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ABSTRACT 
 

Software systems drive our phones, cars, banks, cities, etc. This places a heavy load on software industry 

because all these systems must be continuously updated, corrected and extended when users and 

consumers express new needs and high quality software is now perceived as a "must have" rather than 

"should have". Developers has to do their best to assure that their code has minimal defects. 
 
Nowadays technologies evolve rapidly, software suffer from some majors problems. Firstly software 

maintainers have to deal with the past (past languages, existing systems, old technologies). It is often 

misunderstood and treated as a punishment. Secondly developers have to ensure a good software quality. 

To deal with such problems, approaches have been proposed to support software maintenance and reduce 

the efforts of developers. One approach commonly adopted is the usage of rules to ensure source code 

quality and ease maintenance activities. 
 
We propose in this paper an approach to ease corrective maintenance task and help to improve software 

quality by exploiting human knowledge available in software repositories. This approach support 

remediation of bad situations; by reducing for example time spent to read, understand and how the code 

can be changed. 
 

1. INTRODUCTION 

 
Software developers deal with day-to-day defects during the development and maintenance 

phases. Studies have shown about 80% of the cost of software is devoted to maintenance. This 

phase play a key role in the lifecycle of the software product [1]. One of the major tasks during 

maintenance is to fix defects. The fix is generally committed in a software repository, which 

registers each modification made on the program. However it happens that in addition to the fix, 

the developer adds refactorizations, optimizations or even fixes several defects in a single 

commit. 
 
Software quality can be measure by some principles or/and absence of defects. Fixing defects 

increase software quality. Software quality models are based on a set of metrics and rules 

(principles) to evaluate the quality of the software. We are interested in studying whether we 

could help correcting these defects. 
 
We came to work on this while looking for a way to derive a cost model for fixing programming 

rule violations based on past fixes. The main interest of this work is to identify how defects are 

fixed in the source code. If there is a known solution to achieve this goal, it suffers from one 
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limitation, it can only work for small commits that fix exactly one defects [2]. A recent study [3] 

showed that small commits (only one modification to the Abstract Syntax Tree of the system) are, 

in majority, related to bug fixes. However, it also found that about only 10% of commits were 

small. And even these commits might not be suited for our studies as we discovered that they 

could still include other unrelated modifications. It does not mean that 90% of the commits are 

not related to defects fixes, but rather, that if they are, it might not be possible to identify exactly 

what modification fixed the defect since other modifications (other bugs, enhancements) could be 

mixed in the same commit. 
 
In our experiments we found this to be also true for violations of good programming practices 

rules. Commits that fixed exactly one rule violation represented only 4% of all commits. If we 

filter the commits that do not fix any rule violation, then the ones fixing one rule violation still 

make only 27% of all commits that fix some rule violation. 
 
Overcoming this problem would provide much more data to work on and significantly increase 

the validity and pertinence of the results on defects. 
 
In this work we propose a new approach to find in a commit the modifications that are necessary 

to fix a given defect. Our main motivation is to know which source code modification (s) is (are) 

necessary to fix a defect. This can help developers to understand similar defects and fix them 

easily. The remainder of this paper is divided into six sections and a conclusion : Section II 

present software repositories, Sections III present software quality and gives more details on the 

motivation of this work; Section IV present formalisation of defect in software. Section V gives 

an overview of the approach used to detect the sequence of actions needed to correct a defect; 

This approach is validated in Section V on real world examples; and finally in Section VI we 

discuss the threats to validity of the experiment. 

 

2. SOFTWARE REPOSITORIES 
 
Many techniques propose to mine data present in the repositories to help the efforts of software 

engineering. For example, Stephen G Eick et al.[4] measures the "code decay", Graves Harvey et 

al.[5] predict defects in software modules, and Thomas Zimmermann [6] predicts artefact 

changes by mining repositories. 
 
Although their techniques and final objectives vary, most approaches working on software 

artefacts changes are based on the analysis of change set or group of modifications that are part of 

the same commit. This is motivated by the fact that modifications within a given commit often 

correspond to development work that has been performed as part of a single, coherent task, such 

as correcting a defect or improving functionality. Unfortunately, approaches based on change set 

can not guarantee that data extracted from a repository actually belongs to a single, coherent task. 
 
We found that change sets often violate this assumption when they contain non-essential 

modifications. A non-essential modification is normally not associated with a specific software 

development or a specific purpose such as correcting a defect targeted by the commit. We offer 

an automated technique for detecting essential modifications in a commit to fix a given defect 

within the commit. 
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2.1 Software repositories presentation 
 
To better formulate our problem in the rest of the document, we first present our assumptions 

about software repositories and the kind of information found there. 
 
For our analysis, we need all the modifications made to the software. We obtain this data by 

mining software repository. A repository provides a good basis for learning the history of defects 

in the software lifecycle. In a computer project, the majority of changes are applied to the source 

code. In addition to changes in source code, repositories keep meta information. The most 

significant are information on the author (name, email, ..), the timestamp and the log written to 

describe the commit. The repositories store the data as plain text or as binary file. They do not 

provide support for manipulation of syntactic or semantic structure contained in the files they 

store. These structures must be rebuilt after retrieving files from the repository. 
 

For a given file F, the repository keeps an explicit copy of its latest version only. Let Fi this 

version, each previous version Fj≤i recorded in the repository is represented as a delta δj. Each δj 

describes the modifications between Fj and Fj+1 in terms of text lines in both file versions. These 

deltas are typically computed using a line diff-based utility. Each time a developer registers a new 

version of a file Fi , the repository stores the computed δi−1 and replaces the previous version of 

Fi−1 with the latest version Fi . An explicit copy of an earlier version Fj can then be reconstructed 

and retrieved by the application of the deltas δi−1, ..., δj to the current version Fi. Therefore, in order 

to facilitate our further discussion, we will simply assume that each version of the file is directly 

accessible. 
 
A repository also lacks information about the purpose of a commit: has it introduced a new 

feature or has it corrected a defect? Although it is possible to identify these reasons only with the 

commit log; we found in our analysis that developers do not generally mention this information in 

the log correction of programming rules. 
 

2.2 Analysing Commits in Repositories 

 
We are presenting a way to extract valuable information from defect correction activities. We try 

to find actions taken by developers to fix a defect by studying the history of the software through 

commits in repositories. A commit contains several information such as it creation date, the name 

of it author and a log to explains the purpose of the commit[7]. We therefore seek among these 

commits those that introduce defects, those fixing these defects and then try to find necessary 

modification(s) to fix these defects. 
 
2.2.1 Mining Techniques and Tools 

 
In 2001, Andrew Y Yao [8] introduced a tool to look for fragments of source code using feedback 

from a versioning system. This tool allows to find the most recent version of a code by looking in 

previous versions of a commit to better understand the current version. 
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In 2009, Fluri et al. [9] worked on the relationship between source code and commit log. They 

found that when the code and comments co-evolve, both are modified in the same revision. They 

found that 97% of comments changes are made in the same revision as the associated source code 

change. 
 

2.2.2 Commit That Introduce Defects 
 
Defects fixing commits are widely used to predict the occurrence of defects or to find the risky 

fragments of the software. However, a defect fixing commit does not contain information about 

which one initially introduced the defect. Defect fixing commits are relatively easy to retrieve 

than commit introducing defects. 
 

In 2005, Sliwerski et al. [10] introduced an algorithm to retrieve commits introducing defects. To 

identify them, the algorithm first finds defects fixing commits by searching for relevant keywords 

in log, or an explicit link with an error tracking system. The algorithm then executes a diff tool to 

determine modifications in the defects fixing commits. The comparison tool returns a list of the 

regions that differ in the two commits; each region is called a piece. The algorithm computes for 

each piece in the source code, the most recent version in which the piece has been modified, and 

determines the developer who made the modification. The origins discovered are identified as 

commits that introduce defects. 
 

In 2006, Kim et al. [11] propose an improvement of Sliwerski algorithm [10]. This approach is 

carried out in five stages: 
 

1. Use annotation graphs to provide more detailed annotation information;  

2. Ignore comments and blank lines;  

3. Ignore format changes;  

4. Ignore revisions that correct errors in which many files have been modified;  
5.  Manually check all changes use to fix defects. 

 

In 2010, Sinha et al. [12] present an approach based on dependency graph to determine defects 

introducing commit. The main innovation of this approach is analyzing the effects of 

modifications in defect fixing commit on program dependencies and, based on these effects, 

identifies the version of the commit that introduces the default. 
 

2.2.3 Defect Fixing commits 
 

In 2000, Mockus et al. [13] propose an approach to identify defect fixing commits . Their 

approach is based on identifying keywords in log. It classifies a commit as "corrective" if the log 

message contains one of the following keywords: fix, bug, error. 
 
In 2003, Fischer et al. [14] presented a historical database that contains commit logs and report 

information from error-tracking systems. To link the log message and the error tracking database, 

Fischer et al., searched for commit log messages that correspond to a given regular expression. 

Later, they improved the linking algorithm. Another work has studied the techniques of 

connection of the commits to the errors tracking systems. In 2009, Bird et al. [15] have shown 

that the result of commit linking techniques to error tracking systems can be biased because a 

developer may for example fail/ignore to enter a keyword in the commit log that corrects a defect. 

They showed that 54% of defect fixing commits are affected. For example, in 2010, Bachmann et 

al. [16] proposes a technique to find the missing links. 
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3. SOFTWARE QUALITY 
 
In the literature, we find many definitions of software quality (ISO 8402 , 9126, 9001 ; [17] ). It is 

clear from these definitions that software quality is define by objectives to be met in order to 

satisfy the real requirements of the stakeholders through a set of indicators. Some of these 

objectives can be modeled as rules detected by rule checkers such as PMD, JLint or FindBugs. 

We present in this section some quality model and the relations between rules and software 

quality. 
 

3.1 Some Quality Models 

 
In 1977, McCall [18] proposed a model to measure the quality level of a software for the US Air 

Force. This model is composed of three layers: metrics, criteria and factors. The 11 factors of 

quality of the software (Reliability, Security, Integrity, Ergonomy, Efficiency, Testability, 

Maintainability, Flexibility, Reusability, Portability, Compatibility). In 1991 ISO and IEC defined 

the ISO / IEC 9126 [19] standard based on the McCall model. The attributes of qualities are 

grouped into six general characteristics specifying a quality requirement, functional or not of the 

software. Each characteristic is organized into sub-characteristics. The standard proposes a series 

of measures / metrics to assess the conformity of the product with the formulated requirements. 
 
This model improves the McCall model by providing measurement scales associated with metrics 

and also gives indications for measuring these characteristics and sub-characteristics. 
 
In 1999, ISO and IEC propose ISO / IEC 14598. This standard groups together the evaluation 

characteristics according to the client, the developer and the evaluator and is available in several 

documents ISO / IEC 14598-1, 14598-2 , 14598-3, 14598-4, 14598-5 and 14598-6. 
 
SQUASH [20] is a formalization of SQUALE resulting from the practices of Air France KLM, 

Qualixo and Peugeot SA. This model was proposed by Karine Mordal and the Inria RMod 

research team. The SQUASH model is hierarchical, based on the same principles as the McCall 

Factor-Criterion-Metric model and the ISO 9126 standard. 
 
The SQUASH model consists of four layers: measures, practices, criteria and factors. 
 
In 2005, the Square standard is proposed under the reference ISO / IEC 25000: 2005. It unifies 

normative documents covering the process of specification of measurement and evaluation 

requirements. 
 
In 2009, the Software Engineering Institute (SEI) and the Object Management Group (OMG) 

proposed the CISQ Consortium based on the ISO / IEC 2500 standard. The aim of this set of 

metrics is to define a unique standard for finely measuring software quality for large systems and 

n-tiers systems. This standard aims to address the growing complexity of systems. The most used 

standards in software quality evaluation are the ISO / IEC 9126 and 14598 standards. In the 

following, our study will be based on these two standards. 
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3.2 Evaluation of Quality and Rules 
 
The models used to evaluate the quality of software are based on metrics and measurements. 

These models set out quality rules, formal principles and provide guidance for assessing the level 

of quality on the basis of metrics. 
 
The models of evaluation of the quality of the software are generally hierarchical. They define 

notions of high level of quality that they specify by principles of quality. There are generic 

models and models defined for a type of software. The generic models are derived from the 

McCall model and define concepts that must be adapted to the software type. Specific models on 

the other hand evaluate only one type of software: object-oriented software. However, all these 

models assess the quality of the code through good and bad practices expressed by rules. Good 

practices are expressed by rules to be followed while bad practices are principles to be avoided. 
 
All these models are based on notes attributed to the practices by experts of the system studied 

according to their experiences. The use of violations of these practices (code technical rules) that can 

be extracted from system history in software repositories will improve the relevance of these notes. 
 
We propose in this paper a method to extract in commits the actions needed to correct violations 

of practices. This would allow developers to spend less time to improve source code quality by 

learning from past actions and experts to have, in addition to their experience, data on which they 

can use to attribute notes to violations of practices. 
 

4. DEFECTS IN THE SOFTWARE 
 

4.1 Formalization of Defects in the Software 
 

4.1.1 Coding Conventions 

 
Coding conventions have been widely studied in the literature. According to Allamanis [21], 

coding conventions define a coherent syntactic style, promoting readability and thus 

maintainability. Coding conventions (naming, formatting decisions) determine the clarity of the 

source code, increasing code portability, accessibility to new coders, reliability and 

maintainability. Its application can avoid defects. 
 
Oman and Cook [22] have found through empirical studies that the style used when writing or 

maintaining code has a direct impact on the quality of the software, particularly on the 

intelligibility and maintainability of a program. 
 
Identifiers naming is at the heart of software engineering. According to the work of Broy et al. 

[23] identifiers represent about 70% of the syntactic elements of the source code. Haiduc and 

Marcus [24] have shown that approximately 40 % of domain-specific terms are used in the source 

code. The use of naming conventions is therefore a crucial practice to improve the 

comprehensibility of the source code. 
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4.1.2 Code Smells 

 
In 1995, Bruce Webster [25] introduced the concept of bad smell in the context of object-oriented 

programming. He used the word "pitfall" for this purpose. 
 
In 1996, Riel Arthur [26] introduced 61 heuristics, each characterizing a good practice of object-

oriented programming. 
 
In 1998, Brown et al. [27] described 40 design "smells". They grouped these smells under the 

term anti-Pattern. An anti-pattern according to their definition is a description of a solution to a 

problem that generates negative consequences. Among the best known are the spaghetti code. 
 
In 1999, Fowler Martin [28] describes 22 defects that correspond to structures in the source code 

that suggest a possibility of refactoring. Refactoring is a technique used to improve the internal 

structure of a system without altering its external behavior by making changes in the source code. 
 
In 2003, Mäntylä et al. [29] proposes a classification of defects into 5 groups: Bloaters, object 

orientation abusers, change preventer, dispensables, and couplers (see annex ref appendix). This 

classification has been used as a basis for rule checkers. 
 

4.1.3 Bugs 
 
According to the adapted definition of [30] a bug is an error, failure or defect in a computer 

program that causes it to violate at least one of its functional or non-functional requirements. 
 
This definition brings out a critical problem: in order to identify bugs in a software, we need to 

know what the software is supposed to do and also know the non-functional requirements that the 

software must meet. However, in most cases the intention behind the software is not clearly 

defined. Moreover, the majority of software is developed in an environment where requirements 

are unclear and constantly changing. This often leads to considering certain software behaviors as 

erroneous, no matter what the software is intended to do. For example, there are very few 

situations where a NULL pointer dereferencing leads to desirable behavior. This complicates the 

classification of NULL pointer dereferences as bug. 
 
Many techniques exist to find bugs in software, each has advantages and disadvantages. In 

software testing, software is run with variable input set to determine if the correct output is 

produced in each case. The main limitation of testing is that it is difficult to build a suite of tests 

that achieve a high degree of code coverage. In general, even relatively simple programs can have 

an infinite number of behaviors at run-time, making it impossible to make exhaustive tests. For 

these reasons, it is easy to use tests to verify that the basic functionality of the software works 

normally, but it remains difficult to use the tests to discover new bugs. 
 
Code Inspection [31], implemented by some tools such as FindBugs, allows software developers 

to inspect source code for bugs. An advantage of code inspection on testing is that one can use 

high-level reasoning on the code to detect erroneous behaviors. Code inspection also has the 

advantage of facilitating the analysis of difficult to execute portions of source code such as 

exception handling. 
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Programs proofs are also used to detect bugs. However, they are not widely used, for several 

reasons. They are difficult to implement for the unskilled and it is often very complicated to make 

a complete proof of a program. For example, program proof would require a complete 

specification of the behavior of the program, and this is extremely difficult to achieve. In 

addition, as mentioned above, most software project requirements change over time, resulting in 

an additional complication. There are several other ways to discover bugs and improve the quality 

of software. 
 
4.1.4 Programming rule 
 
A rule is a description of an action to follow or not when writing code, a description of a 

particular solution to a problem commonly encountered in software design. The rules are used to 

ensure the consistency of the source code, and ultimately to ensure the quality of the software. 
 
According to Andre Hora [32], rules can be generic or system-specific. Generic rules are created 

by non-experts in the system being analyzed. The same rules can be used by separate tools 

(FindBugs, PMD, SMALLLINT etc.). For example, "check the number of variables and 

methods" or "detect nested conditional if " . On the other hand, the specific rules are created by 

experts of the system being analyzed. For example, verification of the use of the correct API, or 

control of the methods that should be used / defined together, etc., within the framework of the 

system being analyzed. 
 
In the following the term defect will designates both the defects, the non-respect of the 

programming rule or bugs. 
 

4.2 Defect Detection Techniques 
 
Several studies on defect detection techniques have been carried out. 
 

According to Ebers et al. [33], the code review consists in having the code re-read in order to 

detect defaults closest to their introduction phase, throughout the development of the software. 

They are a form of static analysis that requires a lot of time. They have studied more than 12 000 

projects and have shown that collective code review enable the detection of an average 65% of 

the defects, 50% for the review by a peer, while the tests detect on average only 30%. 
 
Static analysis involves analyzing the source code of a program to extract information from it. 

This analysis is performed without running the program. In 2003, Ted Kremenek et al. [34] 

proposed z-ranking, a technique for detecting defects. In 2006, Boogerd et al. [35] proposed a 

generic method for classification of defects. This method is based on the probability of executing 

a piece of code in the program. They use a graph to represent the source code. In 2007, Sunghun 

Kim et al. [36] proposed a prioritization algorithm for violation generated by rule checker based 

on the source code history. Indeed the violations generated are classified by types and categories. 

A category includes several types of alerts. 
 
In 2011, Sarah Heckmann et al. [37] have made an inventory and evaluation of defects detections 

technique. To do this work, they first collected articles in scientific journals (ACM, IEEE, 

Springer); They sorted these articles manually according to their importance in relation to the 

problem. In 2011, Haihao Shen et al. [38] proposed a technique to improves Find Bugs.  
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The authors present a statistical method for finding the defects and compared this approach with 

FinBugs according to the precision, the recall and the F1-Score. 
 
One of the first definitions of the test was stated in 1979 by Myers [39] as "Testing is executing 

the program with intent to find abnormalities or defects." According to the IEEE definition 

"Testing is the execution or evaluation of a system or component by automatic or manual means 

to verify if it meets the specifications or to identify the differences between expected results and 

results obtained " It is clear from these definitions that the main purpose of software testing is to 

examine or run software to find defects. 
 
A formal method is a technique allowing the modeling of all or part of a system on mathematical 

basis that allow reasoning on properties and to elaborate proofs. This proofs demonstrates that the 

properties expressed on the program are well respected. There are many definitions of formal 

methods. 
 

Some definitions are given by Eric Jaeger [40] or Hird [41]. Ludovic [42] presents some 

advantages of formal methods. The main ones are: 
 

• The precision in the formal specification is greater than that provided by an informal 

description in natural language which is often ambiguous.  

• The basis for enunciating properties and studying the behavior of the system as a whole.  

 

5. OVERVIEW OF THE DACORD APPROACH 
 
This section provides an overview of the methodology for extracting modifications related to the 

correction of defects in a commit. In this analysis we consider the existence of two versions of the 

same program p and p’. Since the program p’ is derived from the program p. All 2 versions of the 

program are supposed to be syntactically correct and compilable. The key concept of our 

approach is the decomposition of the source code into atomic modifications. These atomic 

modifications may have inter-dependencies. 
 
In the proposed approach, defects will be synonymous with rules or tests. The first step is to 

determine the set of affected rules / tests (corrected defects). Then, in a second step, for each rule 

/ test affected, a set of atomic modifications related to the correction to the affected rules / tests 

will be extracted. Our method is conservative in the sense that the set of atomic modifications 

calculated contains at least all the modifications that cause behavioral changes in the rules / tests. 
 

5.1 Background 
 
Before presenting the approach, we will introduce an essential notion : atomic modifications and 

the inter-dependencies between them. 
 
5.1.1 Atomic modification  
 

Atomic modification is modifications know to be at a low level possible. In literature we find 

fine-grained modification for example at the level of line of code or coarse grained modification 

at level of method/class/package in Object Oriented Paradigm for example. These modifications 

can have syntactic dependencies. In a simple way, an atomic modification MA1 depends on 
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another atomic modification MA2 if the application to the original source code (base) version of 

the MA1 program without the application in advance of MA2 results in a syntactically invalid 

program. In other words, MA1 depends on MA2 if MA2 is a prerequisite for applying MA1. These 

inter-dependencies induce a partial order which determines the order in which the MAs are to be 

applied to the program P to obtain a syntactically correct program P ǁ and P ’if we apply all the 

MA. 
 

5.1.2 Some terminologies 
 

Change set: A set of atomic modifications made on the source code to move from one version of 

the source code to the next. This could also be called a patch. In our case, any commit in the 

version control system will be a change set . We focus on commits that fix at least one default. 

We assume that a change set is complete in the sense that it contains all the necessary 

modifications to fix a violation (even if it can introduce other defects). For example, if a 

modification adds a parameter to a method definition, other modifications must change the 

invocations of that method to take the new parameter into account. 

 
Sequence: An ordered collection of modifications applied to the source code. 
 

Sequence valid: it is a sequence (of modifications) that can be applied without error, and that can 

fix a given defect without introducing others. Because we work specifically with commits that fix 

a given defect, by building the change set there is at least one valid sequence that fixes the defect 

considered (a valid sequence is at worst the change set itself). 
 

Rule: a description of a fault. It can be a rule of a rule checker, a test that illustrates a bug, or a 

formal description usable by the proof wizards. 
 

Oracle: A tool or person that parses the source code to detect defects. 
Concerning programming rules the oracle is usually a Rule Checker like Find Bugs, PMD, 

SmallLint Rule checkers consist of a set of rules, each of which is related to a specific type of 

defect. 
 

We can also work on a formalized version of the program using proof assistants. A proof assistant 

is software for writing and verifying evidence on assertions related to the execution of computer 

programs. The proof assistants help the user to develop proof, and verify that the proof developed 

is correct. In general, proof verification is automated while their construction is partially 

automated, and generally requires human intervention. As examples of proof assistant we can cite 

Coq and Isabelle [43]. For bugs, programmers typically use tests. The oracle will be the test 

environments like JUnit or SUnit. 
 

Violation: A violation of a rule detected by an oracle (or test) that fails. Two violations in two 

different versions of the code are considered equivalent if they relate to the same rule / test on the 

same software artefact . In our case, it is enough to identify the software artefact s by their full 

name (package.class.method.signature) because we are working with coarse grain modifications. 

In the future we will need to work at the level of AST modifications that will make it more 

difficult to couple violations together in two different versions. This software artefact 

identification does not allow us to consider renaming (which will be considered deletion and 

addition).  
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We do not want to deal with the renaming at first because the detection of name change is 

difficult and subject to interpretation, such additional manipulations could pollute our results. 

Additional filtering will ensure that the renamings are actually ignored in the experiment (we do 

not consider the deleted artefacts first). 
 

Fixed Violation: A violation found in the base version of the change set, but not in the target 

version. We distinguish two cases: the software violation artefact is in both versions of the 

change set (before and after) or it has been removed in the target version. We decided to ignore 

"fixed" violations because the software artefact that presented it was removed. As we have just 

seen, for the renaming of entities this will be an adequate behavior. The reasoning behind this 

decision was that research showed that the majority of programmers did not care about violations 

[37]. Therefore, a violation may go unnoticed for a long period of time before it simply 

disappears due to unexpected changes in the source code. We wanted to reduce this risk by 

ensuring, at least, that the artefact of the software presenting the violation is always present, and 

thus that the violation has in fact been corrected in one way or another. Some violations require 

the removal of an artefact of the software on which they occur, for example, for a rule that detects 

that a method has the same implementation in a superclass and subclass. However, we preferred 

to ignore them to provide a better understanding of the properties of our algorithm. 
 

5.2 Dacord 
 
DACORD is a technique for detecting the actions needed to correct a defect. In the following, we 

describe the four stages of the DACORD technique using a common pattern: we present the 

process of each stage including the inputs and outputs of the step, the description of the process 

and the follow-up of a discussion. 
 
5.2.1 Step 1: Analysis of commits 
 

In this step we filter commits that correct defects. This activity depends on the type of fault. For 

example, for rules we use a static code analysis tool like oracle while for bugs one can simply 

look in the commit logs. 
 

Input: the commits of the software system to be 

studied. Output: commits correcting at least one 

defect. 
 

Description: commits are sorted according to their creation order. Then they are analyzed two 

by two to find the violations (defects). 
 

• For the bugs one uses the traditional techniques of detection of the commits correcting 

bugs [10]; 
• For rules, the violations obtained for two consecutive commits are compared and classified 

into three categories:  

• Violations corrected: these are the violations present in the oldest commit but are 

not present in the recent version of the commit;  

• New violations: these are the violations present in the recent version of the commit 

but are not present in the oldest version of the commit;  

• Violations in both versions.  
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Discussions: Rule checkers generate thousands of violations including many violations that are 

not actually real (false positives) and sometimes violations are not detected by these tools ( false 

negatives). In addition 2 separate rule checkers do not detect exactly the same violations on a 

single source code. 
 
Algorithm for step 1 

 
Begin 

1. load one revision of the system;  

2. run the oracle on it (store the violations);  

 

3. load the next revision of the system;  

 

4. run the oracle again (store the new set of violations);  

5. compare the two set of violations ;  

 

6. if some violations were removed, then this commit fixed corresponding defects in some 

way  

 

7. further verify that the violation is not removed because the software artefact carrying it 

was deleted  

8. keep all commits couples (the one introducing and the one fixing the defects)  
 

End 
 
5.2.2  Step 2: Calculation of actions 
 
In this step, all the atomic modifications of a commit are 

identified. Input: A commit that corrects a default and its 

predecessor. Output: a set of atomic modifications. 
 

Description: Reconstructing changes in a commit not only involves identifying the commit, 

but first identifying the source code entities that are part of the commit, and then those that have 

been changed between different commits. 
 
The identification of the source code entities is done either by parsing or by lexical analysis. 

Lexical analysis is preferred [45], because it is the approach that presents the best performance in 

time. 
 
To compare two commits, it is necessary to follow three steps. 
 

• find entities defined in the source code of the base commit;  

 

• find the entities defined in the target commit;  

 

• Finally, find the differences between the source code entities of the base commit and the 

target commit. The comparison can be used to obtain the set of added entities, deleted 

entities, and the set of modified entities.  
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To identify the set of modified entities, it is necessary to check the differences between the two 

versions of the entities of each commit. This approach to find the source code entities changed 

from commit to commit, assumes that all modifications are stored in the same branch of history 

(software version). However, this may not be the case. When it is necessary to maintain a stable 

version of the code, the history of the application is divided: the main story line (the trunk) can 

have several branches.  

 

Changes to the same files may occur in branches and trunk at the same time. Therefore, to be able 

to correctly identify changes on a file, it is necessary to analyze the commits of each branch 

separately, or by analyzing that trunk. 
 
Discussions: To get reliable results we have opted for a method based on syntactic analysis 

because it gives a very precise idea of the entities and their relationships. It means that it checks 

the correctness of the source code. 
 
5.2.3 Step 3: Detection 
 
This is DACORD’s milestone. Our solution is to sequentially apply selected modifications in the 

change set to identify which one (s) is necessary to fix a violation. 
 

Input: a change set and a defect. 
 

Output: the actions required to correct the defect. 
 

Description: We start from the fact that we have a solution to the defect: the commit (change 

set) that corrects the violation and we want to improve it. 
 

 

For this we opt for the use of local search methods [46]. These methods, also called iterative 

improvement algorithms, start from an initial solution and aim to improve it. The general 

principle is the following: starting from an initial solution Si to the problem, we look for a better 

solution Si+1 in the neighborhood of Si. If we cannot improve Si, then we stop, otherwise we 

replace Si by Si+1, and We start again. 

 

We use the Hill-Climbing algorithm which is one of simplest local search methods of the 

literature. It was used for the first time by Lin and Kernighan in 1973 to find a good solution to 

the problem of the commercial traveler [47]. Since then, local search methods have played a 

central role in optimization problems. The principle consists of starting from an initial solution, 

then choosing at each iteration a neighbor who improves the solution. The choice of the neighbor 

can be done randomly in this case we talk about first improvement or by looking for the best 

neighbor that improves the current solution we speak of best improvement [48]. In all cases, the 

stop criterion is reached when no neighboring solution improves the current solution. In our case, 

the initial solution Si will be the whole change set and that is to say a set of atomic modifications 

and the neighboring solutions will simply be a subset of the initial solution Si. Our stopping 

criterion focuses on the number of atomic modifications in the solution. We distinguish two 

cases. First, if the length of the solution is one atomic modification, it is trivial that we have 

reached the minimal valid sequence. Second, we set a threshold on the number of iterations that 

do not decrease the size of the solution. Since we work on operations that require a lot of 

resources (program compilation), the choice of the threshold will affect the efficiency of the 

algorithm. Setting this threshold to a very small acceptable value would be a possible 

improvement because, assuming that the search does not stop the iterations too early (and 
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therefore does not find the minimum valid sequence), reducing the threshold would reduce 

resource consumption. This may be interesting, but perhaps not at all significant. In theory, by 

having sufficient time and testing, our algorithm is able to find the minimal valid sequence that 

fixes the violation. However, in practice this would be too long for a viable experience. This 

question is related to how we choose our modifications and how we deal with errors. These two 

issues will be addressed jointly. In practice, we will have to add conditions to prevent the search 

from looping endlessly. For example, we could set a threshold on the total number of iterations of 

the search algorithm. 
Discussions: By applying the modifications randomly, three problems must be taken into account: 
 

1. It may not be possible to apply a modification before applying another because of the 

dependencies discussed above (such as trying to create a method before creating the 

class to which it belongs);  

2. You could apply some unrelated modifications before coming to implement the 

modification (s) that are needed;  

3. What should we do if a modification that fixes the violation introduces another?  

 
Of these three problems, the first is easy to overcome. If it is impossible to apply a randomly 

chosen modification (since it requires one to be applied before), we have identified three 

solutions: 
 

1. The simple solution is to simply ignore the current sequence and regenerate a new 

sequence from scratch. This is the solution we have implemented for the rules.  

2. Another solution would be to go back in the construction of the sequence, choosing 

other modifications.  

3. Finally, a third solution would be to calculate the dependencies between the modifications 

and to prohibit in the random selection to choose a modification that depends on another 

modification not yet applied. This is the solution we have implemented for bugs.  
 

The second problem related to the selection of undesirable modifications in the sequence before 

introducing those necessary to fix the violation considered. This is solved using a Hill-Climbing 

approach. 
 

Note that there are many possible ways to fix a violation, and it is quite possible that in a given 

change set, several different valid sequences fix a given violation. Consider, for example, a 

violation indicating that a method does not have enough comments, and a change where two 

different comments are added to the method. Each of these two amendments could be sufficient 

to fix the violation. We do not see this as a problem because each of the two modifications is a 

solution to the violation, even if we were going to miss another possible solution to the violation. 
 
Finally, the third problem to be considered is what to do if a modification fixes the violation 

under consideration but introduces a new violation. Our solution is not to consider the valid 

sequence whose application create new violations or resulted in a non-compilable code. If a new 

violation (or a compilation error) is created by a modification of the sequence being constructed, 

we will add this new violation to the set of violations we want to fix, so that the sequence will not 

be considered Valid until the new infringement is also fixed. The only exception is if the new 

violation also exists in the target version of the program, as this means that applying the entire set 

will not remove the violation. 
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DACORD 

 

INPUT: comit, the modifications of the considered commit  

INPUT: viol, a violation of interest fixed by the commit  

INPUT: src, initial state of the source code (before applying the commit)  

RETURN: seq, the sequence that fixes viol  

LOCAL: chg, the set of modifications from commit still candidate to be part of seq  

LOCAL: cpt, counter checking how many sequences of same length we found 
 

chg ← comit  

seq ← {}  

cpt ← 1  

while ( cpt<threshold value)  

while viol is not fixed  

mod← a random modification from chg  

apply mod on the current source code  

remove mod from chg  

add mod to seq  

end while  
if length(seq) < length(chg)  

cpt ← 1  

chg ← seq  

else 

 
cpt++  

end if  

end while  
return seq 

 
Algorithm 1: Algorithm to find the minimal valid sequence fixing a given violation from a 

commit 
 

5.2.4 Step 4: Validation 
 

Validation is defined by ISO 9001 as the process of ensuring that the expected results are 

achieved. This standard also provides prerequisites for validation. The most important validation 

prerequisites for our case are knowledge of critical points and a trained and competent staff : 
 

• Knowledge of critical points. Before validating an approach, one must know its critical 

points. In our case it is knowledge of the rules / tests, the causes of their violations and 

their corrections;  
 

• Trained and competent personnel. The experts selected for validation should master 

the system because some systems have specific rules.  
 

The sequence of actions obtained in step 3 is manually validated by a qualitative validation 

method to verify whether it actually corrects the defect. 
 

Input: a defect and a set of atomic modifications fixing the 

defect. Output: Accept or reject the solution. 
 

Description: The initial step of the work is to describe the methods and procedures. We write 
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precisely what the experts must do. At the end, one should not have any doubt, error, or 

imprecision in the text. The points to be validated are clearly explained. Then, we select several 

experts from the system being analyzed. They are presented with the defect, the textual 

description of the defect, the solution detected in the previous step. Each expert will indicate 

whether the proposed solution actually corrects the defect and whether there are unnecessary 

modifications in the solution. 
 

Discussions: Qualitative methods sometimes have a degree of subjectivity in the process of 

approving the result. To mitigate this, at least three experts will be used to validate our results. 

 

6. VALIDATION EXPERIMENT 
 
The context of the experiment is real systems for which we can access the source code history. 

We chose to experiment on programming rule violations and bugs because they were our initial 

target and it is easier to find an oracle that will check the presence or not (correction) of a 

violation of these types. Therefore, we also require a system with some rule checker and test 

runner tool available as well as rules. We will validate our solution on Moose and Pharo [49] two 

open-source, real-world, and non-trivial systems, with a consolidated number of developers and 

users. Pharo is an open-source dialect of Smalltalk and implementation of its programming 

environment. Currently, Pharo has approximately 60 collaborators throughout the world; it is 

used by more than 15 universities to teach programming and by 10 research groups. Moose is 

written in Pharo, a Smalltalk inspired language, we selected SmallLint [50], the most adopted 

Smalltalk code analysis tool. For us, the system presents the additional advantage that we are part 

of the development team and are able to validate the quality of our solution’s results. This is not a 

bias as we are working on past commits, anterior to this research and we are not influencing how 

the minimal valid sequence is extracted, we are only validating it. Since 
 

6.1 Research Questions 
 
We validate our approach in three steps: First, we will evaluate whether our approach can 

actually discover the sequence of source code changes required to fix a given rule violation 

(RQ1) second, we will evaluate the relation between unnecessary modifications and violations 

(RQ2). Third, we will evaluate if our approach help developer to improve their quality and source 

code quality (RQ3). 
 

For the first question, we have three hypotheses to validate: 
 

1. A commit may fix several violations?  

2. Focusing on small commits would discard too much information?  

3. Our aproach can find the correct Minimal Valid Sequence to fix a given violation?  
 

For the second question, we will consider the following points : 
 

1. Do unnecessary modifications are related to defects correction ?  

2. Do unnecessary modifications (related to defect) increase code quality ?  
 

For the third question we will simply verify that our approach helps developers to easily fix 

defaults. 
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6.2 Results of the Experiment 
 
In total we analyze more than 30 000 commits. 65(couple) met our conditions for programming 

rule [51] and 37(couple) for bugs [52]. These 102 commit fix in total 437 violations. Only 34 

commits out of 102 fix exactly one defect. 
 

RQ1 evaluation of the approach 
 

RQ1a A commit may fix several violations? 
 
 

 

a) Programming rules 
 

We experimented with 65 commits containing fixes for 368 violations of good programming 

practices expressed in rules and detected by static analysis checkers. The maximum violations 

fixed per commit is 75, and the median 2 (see Table 1). 21 of the 65 commits (32%) fixed only 

one violation. 
 

Table 1: Number of violations fixed per commit 

 

  # median max.

 total commits 65   

 total violations fixed 368   

 commits fixing one violation 21   

 violations fixed / commit  2 75

 

b) bugs 

 

We experimented with 37 commits containing fixes for 104 bugs extracted from the repository 

(SmalltalkHub.com). For all these commits, the corresponding commit message references at 

least one issue report that had been marked as resolved. We considered the commit message and 

the actual applied modifications when performing manual inspection. If the commit message 

indicated that the applied modifications solve more than one issue report, we classified the 

commit as tangled. In the majority of cases, the commit message clearly indicated tangled 

commit. If we had no doubt that the commit targeted more than one issue or contained also 

additional enhancement (e.g. refactoring), we classified the commit as tangled. Similarly, if we 

had no doubt that the commit is atomic (not tangled), we classified it as atomic. 

 
Table 2 presents the details of our analysis. The table shows that the maximum bugs fixed per 

commit is 5, and the minimum 1. 32 of the 37 bug fix commit fix more than one bug and thus 

automatically classified as tangled. 
 

Table 2: Distribution of bugs in commit 
 

  #  min max 

 Total commit 37  

Bug fix commits fixing more than one bug 32  

Bug fix Commit fixing only one bug 5  

Bug fixed / commit 1 5 
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This does confirm our hypothesis that commits may fix more than one violation. Consequently, it 

seems to confirm also that there is a need for a tool to isolate the modifications fixing a given 

violation (note that the same modification can fix several violations, as discussed in [53]). 
 
RQ1b Focusing on small commits would discard too much information? 
 

a) Programming rules 
 

For the 65 commits in our experiment, the median size of commit is 15 modifications with a 

maximum of 320. The numbers show that commits are not small, a median of 15 modifications 

per commit is very far from the one-AST-change definition of small commits in [54]. 
b) bugs 
 
32 of the 37 bug fix commit fix more than one bug and thus automatically classified as not small. 

In addition, 3 of the 5 commits fixing only one bug were also tangled (see table 2 and 3). The 

result is that, 35 bug fix commits out of 37 studied were not small (i.e. 95%). 
 

Table 3: Statistics of untangled bug fix commit 

 

  #

 bug fix Commit 37

Tangled bug fix Commit 35

Correctly untangled commits 32

 
From the results for RQ1, we deduce that large commit introduces noise and skews into any 

analysis of the history to find fix actions. Thus, it seems to confirm that this fraction is large 

enough to threaten the detection of a set of source code modifications that frequently appear 

together for fixing a given defect and there is a need for an approach to isolate the modifications 

fixing a given defect in a large or tangled defect fixing commit. 
 
RQ1c our aproach can find the correct Minimal Valid Sequence to fix a given violation? 
 
a) Programming rules 
 

For programming rules we set to 20 the threshold on the number of identical sequences before 

deciding it will not be able to improve it (and therefore it is considered to be minimal). 
 

For our main validation, we manually evaluated 87 fixed rule violations chosen randomly. In 84 

cases (97%), the algorithm found the correct minimal valid sequence that fixed the violation 

considered. In the remaining 3 cases, the sequence found was not minimal, but the search stopped 

because we reached the threshold of 20 consecutive identical solutions. But, setting this threshold 

to a higher value would spend more time finding the exact minimal valid sequence. We conclude 

that our algorithm is working although there is a balance to reach between ensuring we find the 

right minimal valid sequence and not doing too much computation uselessly. 
 

b) bugs 
 

For RQ1.c we evaluate the algorithm with a set of bug fix commits which was extracted from the 

repository. The last line of table 3 shows the number of tangled bug fix commits in which we 

found correctly modifications related to bug fixes. To evaluate the accuracy of our algorithm, we 
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manually evaluated the results. The results are that, we could automatically extract bug fix 

actions in 32 commits out of 35 tangled commits. For the three remaining commits, the problem 

is due to the tests incorrectly linked to bug fixes. We conclude that our algorithm is working, 

although there is a need to increase precision when coupling bug with tests cases. 
 

RQ2 evaluate the relation between unnecessary modifications and 

violations  

RQ2.a Do unnecessary modifications are related to defects correction? 
 

To exhibit the influence of unnecessary modifications on defect correction; we focus on commits 

fixing exactly one defect. We use for this research question only 34 commits which fix exactly 

one defect. We present to 4 expert modification identified by our approach as necessary to fix a 

defect and the ones left in the same commit. We ask them if some unnecessary modifications can 

be part of correction of the given defect. In 5 case out of 34 (14%) of case programming rule they 

found relations. 
 

RQ2.b Do unnecessary modifications (related to defect) increase code quality ? 
 
We investigate if these unnecessary modifications help to increase code quality 

(comprehensibility, maintenability, coherence). the experts respond to a binary question. they 

answer that all presented modifications help to increase the comprehensibility of the source code. 
 

RQ3 learning from the past 
 

For the third research question we selected a set of 10 violations that we grouped into two groups 

of respectively 6 and 4 violations according to the rules. We have named the first group A and the 

second B. For each group of violations we have three examples of violation correction of the 

same rule detected by our approach. We have presented to two groups of two developers working 

in pair programming named Group I and Group II. In group I, in addition to the 10 violations to 

be corrected, the examples of corrections of violations of the same type as the violations of group 

A were presented while in group II we presented those similar to the violations of group II. We 

have timed the time taken by each group and the results are presented in table 4. 
 

Table 4: Time spent to correct violations 

 

 — Violations Group I Group II

 Developpers —   

 Group A 127 minutes 185 minutes

 Group B 213 minutes 152 minutes

 
We find that each group spent less time to fix violations of the group for which they has similar 

examples of corrections of violations detected by our approach. We conclude that using our 

approach allowed developers to improve their qualities to correct defects by learning from past 

knowledge and thereby improve the quality of the software. 
 

7. THREATS TO VALIDITY 
 

As any empirical evaluation, the results of our experiments are subject to threats to validity. We 

identified the following noteworthy threats: 
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1. The studied system might not be entirely representative of a larger population of systems, 

either from another application domain, or written in another programming language. This 

is always a difficult threat to mitigate as there is little information on what property of a 

system is important to ensure representativeness. Replication of the experiment for other 

systems must be realized. This said, we strongly believe our approach is independent of 

the programming language and the application domain. 
 

2. The way in which we chose bug fix commit may introduce bias because we chose a project 

who use a repository, a bug tracking system and tests. We also believe Pharo is a credible, 

real world, non-trivial, case study. It is a medium to big system and it includes a significant 

number of versions. However, we believe firmly that our approach is language 

independent.  
 

3. We disregarded violations that were fixed because the software artefact where they 

appeared before the commits had been removed during the commit. This was done to 

eliminate a possible problem with the obviously simple solution that removing the artefact 

that raises an alert is the best way to ―fixǁ any violation. Some violation can really be 

fixed this way, but this would not be the case for all, and we lacked the mean to tell one 

from the other. 
 

4. Internal threats to validity are related to the implementation of our approach. It is still 

possible that our implementation of the approach contains errors which can affect the 

exactitude of our results. To counter this threat, we manually studied a subset of the results 

and we did not find any obvious errors. Bias with respect to developer working habits 

might also occur in our selection of evaluation subjects. To reduce this risk, we selected 

diverse developers, all of them working in different projects and even in different physical 

locations. Thus, we believe the developers represent a heterogeneous enough population of 

Pharo developers.  
 

8. CONCLUSION 
 

In this paper, we have presented the idea that one can mine defect fix actions from software 

repositories. In other words, one can extract from past, a sequence of modifications needed to fix 

an alert (adding a method call, deleting method). We presented a methodology that help 

developer to learn to fix defect from the past of the system, and we applied it on a real system. An 

extension of the work would be to deal with finer grained modifications, typically at the level of 

the AST. The idea would be to extract an abstract summary of all the violation fixes for the given 

defect. 
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