2 Software Maturity Index (SMI) 
 

When discussing software maturity, [10] defined Software Maturity Index (SMI) as a metric that 

provides an indication of the stability of a software product (based on changes that occur for each 

release of the product). The software maturity index is computed in the following manner: 

 

SMI = [MT- (Fa+ Fc+ Fd)]/MT 

 

Where, 

 

MT= number of modules in the current release 

Fc= number of modules in the current release that have been changed 

Fa= number of modules in the current release that have been added 

Fd= number of modules from the preceding release that were deleted in current release 

 

Software maturity index (SMI) is especially used for assessing release readiness when changes, 

additions or deletions are made to an existing software system. An observation made by [10] 

emphasized that, as SMI approaches 1.0, the product begins to stabilize. SMI may also be used as 

metric for planning software maintenance activities. The mean time to produce a release of a 

software product can be correlated with SMI, and empirical models for maintenance effort can be 

developed. In this project, this metric was derived from the chronology of JHotDraw 

Updates/Additions/Deletions documented and presented by [9].  In this project, the calculation of 

SMI is based on the package rather than at class or method granularity levels. 

 
Table 3. Data for Software maturity index calculation 

 

 

From archive data obtained from [24] and [25], a summary of all addition, changes, and deletions 

made to JHD versions 7.1 through version 7.6 were used to calculate the software maturity index 

as shown in table 3 above.  From this data, the SMI graph is drawn and displayed in figure 4 

below.  From this graph, it will be seen that the Maturity Index (MI) increases and then levels off 

as the optimal level of 0.8 is reached, starting from the evolution transition point (V7.3.1 to 

V7.4.4), stagnating all the way through (V7.6). 
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Figure 4 Inter-version Maturity Index 

 

To further view the nature of the JHD evolution and the attained maturity pictorially, the SMI is 

calculated from the collected transition data for all versions and graphed as shown in figure 5 

below. 

 

 
Figure 5. Entropy Values for all 6 versions of JHD 

 

4.3.2 COCOMO Effort and Duration metrics 
 

As mentioned in the introduction section, this paper is an extended version of the paper 

previously presented by [2].  In this paper, two COCOMO model metrics (effort and Duration) as 

presented by [3] were added to the metrics used in the previous paper. We used these additional 

metrics to help us determine the effort required for each version build, and the corresponding 

build time (period) for each version. It should be noted that data used for this purpose is archived 

at [25].   

 

The COCOMO model for effort calculation uses the following formula. 

 

En = a1 * [Size]
b1

         (1) 

 

Where En = Effort (in person-hours) 

  a =coefficient extracted from table 4 (based on the software category) 

  s= Size of software version (in LOC) 

 
 

 

 

 

 



International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016 

59 

Table 4 Effort coefficients 

 
To calculate the Effort we used formula 1 above, and the associated coefficients were extracted 

from table 4 above. The Size (LOC) for different versions are shown in table 5 below. With these, 

the effort values for all versions are calculated. The derived effort values (person-hours) for each 

version are shown in column 3 of table 5.  These values are then used as input to formula 2 

below.  This formula is used to calculate the duration for different version builds.  Note that, 

since the time series dataset we are dealing with is not large, there is no need to remove the trend 

effect and seasonality of the data. 

 
Table 5 Effort results 

 
 

4.3.3 Duration for building each version 
 

To calculate the required time (duration) for building each version, we used person-hours 

(column 3 of table 6) above and substituted these values in formula 2 below. This produces time 

(duration) required to build each version as the software evolves. 

 

Dn = a2 * (En)
b2

         (2) 

 
Where Dn = Time (duration) required to produce version (Vn) 

En =Effort (persons-hours) required to produce version (Vn)  

 

Note that the coefficients (a2 and b2) are extracted from table 6 based on the nature of the 

category of the software being tested. Since our test software is organic, the highlighted row 

coefficients in table 6 are selected. 
 

Table 6 Coefficient selection 

 

 
 

Table 6 The data presented in table 8 below was calculated from archived data and 

documentation for our test software, the (JHotDraw).  Column 2 of  Table 7 below represents 

duration for each of the 7 versions of our test software.   



International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016 

60 

 
 

With calculated effort En (in person-months), and corresponding project duration for each version 

Dn (Development time in months), it is then possible to calculate the number of people required 

for building a particular version. The required formula is as follows: 

 

�n =
��

��
     (3) 

 

Where Nn =(number of persons) 

Dn = (person-months) 

   n = 1..7 (in our case the seven versions of JHotDraw) 

  

Column 3 of table 8 is the obtained results for number of persons required for building each of 

the seven versions.  With the derived historical data, we are now ready to apply time series 

analysis to predict future, which is presented in the next section. 

 

The obtained results Effort (person-hours) and Duration (build time), are then submitted to 

ARIMA time series analysis to predict or forecast the future build needs, effort (person-hours) 

and the duration (time to build) as the software evolves. 

 

4.3.4 Time Series Analysis 
 

A time series model is to obtain an understanding of the underlying forces and structure that is contained 

in the data, and is used to fit a model that will predict future behavior. In this model, data from past 

experience is used to forecast future events. Time series analysis predicts a response variable for a 

specified period of time.  The forecast results are based on inherent or latent patterns that in exist 

in the data.  

 

This paper utilizes the data collected during the transitional evolution transitional periods of our 

selected test software, the (JHotDraw), and subjected them to time series analysis with a view to 

being able to predict future required resources for future evolutionary development. Since we 

have historical data that spans (5 years), we have enough data to study trend patterns as well as 

being able to predict number of resources (people) and development period for future software 

evolutionary developments. If accurate and optimal effort (person-hours) and duration can be 

predicted then project budgeting and time to complete the future evolution projects can be 

determined, leading to the decisions about release readiness of a software system as the software 

system evolves from one version to another. 

 

To have proper and accurate calculation of COCOMO model (effort and Duration), we thought of 

adjusting the LOC figure such that only lines of code added or deleted during the evolution are 

considered; however we realized that due to the principle of connascence, a change (additions, 

deletions or modification) in one part of a software may affect other parts, so the calculated 
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(COCOMO effort and duration) values were submitted to time series analysis as is, without any 

data adjustments. 

 

Auto-Regressive Integrated Moving Average (ARIMA) time series and forecasting analysis tool 

was used to forecast future resources (person-hour) and (duration) that may be required for future 

evolutionary developments. The obtained results are shown in figure 6 below. The time series 

data is represented by blue line and the red line represents the predicted (duration) values. 

 

 
Figure 6 AMRIMA Extrapolation Forecast (future development duration) 

 

Similarly, the historical effort (person-hours)  calculated from (calculated from formula 3 above) 

was submitted to ARIMA analysis, and the required person-hours required for future 

development are forecasted and presented in figure 7 below.  

 

 
 

Figure 7 AMRIMA Extrapolation Forecast of future development Effort (person-hours) 

 

With the two predicted values, project managers, planning managers, analysts and other decision 

makers can determine number of people required, and the duration for future development 

projects as the software system evolves. 

 

5. ANALYSIS OF RESULT 

 
From the obtained data graphed in figure 4, it can be seen that maturity level for JHD is attained 

at the point at which lowest entropy was reached (transition from JHD 7.3.1 to V.7.4.1).  Another 

important observation is that, when JHD version transition static data (size, the number of classes, 

the number of class methods and number of attributes) were graphed as shown in figure 8 below, 
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it was observed that the number of class methods or (functions) in the test software consistently 

decreases as the software evolves and transitions from one version to another. 

 

 
Figure 8. Correlation Between software size, number of classes, methods, and attributes 

 

Data extracted from ARIMA analysis was used to construct table 10, this table shows resource 

predictions going forward.  Columns 2 and 3 of table 10 can be used as a guide for planning 

future builds 

 
Table 10 (Resource predictions) 

 

 

6. CONCLUSION 
 

When a software system evolves and transitions from one version to another, it is expected that 

the new version will outperform the previous one and that the new version is better structurally 

containing fewer defects; however, this may not be the case, as new unintended consequences 

may be introduced, structure may be degraded and a measure of degradation and disorder may be 

introduced.  This study investigated the behavior of a large-scale matured software system with a 

view to learn some lessons that can be used as a guideline in design, development, and 

management of new and existing software systems.  In this work, it was consistently observed 

that JHD software components (classes, methods, and packages) that have undergone change or 

modifications during evolution tend to generate higher entropy values than those with little or no 

change; which is in line with an observation by [28] that, the most frequently invoked 

classes/methods in object-oriented software system are the ones that have the highest possibilities 

of being changed or modified.  It is also observed that the entropy values consistently decreases 

as the software system evolves from one version to another, indicating that the software system 

was moving towards its optimal maturity level.  
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When JHD evolved few versions away from the last version, it is observed that the maximum 

maturity index attained was (0.8), confirming the statement made by [10] that, a software product 

reaches its optimal maturity level when its maturity index approaches the value of 1.0.  In this 

research, when the optimal value of 0.8 SMI was reached, the entropy value remains stagnant 

with little or no change. Also, it was at this turning point that the JHD entropy level tends towards 

its lowest level, implying a possible correlation or connection between SMI and decrease in 

entropy, (i.e. decrease in degradation or disorder).   

 

Although quality, reliability and availability issues are not addressed in this research, available 

data collected as the software evolves is used to study degradation, attainment of maturity level, 

possible connection between SMI were observed and addressed. With the introduction of time series 

analysis into the mix, this research presents a method that uses knowledge gained from past experience to 

forecast or predict resources such as (development duration, and number of persons) required for 

subsequent evolution of the software system. 

 

In future, we intend to study large-scale, middle-size and small-size object-oriented software 

systems that have gone through many versions with a view to finding some other hints that may 

generally be used as a guideline for determining release readiness of software systems, and 

monitoring software degradation as the software system evolves. 
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