
International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016

DOI : 10.5121/ijsea.2016.7604 49

EVALUATION OF SOFTWARE DEGRADATION AND

FORECASTING FUTURE DEVELOPMENT NEEDS

IN SOFTWARE EVOLUTION

Sayyed Garba Maisikeli

College of Computer and Information Sciences

Al-Imam Muhammad Ibn Saud Islamic University

Riyadh, Kingdom Of Saudi Arabia

ABSTRACT

This article is an extended version of a previously published conference paper. In this research, JHotDraw

(JHD), a well-tested and widely used open source Java-based graphics framework developed with the best

software engineering practice was selected as a test suite. Six versions of this software were profiled, and

data collected dynamically, from which four metrics namely (1) entropy (2) software maturity index,

COCOMO effort and duration metrics were used to analyze software degradation, maturity level and use

the obtained results as input to time series analysis in order to predict effort and duration period that may

be needed for the development of future versions. The novel idea is that, historical evolution data is used to

project, predict and forecast resource requirements for future developments. The technique presented in

this paper will empower software development decision makers with a viable tool for planning and decision

making.

KEYWORDS

Software Evolution, Software maintainability and degradation, Change ripple-effect, Change

Impact,Change Propagation.

1. INTRODUCTION

After a software system is developed, there is a high possibility that it may undergo some

evolution due to change in business dynamics, response to environmental change, improving

design, preventive maintenance or intentional modifications for overall improvement of the

performance of the software system. A small change in an object-oriented software system

however, may produce major local and nonlocal ripple effects across the software system. When

software evolves a lot can be learned such as complexity, degradation; this provides an

opportunity to collect data that can be analyzed to project or forecast development duration and

number of people (person-hours) required for future build.

Due to the need to deliver software products on time and the need to satisfy customer’s

satisfaction, software companies are compelled to release software at the optimal time. Gauging

when software is ready to be released has been a very difficult factor to determine. At some point,

a decision will be made that testing should be concluded and the product be released for

customers use. The release decision is usually based on an evaluation of the software’s expected

quality balanced against its release date commitment [1].

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016

50

This article is an extended version of a paper previously published by [2], in ICCSEA

conference). Added to the previous paper are issues related to release readiness. In addition to

entropy and maturity index, two more additional metrics (the COCOMO effort and duration)

were added in the mix. The two more added metrics used COCOMO prediction model as

presented by [3]. These additional metrics help us study and determine the effort required for

each version build and consequently the expected time to build each version as the software

evolves.

From JHotDraw data collected from the [4] archives, we already have the ‘exact time duration’ it

took to build each version therefore, we can determine the optimal time from these two sets of

data. The obtained results can then be used to forecast future build effort (person-hours) and the

(time to build). Details of how these metrics were used are presented in the methodology section.

According to [5], software maintenance includes corrective, adaptive and perfective maintenance

enhancements which are technically not a part of software maintenance but, being a post-release

activity. Identifying potential consequences of a change or estimating what needs to be modified

to accomplish a change may be a daunting task. According to [6], when a software system

undergoes modifications, enhancements and continuous change, the complexity of software

system eventually increases, with a possibility that some level of disorder may be introduced,

making the software system becoming disorganized as it grows, thereby losing its original design

structure.

On the issue of measuring software degradation, [7 and 8] suggest the use of entropy as an

effective measure, and opined that software declines in quality, maintainability, and

understandability as it goes through its lifetime. This paper sets out to study six consecutive

versions of JHotDraw, a matured and well-structured open source graphics software framework

that has been widely used in many research projects as test subject software. Each of the test

versions was subjected to dynamic profiling and tracing routine that collected data from which

Shannon entropy and software maturity index were derived. The goal was to observe the entropy

level change, and whether there is any correlation between entropy and software maturity index

as the software system evolves from one version to another.

The rest of this article is organized as follows: Section 2 presents relevance of the research,

section 3 discusses related research, section 4 presents the methodology used, section 5 presents

analysis of results and section 6 concludes.

2. RELEVANCE

Considering the size and complexity of the modern software systems, tracking and discovering

parts of the software impacted, risks associated with change, and consequences of a change

cannot be overemphasized. Other reasons that support the need for the study of software

evolution include the consequences of ripple-effects, and providing guidance for the

implementation of the software system. During transition of the software evolution, a lot of

information can be deduced from the data collected; such as complexity, extendibility and

degradation. With the incorporation of COCOMO effort and duration metrics and time series,

software release readiness can be predicted, and the required resources such as (person-hours) and

(development duration) can easily be projected and predicted. The predicted values equip and

empower software development decision makers with a viable decision tools.

According to [9], the two most common meanings of software maintenance include defect repairs

and enhancements or adding new features to existing software applications. Another view

expressed by [9] also opined that the word “maintenance” is surprisingly ambiguous in a software

context and that in normal usage it can span some twenty-one forms of modification to existing

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016

51

Applications. According to [10], almost 50% of software life cycle cost is attributed to

maintenance; and yet, relatively very little is known about the software maintenance process and

the factors that influence its cost. With regards to release readiness, [11] opined that, a poor

understanding of the confidence in the quality level increases decision risk leading potentially to

a bad release decision that possibly could have been avoided had the confidence in the quality

been better known. A well-known critical system at jpl was used as a case study to investigate the

value of certification to improve the mandated software readiness certification record (srcr)

process.

Considering the cost magnitude associated with maintenance and the ever-increasing size and

sophistication of modern day software systems; it is then clear that software maintenance cost

decisions and associated evolution risks and prediction of required resources for future

evolutional developments cannot be taken lightly. If data collected during inter-evolution

transitions is properly analyzed, valuable information can be deduced to forecast required

resources for future evolution and implementation of the software system. This is what this paper

sets out to achieve.

3. RELATED STUDIES

In a software evolution research, [12], analyzed change of software complexity and size during

software evolution process, and discussed the characteristics related to the Lehman's Second Law

(Lehman et al., 1997), which deals with complexity in the evolution of large software systems

and suggests the need for reducing complexity that increases, as new features are added to the

system during maintenance activities. Also, [12] opined that addition of features leads to the

change of basic software characteristics (such as complexity/entropy) in the system. Their paper

used this change as a means to determine different stages of evolution of a software system,

proposing a software evolution visualization method called Evolution curve (or E-curve).

Discussing software maintenance consequences, [9] also observed that in every industry,

maintenance tends to require more personnel than those building new products. For the software

industry, the number of personnel required to perform maintenance is unusually large and may

top 75% of all technical software workers. The main reasons for the high maintenance efforts in

the software industry are the intrinsic difficulties of working with aging software, and the

growing impact of mass updates. In an empirical study conducted by [13], thirteen versions of

JHotDraw and 16 versions of Rhino released over the period of ten years were studied, where

Object-Oriented metrics were measured and analyzed. The observed changes and the applicability

of Lehman’s Laws of Software Evolution on Object Oriented software systems were tested and

compared.

In a research paper, [14] presented how graph-based characterization can be used to capture

software system evolution and facilitate development that helps estimate bug severity, prioritize

refactoring efforts, and predict defect-prone releases. Also, [15] presented a set of approaches to

address some problems in high-confidence software evolution. In particular, a history-based

matching approach was presented to identify a set of transformation rules between different

APIs to support framework evolution, and a transformation language to support automatic

transformation.

[16] Presented an indicator which is sufficient for a mature software development organization to

predict the time in weeks to release the product. [17] introduced the release readiness assessment

where proprietary software is assessed on its ability to be released as open source/ open

ecosystem.

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016

52

In a statement, [18] believed that “software readiness is often assessed more subjectively and

qualitatively, and stated that quite often, there is no explicit linkage to original performance and

reliability requirements for the software, and that the criteria are primarily process-oriented

(versus product oriented) and/or subjective. Such an approach to deciding software readiness

increases the risk of poor field performance and unhappy customers”. The author also stated that

“unfortunately, creating meaningful and useful quantitative in-process metrics for software

development has been notoriously difficult”.

In a research work, [19] investigated the use of product measures during the intra-release cycles

of an application. The measures include those derived from the Chidamber and Kemerer metric

suite and some coupling measures of their own. the research uses successive monthly snapshots

during systems re-structuring, maintenance and testing cycles over a two year period on a

commercial application written in C++, and examined the prevailing trends which the measures

reveal at both component class and application level.

In contrast, this paper focuses on measuring software degradation in the evolution of six versions

of a `large-scale open-source software system with a special focus on investigating the

introduction of disorder and observing the software maturity level as the software system evolves

from one version to another. In addition, the information collected is used to predict or forecast

required resources for future evolution cycles as the software evolves.

4. METHODOLOGY

In addition to exploring and investigating the effect of change and its impact on the amount of

disorder introduced as a software system evolves from one version to another, this study added

two more metrics and incorporate time series analysis with a view to introducing a method of

assessing software release readiness of various versions of a software system as it evolves from

one version to another.

These six versions were produced in a period of about five years (2006 to 2011), reflecting its

natural evolution as new requirements were added, existing functionalities modified or enhanced,

and some were deleted. Six versions of our test software JHotDraw (JHD) were studied and

analyzed in this research project.

4.1 Test Program (JHotDraw)

JHotDraw is a very popular, mature and well documented widely used open-source Java-based

graphics framework that has been used extensively in many software engineering research

projects as a test suite. This framework provides a skeleton for developing highly structured

drawing editors and production of document-oriented applications. The framework is known to

be heavily loaded with numerous design patterns, developed based on the solid object-oriented

principles, and based on the best software engineering practices.

To justify using the six different versions of JHotDraw in this research, we referred to some

authors who have used them previously; this includes [12] and [13] where they recommended the

use of JHotDraw as an Aspect Mining validation benchmark. Also, [20] and [21] used JHotDraw

as a benchmark test suite in their research work. In addition, [8] used JHD as one of the test suites

in his project.

Since JHotDraw is a mature and widely used test software programs, this research project also

adopted it as a test program. It should be noted that, although there are ten documented versions

of JHotDraw, seven versions are considered in this research study because the difference between

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016

53

Table 1. Characteristics of the six versions of JHotDraw

Seven different versions of JHotDraw are evaluated and tested (see table 1). Each of the versions

of JHotDraw) were dynamically profiled and traced through the use of AspectJ run-timed weaver.

(AspectJ runtime weaver is discussed in (section 4.2). In order to maximize code coverage, forty-

six of the major functionalities of each of the JHD applet versions were exercised as they execute.

The granularity level adopted in targeting the various test program artifacts for data collection in

this project is at the method level, rather than at class level.

One of the reasons for the choice is that methods in Object Oriented programming represent a

modular unit by which programmers attribute well-defined abstraction of ideas and concepts.

[22], defined methods in object-oriented paradigm as self-contained units where distinct tasks are

defined, and where implementation details reside, making software reusability possible.

According to [23], methods are less complex than classes, are easier to compare, and provide

significant coverage and easy distinction, and have a high probability of informal reuse. [24]

Observed that all known dynamic Aspect Mining techniques are structural and behavioral and

work at method granularity level.

Event traces were dynamically collected as the test software versions were executed, with the

AspectJ runtime weaver seamlessly running in the background. The runtime weaver has the

capability to dynamically insert probes at selected points in the target test software (in this case

class methods) at specify points known as (joinpoints), where all method executions were traced

and data collected. In this project, we are interested in the sequence and frequency of calls, rather

than method fan-in and fan-out. Frequency counts for each method calls were tallied, from which

probabilities of method invocation were calculated and assigned.

Note that, since methods with the same name in different classes may be counted as one and the

same, we left the class prefix along with method names to make sure that such methods are

counted distinctly and correctly. Note also that duplicate method calls were left intact in the data

collected, since removing such duplicate calls will distort the frequency counts of the method

invocations.

The assigned probabilities represent the probability that such code units will be invoked as the

system is run. It is from this frequency count that the entropy is calculated as the software

changes from one version to another. The other metric used was software maturity index (SMI);

this was derived from the static data collected from documentations produced by [22].

Explanation on how these two metrics are used are discussed in the next few pages.

4.2 Dynamic Data Collection tool (AspectJ Weaver)

AspectJ runtime weaver allows probes to be inserted at specific points of interest statically or

dynamically when the software source code to be profiled executes. Code that allows observing

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016

54

tracing or changing the software source code is weaved according to the required action specified

in what is called (pointcut). The weaved/inserted code logs the behaviors of the test software,

track its actions based on the given behavior specified by pointcut; in our case, tracing and

profiling each of the methods in our test software system as they are executed or invoked.

AspectJ runtime weaver can be used to seamlessly and dynamically collect data on the test

software as it executes.

The weaver evaluates the pointcut expressions and determines the (joinpoints) where code from

the aspects is added. This may happen dynamically at runtime or statically at compile time. The

runtime weaver then creates a combined source by weaving the source code of the aspects into

the sources of the program under investigation. The generated program code is then compiled

with the compiler of the component language, which is Java in our case.

Figure 1. Example of how AspectJ Weaver works

4.3 Metrics derived from collected data

To assess, evaluate and study the nature of the test software as it evolves from one version to

another, two software metrics were considered in this research project. Included are the

Shannon's Entropy and Software maturity Index (SMI). These metrics were derived from the

datum collected as the test programs run.

4.3.1 Shannon's Entropy

Within the context of software evolution, entropy can be thought of as the tendency for a software

system that undergoes continuous change eventually become more complex and disorganized as

it grows over time, thereby becoming more difficult and costly to maintain.

One of the metrics derived in this project is Entropy, with this metric; we will be able to find a

way to assess whether the test software versions get degraded as they evolve from one version to

another. According to [8], when investigating and studying the effect of a change in a software

system, Shannon’s equation may be better than complexity averaging. According to [5], in

addition to measuring disorder introduced into software evolution, entropy also provides a

measure of the complexity of the software system. [7], [27] stated that entropy can anecdotally

Within the context of software evolution, entropy can be thought of as the tendency for a software

system that undergoes continuous change eventually become more complex and disorganized as

it grows over time, thereby becoming more difficult and costly to maintain.

One of the metrics derived in this project is Entropy, with this metric; we will be able to find a

way to assess whether the test software versions get degraded as they evolve from one version to

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016

55

another. According to [8], when investigating and studying the effect of a change in a software

system, Shannon’s equation may be better than complexity averaging. According to [5], in

addition to measuring disorder introduced into software evolution, entropy also provides a

measure of the complexity of the software system. [7], [27] stated that entropy can anecdotally

be defined to mean that software declines in quality, maintainability, and understandability

through its lifetime. For effective measurement and assessment of software degradation, [8]

recommended the use of entropy for the study of software degradation.

Many variations of Shannon’s entropy formula is presented in academic papers, but the

generalized Shannon’s entropy formula is expressed as follows:

Where

H = System Complexity Entropy,

pi = Probability that method mi in test software is invoked

i = Integer value 1, 2…j, representing each of the categories considered.

Note that the negative sign in the equation is introduced to cancel the negative sign induced by

taking the log of a number less than 1.

As explained earlier in the introduction section, the entropy probability in this project is derived

based on the method invocation frequency counts collected when the different versions of the test

programs are executed and exercised. As an example of how entropy is derived in this project,

consider the example of a software system S with three classes C1, C2, C3. Methods (m11, m21)

are contained in C1, methods (m12, m22, m32) contained in C2, and (m13, m23, m33, m43,

m53) contained in C3. The numbers shown beside class methods are representations of the

frequency of method invocations when the test software was exercised.

Figure 2. Example of method invocation from three different classes in (software S)

Based on the given example of the three classes and the associated method invocations shown in

figure 2 above, we can construct probability required for the calculation of the entropies for all

methods in the software being tested as shown in table 2 below.

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016

56

Table 2. Example of calculation of probability of method invocation

Figure 3 below shows a graph of chronological change of JHD entropy values from one version

to another. To construct the graphs displayed in figure 3, entropy calculated for a version was

compared to the previous one. As depicted, it should be noted that initially, the entropy remains

stubbornly the same, but at a later stage, the entropy dropped consistently as the test software

versions transition from one version to another.

Figure 3 Entropy graph Version to Version

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016

57

The graph shown in figure 3a is for the initial version of JHD (version 7.0.1) before any change is

made. The subsequent figures (3b through 3f) are a superimposition of entropy values

representing transitions from one version to another (two versions at a time). From these graphs, a

gradual decrease in entropy values can be observed. The high spikes in the middle of each graph

are indications of changes reused packets and other add-in modules have undergone throughout

the transitional evolution of the test software system.

4.3.2 Software Maturity Index (SMI)

When discussing software maturity, [10] defined Software Maturity Index (SMI) as a metric that

provides an indication of the stability of a software product (based on changes that occur for each

release of the product). The software maturity index is computed in the following manner:

SMI = [MT- (Fa+ Fc+ Fd)]/MT

Where,

MT= number of modules in the current release

Fc= number of modules in the current release that have been changed

Fa= number of modules in the current release that have been added

Fd= number of modules from the preceding release that were deleted in current release

Software maturity index (SMI) is especially used for assessing release readiness when changes,

additions or deletions are made to an existing software system. An observation made by [10]

emphasized that, as SMI approaches 1.0, the product begins to stabilize. SMI may also be used as

metric for planning software maintenance activities. The mean time to produce a release of a

software product can be correlated with SMI, and empirical models for maintenance effort can be

developed. In this project, this metric was derived from the chronology of JHotDraw

Updates/Additions/Deletions documented and presented by [9]. In this project, the calculation of

SMI is based on the package rather than at class or method granularity levels.

Table 3. Data for Software maturity index calculation

From archive data obtained from [24] and [25], a summary of all addition, changes, and deletions

made to JHD versions 7.1 through version 7.6 were used to calculate the software maturity index

as shown in table 3 above. From this data, the SMI graph is drawn and displayed in figure 4

below. From this graph, it will be seen that the Maturity Index (MI) increases and then levels off

as the optimal level of 0.8 is reached, starting from the evolution transition point (V7.3.1 to

V7.4.4), stagnating all the way through (V7.6).

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016

58

Figure 4 Inter-version Maturity Index

To further view the nature of the JHD evolution and the attained maturity pictorially, the SMI is

calculated from the collected transition data for all versions and graphed as shown in figure 5

below.

Figure 5. Entropy Values for all 6 versions of JHD

4.3.2 COCOMO Effort and Duration metrics

As mentioned in the introduction section, this paper is an extended version of the paper

previously presented by [2]. In this paper, two COCOMO model metrics (effort and Duration) as

presented by [3] were added to the metrics used in the previous paper. We used these additional

metrics to help us determine the effort required for each version build, and the corresponding

build time (period) for each version. It should be noted that data used for this purpose is archived

at [25].

The COCOMO model for effort calculation uses the following formula.

En = a1 * [Size]
b1

 (1)

Where En = Effort (in person-hours)

 a =coefficient extracted from table 4 (based on the software category)

 s= Size of software version (in LOC)

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016

59

Table 4 Effort coefficients

To calculate the Effort we used formula 1 above, and the associated coefficients were extracted

from table 4 above. The Size (LOC) for different versions are shown in table 5 below. With these,

the effort values for all versions are calculated. The derived effort values (person-hours) for each

version are shown in column 3 of table 5. These values are then used as input to formula 2

below. This formula is used to calculate the duration for different version builds. Note that,

since the time series dataset we are dealing with is not large, there is no need to remove the trend

effect and seasonality of the data.

Table 5 Effort results

4.3.3 Duration for building each version

To calculate the required time (duration) for building each version, we used person-hours

(column 3 of table 6) above and substituted these values in formula 2 below. This produces time

(duration) required to build each version as the software evolves.

Dn = a2 * (En)
b2

 (2)

Where Dn = Time (duration) required to produce version (Vn)

En =Effort (persons-hours) required to produce version (Vn)

Note that the coefficients (a2 and b2) are extracted from table 6 based on the nature of the

category of the software being tested. Since our test software is organic, the highlighted row

coefficients in table 6 are selected.

Table 6 Coefficient selection

Table 6 The data presented in table 8 below was calculated from archived data and

documentation for our test software, the (JHotDraw). Column 2 of Table 7 below represents

duration for each of the 7 versions of our test software.

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016

60

With calculated effort En (in person-months), and corresponding project duration for each version

Dn (Development time in months), it is then possible to calculate the number of people required

for building a particular version. The required formula is as follows:

�n =
��

��
 (3)

Where Nn =(number of persons)

Dn = (person-months)

 n = 1..7 (in our case the seven versions of JHotDraw)

Column 3 of table 8 is the obtained results for number of persons required for building each of

the seven versions. With the derived historical data, we are now ready to apply time series

analysis to predict future, which is presented in the next section.

The obtained results Effort (person-hours) and Duration (build time), are then submitted to

ARIMA time series analysis to predict or forecast the future build needs, effort (person-hours)

and the duration (time to build) as the software evolves.

4.3.4 Time Series Analysis

A time series model is to obtain an understanding of the underlying forces and structure that is contained

in the data, and is used to fit a model that will predict future behavior. In this model, data from past

experience is used to forecast future events. Time series analysis predicts a response variable for a

specified period of time. The forecast results are based on inherent or latent patterns that in exist

in the data.

This paper utilizes the data collected during the transitional evolution transitional periods of our

selected test software, the (JHotDraw), and subjected them to time series analysis with a view to

being able to predict future required resources for future evolutionary development. Since we

have historical data that spans (5 years), we have enough data to study trend patterns as well as

being able to predict number of resources (people) and development period for future software

evolutionary developments. If accurate and optimal effort (person-hours) and duration can be

predicted then project budgeting and time to complete the future evolution projects can be

determined, leading to the decisions about release readiness of a software system as the software

system evolves from one version to another.

To have proper and accurate calculation of COCOMO model (effort and Duration), we thought of

adjusting the LOC figure such that only lines of code added or deleted during the evolution are

considered; however we realized that due to the principle of connascence, a change (additions,

deletions or modification) in one part of a software may affect other parts, so the calculated

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016

61

(COCOMO effort and duration) values were submitted to time series analysis as is, without any

data adjustments.

Auto-Regressive Integrated Moving Average (ARIMA) time series and forecasting analysis tool

was used to forecast future resources (person-hour) and (duration) that may be required for future

evolutionary developments. The obtained results are shown in figure 6 below. The time series

data is represented by blue line and the red line represents the predicted (duration) values.

Figure 6 AMRIMA Extrapolation Forecast (future development duration)

Similarly, the historical effort (person-hours) calculated from (calculated from formula 3 above)

was submitted to ARIMA analysis, and the required person-hours required for future

development are forecasted and presented in figure 7 below.

Figure 7 AMRIMA Extrapolation Forecast of future development Effort (person-hours)

With the two predicted values, project managers, planning managers, analysts and other decision

makers can determine number of people required, and the duration for future development

projects as the software system evolves.

5. ANALYSIS OF RESULT

From the obtained data graphed in figure 4, it can be seen that maturity level for JHD is attained

at the point at which lowest entropy was reached (transition from JHD 7.3.1 to V.7.4.1). Another

important observation is that, when JHD version transition static data (size, the number of classes,

the number of class methods and number of attributes) were graphed as shown in figure 8 below,

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016

62

it was observed that the number of class methods or (functions) in the test software consistently

decreases as the software evolves and transitions from one version to another.

Figure 8. Correlation Between software size, number of classes, methods, and attributes

Data extracted from ARIMA analysis was used to construct table 10, this table shows resource

predictions going forward. Columns 2 and 3 of table 10 can be used as a guide for planning

future builds

Table 10 (Resource predictions)

6. CONCLUSION

When a software system evolves and transitions from one version to another, it is expected that

the new version will outperform the previous one and that the new version is better structurally

containing fewer defects; however, this may not be the case, as new unintended consequences

may be introduced, structure may be degraded and a measure of degradation and disorder may be

introduced. This study investigated the behavior of a large-scale matured software system with a

view to learn some lessons that can be used as a guideline in design, development, and

management of new and existing software systems. In this work, it was consistently observed

that JHD software components (classes, methods, and packages) that have undergone change or

modifications during evolution tend to generate higher entropy values than those with little or no

change; which is in line with an observation by [28] that, the most frequently invoked

classes/methods in object-oriented software system are the ones that have the highest possibilities

of being changed or modified. It is also observed that the entropy values consistently decreases

as the software system evolves from one version to another, indicating that the software system

was moving towards its optimal maturity level.

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016

63

When JHD evolved few versions away from the last version, it is observed that the maximum

maturity index attained was (0.8), confirming the statement made by [10] that, a software product

reaches its optimal maturity level when its maturity index approaches the value of 1.0. In this

research, when the optimal value of 0.8 SMI was reached, the entropy value remains stagnant

with little or no change. Also, it was at this turning point that the JHD entropy level tends towards

its lowest level, implying a possible correlation or connection between SMI and decrease in

entropy, (i.e. decrease in degradation or disorder).

Although quality, reliability and availability issues are not addressed in this research, available

data collected as the software evolves is used to study degradation, attainment of maturity level,

possible connection between SMI were observed and addressed. With the introduction of time series

analysis into the mix, this research presents a method that uses knowledge gained from past experience to

forecast or predict resources such as (development duration, and number of persons) required for

subsequent evolution of the software system.

In future, we intend to study large-scale, middle-size and small-size object-oriented software

systems that have gone through many versions with a view to finding some other hints that may

generally be used as a guideline for determining release readiness of software systems, and

monitoring software degradation as the software system evolves.

REFERENCES

[1] Satapathy, P. R. (2008). Evaluation of Software Release Readiness Metrics Across the Software

Development Cycle

[2] Maisikeli, S.G (2016). Evaluation and Study of Software Degradation in the Evolution of Six

Versions of Stable and Matured Open Source Software Framework. Sixth International Conference

on Computer Science, Engineering & Applications (ICCSEA 2016), Dubai, UAE, September 24-25,

pp.1-13, ISBN: 978-1-921987-56-4

[3] Clark,B.COCOMOEffortModel,

http://www.psmsc.com/UG1998/Presentations/cocomo2%201998.pdf

[4] JHotDraw Documentation. http://www.randelshofer.ch/oop/jhotdraw/Documentation/changes.html

[5] Martin and McClure, (1993). Software Maintenance: The Problems and Its Solutions Prentice Hall

Professional Technical Reference 1983 ISBN:0138223610

[6] Alessandro Murgia1, A., Concas1, Pinna1, S., Tonelli1, R., Turnu, I. (2009). Empirical, Study of

Software Quality Evolution in Open Source Projects Using Agile Practices

[7] Olague, H.M., Etzkorn, L.H., Cox, G.W. (2006). An Entropy-Based Approach to Assessing Object-

Oriented Software Maintainability and Degradation-A Method and Case Study. ;In Software

Engineering Research and Practice(2006)442-452

[8] Bianchi, A., Caivano, D., Lanubile, F., Visaggio, G. (2001). Evaluating Software Degradation

through Entropy, Dipartimento di Informatica - Universith di Bari, Italy

[9] Jones, C. (2006). The economics of Software Maintenance in the Twenty-First Century Version 3 –

February 14, 2006. http://www.compaid.com/caiinternet/ezine/capersjones-maintenance.pdf

[10] Pressman, R, Software Engineering - A Practitioner's Approach (6th Ed.). New York, NY: McGraw-

Hill. p. 679.ISBN 0-07-285318-2

[11] Port, D., Wilf, J. (2011). The Value of Certifying Software Release Readiness: an Exploratory Study

of Certification for a Critical System at JPL. System Sciences (HICSS) 2011 44th Hawaii

International Conference on Vol. no., pp. 110, 2011

[12] Basili, R. and Rombach, H. D. (1988). The TAME project: Towards Improvement-Oriented Software

Environments, IEEE Trans. on Software Engineering SE-14(6) (1988) pp.758–773.

[13] Becker-Kornstaedt, U., and Webby, R. (1999.) A Comprehensive Schema Integrating Software

Process Modelling and Software Measurement, Fraunhofer IESE-Report No. 047.99 (Ed.: Fraunhofer

IESE, 1999), http://www.iese.fhg.de/Publications/Iese_reports/.

[14] Bhattacharya, P., Iliofotou, M., Neamtiu, I., Faloutsos, M. (2012). Graph-Based Analysis and

Prediction for Software Evolution Proceeding of the 34th International Conference on Software

Engineering pp. 419-429

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016

64

[15] Gao, Q., Li, J., Xiong, Y. et al. (2016). High-confidence software evolution. Sci. China Inf. Sci.

(2016) 59: 071101. doi:10.1007/s11432-016-5572-2

[16] Staron, M., Meding, W., Palm, C. Agile Processes in Software Engineering and Extreme

Programming Volume 111 of the series Lecture Notes in Business Information Processing pp. 93-107

[17] Kilamo, T., Hammouda, I., Mikkonen, T., Aaltonen, T., 2012. From proprietary to open source-

growing an open source ecosystem. Journal of Systems and Software 85, 1467–1478.

[18] Asthana, A. (2009). Quantifying software reliability and readiness. IEEE International Workshop

Technical Committee on Communications Quality and Reliability, 2009. CQR 2009.

[19] Ware, M. P., Wilkie, F. G. (2008). The use of Intra-release Product Measures in Predicting Release

Readiness. First International Conference on Software Testing, Verification, and Validation, 2008

[20] Johari, K., and Kaur, A. (2011). Effect of Software Evolution on Software Metrics: An Open Source

Case Study. ACM SIGSOFT Software Engineering Notes Page 1 September, Volume 36 Number 5,

2011.

[21] Deitel, H.M. & Deitel, P.J., (2003), Java How to Program, Prentice Hall, Upper Saddle River, NN,

USA (1

[22] Giesecke (2006). Dagstuhl Seminar Proceedings 06301 Duplication, Redundancy, and Similarity in

Software

[23] Mens, Kim., Kellens A., Tonella, P (2007), A Survey of Automated Code-level Aspect Mining

Techniques, Transactions on Aspect-Oriented Software Development, Special issue on Software

Evolution

[24] http://www.randelshofer.ch/oop/jhotdraw/index.html

[25] http://www.randelshofer.ch/oop/jhotdraw/Documentation/changes.html

[26] Hector M. Olague, Letha H. Etzkorn, Wei Li, Glenn W. Cox (2005). Evolution in software systems:

foundations of the SPE classification scheme. Special Issue: IEEE International Conference on

Software Maintenance (ICSM2005) Issue Overviews

[27] Opensource Software, www.sourceforge.net

[28] Joshi, P. & Joshi, R. (2006) Microscopic Coupling Metrics for Refactoring, IEEE Conference on

Software Maintenance and Software Reengineering.

Authors

Sayyed G. Maisikeli is currently an Assistant Professor at Al-Imam Muhammad ibn

Saud Islamic University in Riyadh, Kingdom of Saudi Arabia. He obtained his dual

Master of Science degrees in Computer Science and Operations Research from

Bowling Green State University Ohio, and his Ph.D. from Nova Southeastern

University in Florida, USA. His research interest includes Software evolution,

Software visualization, Aspect mining, Software re-engineering and refactoring and

Web Analytics

