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ABSTRACT 
 

Early prediction of software quality is important for better software planning and controlling. In early 

development phases, design complexity metrics are considered as useful indicators of software testing 

effort and some quality attributes. Although many studies investigate the relationship between design 

complexity and cost and quality, it is unclear what we have learned beyond the scope of individual studies. 

This paper presented a systematic review on the influence of software complexity metrics on quality 

attributes. We aggregated Spearman correlation coefficients from 59 different data sets from 57 primary 

studies by a tailored meta-analysis approach. We found that fault proneness and maintainability are most 

frequently investigated attributes. Chidamber & Kemerer metric suite is most frequently used but not all of 

them are good quality attribute indicators. Moreover, the impact of these metrics is not different in 

proprietary and open source projects. The result provides some implications for building quality model 

across project type. 
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1. INTRODUCTION 
 
With the appearance of ultra-large software, system-of-system, Internet-of-Things, software 
became much larger and more complex that it was before. As software becomes more and more 
popular in not only computer, but also embedded systems, the users demand more reliable and 
powerful software. Software complexity has been shown to be one of the main contributing 
factors to the software development and maintenance effort [2]. Most experts today agree that 
complexity is a major feature of computers software, and will increasingly be in the future. 
Software metrics, as a tool to measure software development progress, has become an integral 
part of software development as well as software research activities. Tom DeMarco stated that 
“You cannot control what you cannot measure” [1]. The large part of software measurements is 
to, in one way or another, measure or estimate software complexity due to its importance in 
practices and research. Measurement of software complexity enhances our knowledge about 
nature of software and indirectly assesses and predicts final quality of the product. It is claimed 
that complexity metrics is practically meaningful if they can indicate the projects outcomes, i.e, 
software quality and effort. 
 
Literature in software engineering reveals a large number of proposed complexity metrics. 
However, it is not obvious to select appropriate metric set that can predict given software 
attributes. Which quality attributes are influenced by software complexity? Which metrics are 
useful for predicting these qualities attributes? Knowing the proper metrics in a specific context 
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would be beneficial for software industry. Moreover, it is interesting to know whether these 
metrics has the same effectiveness across different project context, for example open source and 
closed source projects. Since open source is emerging as an alternative to closed source 
development in software industry [25, 26], empirical comparison between open sources and 
proprietary software in multiple perspectives, such as software complexity, quality and 
development effort is always of highly interest. 
 
These questions are non-trivial and can only be answered by proper empirical studies. Typically, 
such studies validate the usage of metrics by building a prediction model. The predictive power 
depends not only on the selection of metric suite but also prediction techniques and evaluation 
method. The available data and feature of the data set also influences the predictive result. While 
prediction techniques and evaluation method has been well-studied and systematically aggregated 
into a body of knowledge [3, 4, 5], there is very limited number of papers summarizing evidence-
based knowledge about software complexity metrics [6]. Among the prediction models with the 
same prediction techniques, some studies yield different predictive results of same metric suite, 
even contradictory ones. This adds to the impression that, despite a large number of design 
metrics used in quality prediction models, it is currently still unclear whether we have learned 
anything from these studies. This paper presents a systematic review on the influence of software 
complexity metrics on quality attributes. We aggregated Spearman correlation coefficients from 
59 different data sets from 57 primary studies by a tailored meta-analysis approach. 
 
The rest of the paper is organized as follows. Section 2 presents a theory of cognitive complexity 
and statistical methods on software engineering. Section 3 states our research questions and 
research methodologies. While Section 4 presents the review process, Section 5 provides research 
results and discussion. Section 6 identifies the threats to validity. The paper ends with conclusions 
and future works. 
 

2. BACKGROUND 
 

2.1. Theory of cognitive complexity 
 
IEEE standard defines software complexity as “the degree to which a system or component has a 

design or implementation that is difficult to understand and verify” [7]. The definition 
differentiates two different kind of complexity: complexity of design artifacts, such as UML 
diagram and complexity of implementation like source code. Basically, design complexity is 
structural features of design artifacts that can be measured prior to implementation stage. This 
information is important for predicting quality of final products in early phase of software 
development life cycle.  
 

 
  

Figure 1: Theory of cognitive complexity (adapted from [9]) 
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There is a theoretical basic for investigation the relation between design complexity and software 
external quality attributes, namely theory of cognitive complexity [8]. Briand et al. hypothesized 
that the structural properties of a software component have an impact on its cognitive complexity 
[8]. In his study, cognitive complexity is defined as “the mental burden of the individuals who 
have to deal with the component, for example, the designer, developers, testers and maintainers” 
[8]. Figure 1 presents a model of cognitive complexity theory, which stated that high cognitive 
complexity leads to the increasing effort to understand, implement and maintain the component 
[9]. As the results, it could lead to undesirable external qualities, such as increased fault-
proneness and reduced maintainability. 
 
2.1. Empirical investigation on software complexity 

 
In the literature of research on software engineering, the emerging trend is explanatory empirical 
methods, which use empirical evidence to confirm or model the casual relationships between 
control variables and performance variables. The two common empirical investigation methods 
on software complexity are correlation analysis and statistical regression. 
 

 
 

Figure 2: Quantitative approaches for empirical validation in software engineering 

 
Correlation analysis investigates the extent to which changes in the value of an attribute (such as 
value of complexity metric in a class) are associated with changes in another attribute (such as 
number of defect in a class). An correlation coefficient represents a numerical summary of the 
degree of association between two variables, e.g., to what degree do high values of coupling of a 
class go with high number of defect in that class [27]. Though correlation between two variables 
does not necessarily result in causal effect [27], it is still an effective method to select candidate 
variables for causation relationship.  
 
Regression goes beyond correlation by adding prediction capabilities. Regression analysis 
includes techniques for modeling and analyzing one or several variables to identify the 
relationship between a dependent variable and one or more independent variables [28]. Among 
large amount of regression techniques has been used in software engineering literature, the most 
common techniques are linear regression model and logistics regression model [28]. In both 
methods, it is necessary to control all confounding variables in order to achieve a meaningful 
casual relationship. 
 

3. RESEARCH DESIGN 
 

3.1. Research questions 
 
Table 1 shows an adapted Goal-Question-Metric (GQM) template to form the research objective. 
The target objective of this research is software design complexity, in particular design 
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complexity of OO system. The purpose is to externally validate design complexity by 
investigating its statistical relationship to external software quality. The topic is considered in the 
viewpoint of measurement researcher as well as practitioner. The study population is software 
engineering literature. 

 
Table 1: GQM template of research goals 

 

Analyze Software design complexity 

For the purpose of Confirming 
With respect to their Statistical relationship to cost and external 

software quality. 

From the view point of  Measurement practitioner, researcher 

In the context of  Software engineering literature 

 
The main research objective is refined as four research questions: 
 

• RQ1: Which quality attributes are influenced by design complexity metric in literature? 

• RQ2: What are the most investigated design complexity metrics in literature? 

• RQ3: Which design complexity metrics are potentially predictors of quality attribute? 

• RQ4: How is the influence of design complexity on software quality in open source vs. 
closed source software? 

 

3.2. Research methodology 
 
Figure 3 presents research methods used to answer the stated questions. 
 

Systematic 

Literature 

review

RQ1, RQ2

Vote counting RQ3

Meta analysis RQ3, RQ4

 
 

Figure 3: Research methodology 

 

3.2.1. Systematic literature review 
 
A systematic literature review (often referred to as a systematic review) is a common method for 
identifying, evaluating and interpreting all available research relevant to a particular research 
question, or topic area, or phenomenon of interest. This method is very common in research of 
medicine and social science [10]. Individual studies contributing to a systematic review are called 
primary studies; a systematic review is a form of secondary study [10]. The most common 
reasons are to summarize the existing knowledge about interested research questions, to identify 
any gaps in current research in order to suggest areas for further investigation and to provide a 
framework/background in order to appropriately position new research activities. The systematic 
review involves the following steps, with the detail description provided in [10]: 
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• Specifying research questions 

• Data source selection 

• Search strategy development 

• Search string formation 

• Study selection criteria identification 

• Study quality assessment identification 

• Study extraction strategy identification 

 
There are two approaches to quantitatively summary results from systematic review, 
namely vote counting and meta analysis [11]. 
 
3.2.2. Vote counting 
 
Vote counting is an alternative of meta analysis when there is not enough of statistical reported 
data. The main advantage of vote counting is that it is conceptually simple and can be used with 
very little information [11]. Besides it does not require actual value of effect sizes for aggregation 
[11]. The only assumption of the method is that studies use the same kind of statistical test. Vote 
counting, however, is not free from error. Vote counting can be strongly biased towards the 
conclusion of zero effect size in populations of studies with small effect size and a low number of 
subjects. Besides, this bias is not reduced as the number of studies increase [12]. Therefore, the 
result of vote counting should be confirmed by other statistical methods, such as meta analysis. 
 

3.2.3. Meta analysis 
 
Meta-analysis is a statistical technique for identifying, summarizing, and reviewing results of 
quantitative studies to arrive at conclusions about a body of research [13, 14]. A typical meta-
analysis is to summarize all the research results on one topic and to discuss reliability of the 
summary. It is noticed that meta-analysis is only recently introduced in software engineering [11, 
15, 16]. Meta analysis is selected because of: 
 

• Its well-founded mathematic background and statistical validity 

• Its ability to provide a numerical aggregation value of studies. The outcome of a meta-
analysis is an average effect size with an indication of how variable that effect size is 
between studies. 

• Its ability to deal with study conflict. 

• Its ability to deal with publication bias. 

 

4. RESEARCH CONDUCT 
 
Table 2 shows the search protocol. We choose Scopus, IEEE Explore and ACM Digital Library 
as search databases due to its functionality, reputation and familiarity to the reviewer. As 
common search fields in systematic reviews [3, 4, 5] article title, keyword and abstract will be 
used in this work. With the objective to retrieve all relevant studies, we use the wide search range 
among research on Software and System Engineering. The only limitation is that we only search 
in publication written in English. 
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Table 2: Search protocol 
 

Search 

database 

Scopus, IEEE Explore, ACM Digital Library 

Search field Title, Abstract, Keyword 

Search topic Software and system engineering 

Language English 

Search string 

formula 

(“software complexity” Or Synonyms) 

AND(“impact” Or Synonyms) AND (“cost” or 

“quality” or Synonyms) AND software 
 

The search string query from Scopus database resulted in a total of 906 primary publications. We 
excluded 625 papers out of a total of 906 primarily based on title and abstract, which were clearly 
out of scope and did not relate to any research questions. The remaining 281 papers were subject 
to detailed exclusion criteria. The paper is scanned to find out whether any exclusion criteria are 
met. This stage resulted in remaining 85 papers, which were further filtered out by reading full 
text. The studies are carefully read to find whether paper’s objective, study design, data collection 
and analysis are relevant to answer our questions. This step remains 31 papers.  The second 
search in IEEE Explore and ACM Digital Library resulted in a total of 265 papers. It is noticed 
that many papers in this set is duplicated with previous pool because Scopus also index papers in 
IEEE Explore and ACM Digital Library. After eliminating duplicated papers, there were left 85 
papers. The title and abstraction exclusion results in 40 remaining papers and further exclusion 
based on detailed criteria reject 25 papers out of this 40. The remaining 15 papers are read and 
finally 8 of them are selected. 
 

It is revealed that no relevant papers are found prior to 1996. It was also the time when the 
Empirical Software Engineering journal was firstly published. It is worth noticed that in the late 
90's, there were not so much publications and the most probable reason for this is that design 
metric was a new research area at that time, i.e. Chidamber & Kemerer metric suite was firstly 
introduced in 1991 and refined in 1996. The figure also shows the increasing number of studies 
between 5-year periods. From 1995 to 1999, there are 9 relevant papers while from 2000 to 2004; 
the numbers of relevant papers are 15. This number is 33 for the period of 5 years from 2005 to 
2009, which is more than double the number of previous period. This fact indicates the increasing 
interest of research community in the topic recently. 
 

5. RESULT AND DICUSSION 
 

5.1. RQ1: Which quality attributes are influenced by design complexity metric in 

literature? 

 

a. Results 

 
Figure 4: Investigated quality attributes 
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Figure 4 shows the external quality attributes that are investigated for the relationship with design 
complexity. There are four main investigated costs and quality attributes, namely reliability, 
maintainability, reusability and development effort that are refined in 9 sub categories as below: 
 

• Defect density: includes studies that investigate relation between total known defects 
divided by the size (defect density) and design complexity.  

• Fault proneness: includes studies that investigate the relation between probabilities of 
finding a defect in a class (fault proneness) with design complexity. 

• Vulnerability, security: includes studies that investigate the relation between numbers of 
faults that lead to security failure and design complexity 

• Testability: includes studies that predict effort required for software testing due to level of 
design complexity [17] 

• Maintainability: includes studies that predict time, efforts required to correct bugs, improve 
performance or adapt software to a change environment [7].  

• Volatility: studies that investigate the relation between the numbers of enhancement in a 
class with design complexity. 

• Debugging cost: includes studies that investigate the relation between effort and time for 
fixing a class with its design complexity. 

• Development effort: include studies that investigate the relation between cost and time for 
development with its design complexity.  

• Refactoring effort: include studies that investigate the relation between efforts for 
refactoring a class with its design complexity.  

 

b. Discussion: 
 
The statistics description shows the most investigated cost and quality attributes are fault 
proneness and maintainability. Since the information about design complexity is theoretically 
available in the design phase, many primary studies collect these data in the implementation or 
maintenance phase. Hence, the post-design phase software attributes is more popular subject of 
research. Among reliability related attributes, fault-proneness is investigated much more than 
fault density or security. The reason could come from the fact that the data in number of fault per 
software unit is not sufficient. Therefore, the quality model is more on the level that predict 
whether a software unit is faulty or not. Due to the requirements of dataset size for aggregation, 
only maintainability and fault proneness studies have sufficient combinable data. Hence, from 
next questions, we only focus on these two attributes. 
 
5.2. RQ2: What are the most investigated design complexity metrics in literature? 

 

a. Result: 

 
Table 3 shows the list of metrics, which are used in more than 50% of total selected primary 

studies. The most frequent used metrics belong to adjusted version of Chidamber & Kemerer 
metric suite, namely, NOC, DIT, CBO, LCOM version 2, WMC and RFC version 1. Among 120 
investigated metrics, we found that the distribution of usage of design metrics are followed 
Pareto-like distribution 20/60: the 20% most common metrics are investigated in 60% of the 
studies. 
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Table 3: List of frequent used metrics 
 

Metric Definition Type 

NOC number of classes that directly inherit from a 
given class 

inheritance 

DIT length of the longest path from the class to the 
root of inheritance hierarchy [18] 

inheritance 

CBO number of other classes to which it is coupled, 
included inheritance-based coupling [18] 

coupling 

LCOM2 LCOM1 minus count number of pairs of 
methods that do (average percentage of the 
method in a class using an attribute and 
subtract from 100%) [18] 

cohesion 

WMC number of all methods of a class [18] size 

RFC1 RFCinf + not count methods indirectly 
invoked by methods in M [18] 

coupling 

 
b. Discussion: The domination of Chidamber & Kemerer metric set in correlation and prediction 
studies could comes from the fact that they are one of the first complete design metrics with 
measure of all OO features [18]. The metric set has strong foundation since they were developed 
based on the ontology of Bunge and validated against Weyuker’s measurement theory principles 
[18]. More importantly, Chidamber et al. claimed that these measures can aid users in 
understanding design complexity, in detecting design flaws and in predicting certain project 
outcomes and external software qualities such as software defects, testing, and maintenance effort 
and provided an empirical sample of these metrics from two commercial systems [8]. Besides, the 
metric set is simple, well-understood [19] and straightforward to collect.  
 
These reasons seem to invoke great enthusiasm among researchers and software engineers, and a 
great amount of empirical studies have been conducted to evaluate those metrics. Over time, this 
metric suite is gradually growing in industry acceptance. In particular, they are being 
incorporated into development tools such as Rational Rose [20] and JBuilder [21]. Many others 
tool such as WebMetric [23] and JMetric [22], also auto collection feature for the metric set and 
make it very easy to collect. 
 
5.3. RQ3: Which design complexity metrics are potentially predictors of quality attribute? 

 
To find whether a design metric is a potential predictor of external attributes, we test each design 
metric with the following hypothesis:  
 

H0: There is no impact of metric X on quality attribute Y. 
 

Due to the variation of the use of design metrics in primary studies, we use vote counting to test 
the hypothesis H0. Assumed that each study report a significant value (p value) of correlation 
coefficient or regression coefficient between design metric X and quality attribute Y. It is worth 
noticed that some studies report the actual value of the significance test, but some others only 
report the significant level, which is represented by + if the correlation test is significant at 0.05 
and by ++ if the test is significant at 0.01. To maximize number of included studies, we select the 
significance level at 0.05. The null hypothesis is rejected if the portion of success in total studies 
is greater than 0.5. Otherwise, we accepted the hypothesis. 
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Among 120 design metrics investigated in fault proneness studies and 59 design metrics 
investigated in maintainability studies, we select the metrics whose significance level are reported 
in at least 6 different datasets. 
 

a. Result for Fault proneness 
 
Table 4 describes the null hypothesis test for significant positive impact of several design metrics 
on fault proneness in Spearman correlation result. Table 4 presents number of studies, total 
number of dataset, and number of datasets that a metric has significantly positive and negative 
correlation coefficient, number of datasets that a metric is non-significant. 
 
There are 12 design metrics that are investigated in more than 6 data sets. Out of these 12 metrics, 
9 metrics has portion of success more than 50%, namely CBO, WMC, RFC, WMC Mc Cabe, 
SDMC, AMC, NIM, NCM and NTM and therefore null hypothesis is rejected for these metrics. 
The 3 other metrics that have less than 50% of success portion are NOC, DIT, LCOM. Hence, we 
accept the null hypothesis: with spearman test, there is no positive impact of NOC, DIT or LCOM 
on fault proneness. 

 
Table 4: Hypothesis test for significantly Spearman coefficient for fault proneness 

 

 
 

b. Result for Maintainability 

 
Table 5 describes the null hypothesis test in Spearman correlation in maintainability studies. 
There are 6 design metrics that are investigated in more than 6 data sets. Out of these metrics, 4 
metrics has portion of success more than 50 percent and therefore we can reject null hypothesis in 
these metrics. The other 2 metrics that have less than 50% of success portion are NOC and DIT. 
Therefore, we accept the null hypothesis: with spearman test, there is no positive impact of NOC, 
DIT or LCOM on fault proneness. The complete list of metrics is given in [29]. 
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Table 5: Hypothesis test for significantly Spearman coefficients for maintainability 
 

 
 

c. Discussion: 
 

For both fault proneness and maintainability studies, vote counting shows that there is no 
evidence about relationship of NOC, DIT to external quality attributes. These metrics measure the 
inheritance dimension of object oriented systems. WMC, RFC is shown to be potential good 
predictors for external quality attributes in all the cases. In fault proneness studies, NIM, NCM, 
NTM are scale-based metrics when CBO, SDMC, AMC are coupling-based metrics. In 
Maintainability studies, DAC and MPC are also coupling-based metrics. This observation adds an 
impression that design metrics that capture scale and coupling dimensions are useful in indicating 
the final product quality attributes, such as fault proneness and maintainability. The result also 
indicates that, it is unlikely inheritance and cohesion-based metrics can show significant 
relationship with software quality attributes. 
 

In comparison with the most frequent use design metrics, the results show that for fault-proneness 
and maintainability study, only 50% of frequently used metrics are potentially good ones. 
Alternatively, the common metrics are not necessarily the good ones. This suggests that the 
researchers in quality model should evaluate the metric effectiveness before adding them to the 
model. 

 

5.4. RQ4: How is the influence of design complexity on software quality in open source vs. 

closed source software? 
 

a. Result: 
 

There are 35 private datasets, which contributes 59% of total number of datasets. Among them, 
10 datasets come from academic projects and 24 datasets come from industry project. The 
remaining 24 dataset are public, which contributes 41% of total number of datasets. Figure 6 
illustrate the aggregated results for the correlation between metric WMC and Fault proneness 
using Meta analysis. The box center represent for the correlation coefficient, the box size 
represents for the weight of the dataset, using the dataset size. The line shows the 95% confidence 
interval of the correlation coefficient. 
 

Table 6: Correlation intervals in closed source vs. Open source 

 

Metric Closed source Open source % diff. 

95% # 95% # 

NOC [-0,18;-0,03] 9 [ 0,02;  0,05] 9 24% 

DIT [ 0,08;  0,23] 13 [ 0,04;  0,07] 9 0.2% 

CBO [ 0,16; 0,31] 15 [ 0,26; 0,30] 9 4.3% 

LCOM [ 0,17; 0,32] 9 [ 0,15; 0,18] 9 0.0% 

RFC [0,22; 0,37] 8 [0,24; 0,27] 9 2.9% 

WMC [0,20; 0,35] 15 [0,27; 0,29] 18 3.9% 
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Table 5 shows the influence of different metrics on fault proneness across project type. The table 
reports the 95% confidence interval of aggregated coefficients for metrics across project type and 
the number of investigated datasets. Besides, the difference between the two intervals is 
calculated by variance explanation of the separator variable [13, 14]. From the statistics, we have 
an observation: 
 

• The correlations between design metrics and fault proneness are at trivial to medium level. 

• The Project type variable does not cluster the correlation of metrics and fault proneness 
since the explanation power is very small (0 to 4.3%). Only with NOC, the variance 
explanation is 24% with two non-overlaps confidence intervals. 

• The 95% confidence intervals of metric correlation in closed source projects are larger in 
those in open source projects. 

 

b. Discussion: 
 
The small variance explanation shows that project type is not a good separator variable. 
Alternatively, there are no difference in relationship between design metrics and fault proneness 
between closed source and open source projects. However, the confidence intervals in open 
source projects are smaller, which indicate a more homogeneous collection of datasets than 
closed source datasets group.   

 
Figure 5: Aggregated correlation coefficient of WMC in fault proneness studies 
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6. THREATS TO VALIDITY 
 
The major threats to the study validity come from the systematic review and data aggregation 
process, which are quality of search process, univariate analysis and aggregation of 
heterogeneous data. 
 
The first validity threat comes from the search quality. We use two measures to evaluate the 
search result, namely recall and precision [24]. Since it is impossible to know all existing relevant 
items, the recall of the search string was estimated by conducting a pilot search, which showed an 
initial recall of 88%, and after a refinement of the search string, a recall of 100%. Besides, it was 
not tried to optimize the search string for precision, which is clearly reflected by the final, very 
low, precision value of 6.3% (considering 906 documents after the removal of duplicates and 57 
selected primary studies). 
 
Another main limitation of our study is that it focuses on relationships between single design 
metric and quality attribute, such as fault proneness and maintainability. However, it may be that 
a combination of design metrics leads to a better prediction than single ones. Therefore, it may be 
that multivariate models that use several design metrics to predict fault-proneness are more 
meaningful for this purpose. However, the existing multivariate models are so heterogeneous that 
it may be impossible to generalize from them. 
 
Last but not least, the primary studies used in this paper stem from various sources with different 
quality. One typical critique of meta-analysis is that combining such studies equals mixing apples 
and oranges. It can be argued, however, that mixing apples and oranges is beneficial, particularly 
if one wants to generalize about fruit, and that studies that are exactly the same in all respects are 
actually limited in generalizability [10]. 
 

CONCLUSIONS 
 
Table 7 summarizes the results for the research questions. 
 

Table 7: Summary of findings 

 

Question  Answers  

RQ1: Which quality attributes are 
predicted using design complexity 
metrics? 

Reliability, maintainability, reusability and 
development effort 

RQ2: Which design complexity 
metrics is most frequently used in 
literature? 

NOC, DIT, CBO, LCOM2, WMC and 
RFC1 

RQ3: Which design complexity 
metrics are potentially predictors of 
quality attribute? 

Fault proneness: CBO, WMC, RFC, 
SDMC, AMC, NIM, NCM and NTM.  
Maintainability: WMC, RFC, MPC and 
DAC 

RQ4: How is the influence of design 
complexity on software quality in 
open source vs. closed source 
software? 

Larger variation in closed source projects.  
No difference in effectiveness toward fault 
proneness 
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Our findings contribute to both research community and software practitioner in many ways. To 
researchers who are interested in software quality model, we confirm the importance of software 
coupling and scale metrics.  
 
These two dimensions should be more focused than inheritance and cohesion in fault prediction 
models. We suggest a list of specific design metrics that are potential predictors of fault 
proneness and maintainability. We also find a limited number of studies focus on other cost and 
quality attributes, such as development effort or fault density. These cost and quality attributes 
would be a research gap for further studies. The results confirm that, regarding to the impact of 
design complexity on quality is heterogeneous across project types. To software practitioners, 
since there is no separated regions found for open source and closed source projects, the quality 
prediction models on open source projects could be tried on closed source environment. This is 
helpful for industrial practitioners since they can learn from the quality model that is published 
using open source datasets. 
 
The results of this thesis can be considered as a cornerstone for further study in the area of 
correlation and regression analysis of design complexity. The future works could focus on 
aggregating the multivariate quality models and investigating other separator variables than 
project type. Besides, the cost and quality attributes such as security, volatility or refactoring 
effort are potential targets for future investigation of software complexity. 
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