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ABSTRACT 

 

Software testing is a critical and labor-intensive activity in software engineering.  Much research has been 

done to help automate test case generation. This research proposes a new approach to structural test case 

generation. It uses a specialized genetic algorithm called Dynamic-radius Species-conserving Genetic 

Algorithm (DSGA) to find a structurally complete set of test cases for the Triangle Classification algorithm. 

DSGA is a Niche Genetic Algorithm (NGA) that uses a short-term memory structure to store optima. Each 

individual of the NGA represents the inputs for a test case. The fitness function encourages the algorithm to 

locate test cases that cover large areas of the structure of the program. A shared fitness encourages the 

NGA to locate other areas of the structure. DSGA is a novel approach to structurally complete test case 

generation. 
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1. INTRODUCTION 
 

Software testing can be very time consuming and difficult. Some studies show that as much as 

50% of software development effort is used to test software [1].  Much of this time is spent 

generating test cases that can meet a testing objective. Much research has been conducted to 

automate software testing. Research covers generated test data for all types of testing like 

structural test cases [2], unit testing [3] and functional testing [4]. Automation of testing allows 

for software to be developed quicker and at a lower cost through reduced cost in manual 

generation of test cases. 

 

Structural Testing is one of many categories of software test cases. In Structural Testing the goal 

is to test all areas of the program based upon the structure of the program. The simplest form of 

Structural Testing is Statement Testing. In Statement Testing the goal is to obtain a set of test 

cases that execute every statement in the program. A set that executes every statement is said to 

be statement complete [5]. In most software not every statement can be executed. Exception 

handling is a primary example. In these cases it can be stated that some percentage of statement 

coverage has been achieved. In addition to statement coverage, Structural Testing can also be 

done for paths, branches, methods, classes and other structural characteristics. 

 

One method often used for software testing automation is the Genetic Algorithm (GA) [6]. GAs 

are a category of optimization algorithms that work very well at searching large complex domain 
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spaces. In software testing GAs have been used for test case reduction [7], input test generation 

[8] and even fixing software defects [9]. GAs demonstrably perform well in the automation of 

software testing. 

 

This paper presents a new GA for the automation of input test generation for structural testing. 

This research uses a highly specialized GA called the Dynamic-radius Species-conserving 

Genetic Algorithm (DSGA) to generate input data for structural completeness [10]. DSGA for 

Structural Tests (DSGA-ST) works in a manner that is similar to how humans generate test cases 

for structural testing. It begins by locating some input values and determines what parts of the 

structure they are testing. Then it excludes those areas of the domain to search for new inputs that 

test other parts of the structure. This approach helps the GA quickly locate input data for test 

cases. 

 

This research makes a number of contributions to the area of structural testing field research. 

DSGA-ST develops an entire test suite with a single pass running of a GA, while other methods 

have to run GAs multiple times for each condition within the target program. Algorithms of this 

type generate completely new fitness functions for each condition within the target program. 

Also, with DSGA-ST the size of the test suite does not need to be known. Some other algorithms 

model the test suite as an individual in the GA or restrict the test suite size to that of the 

population size in the GA. DSGA-ST is adaptive in nature and can identify test suites for any 

size. This allows DSGA-ST to develop test case suites without the limitation of other algorithms.  

 

2. LITERATURE REVIEW 
 

There is a lot of research on Structural Testing. It is one of the earlier forms of testing and has 

shown to be very effective at finding defects [5]. This is a mature area of research, with decades 

of cumulative experience, making an exhaustive survey of the area challenging in its own right.  

Even when considering using GAs for Structural Testing the number of research papers published 

is very large [6]. 

 

Therefore, our discussion only surveys a subset of papers on GAs and a review of related papers 

on the topic of using GAs for structural testing. This research uses the Triangle Classification 

algorithm to obtain results, so we employed the Triangular Classification algorithm as a 

benchmark, to provide a cardinal metric of performance gains, which is readily compared. 
 

2.1. Genetic Algorithms 
 

GAs have proven very useful in solving optimization problems. They have been used for decades 

to solve problems with large complex domains. Not only have they been used for structural 

testing, they have been used for countless other problems like predicting stock prices [11], 

optimization of large complex functions [10] and determining how amino acids fold to create 

proteins [12]. 

 

GAs search through the domain in a similar manner to that via which species evolve to adapt to 

their environment.  A species of plants or animals have a genetic sequence and different values 

for these genes produce individuals with different traits.  The species lives in some environment 

and in this environment individuals with certain traits do better than other individuals.  

Individuals that have traits that do well at solving the problem of existing in the environment are 

more likely to reproduce and pass their traits onto their offspring.  Over time the species finds a 

small set of optimal gene values to cope with the environment [13]. 
 
GAs are computer algorithms that model this evolution process that species go through.  GAs 

have individuals which represent a possible solution to the problem.  A set of individuals is a 
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generation.  The algorithm uses genetic operations on a generation to produce a new generation, 

which is better at solving the problem than the previous generation.  Over many generations, 

possibly hundreds or thousands, the individuals in the current generation converge to the optimal 

set of genes and thus to the optimal value in the domain.   

 

GAs implement individuals which represent a possible solution to the problem that the GA is 

attempting to solve [14]. Individuals are represented as strings, most often comprising 1’s and 

0’s.  Different combinations of these 1’s and 0’s represent different values of the domain. In 

problems of functional optimization these would represent values for the input parameters to the 

function.  But individuals could model much more complex entities, like classification rules [15-

16]. A GA is initialized by randomly generating some number of individuals. This is termed the 

first generation. 
 

Accompanying the individual is a fitness function. The fitness function accepts an individual as a 

parameter and returns how well the individual solves the problem. The fitness function is used to 

determine the best individuals within a generation. Just like in nature the traits of these 

individuals are more likely to be passed onto future generations.   
 

The GA will perform selection, crossover and mutation iteratively, with each iteration creating 

the next generation. In the first step of the iteration, selection, the GA selects pairs of individuals 

for crossover. Individuals with higher fitness are more likely to be selected and individuals can be 

used in multiple selection pairs. Eventually each pair of individuals from the selection step will 

produce two new individuals.  To keep the number of individuals in each generation consistent, 

the selection process will produce pairs equal to half of the number of individuals in a generation.  

Because individuals with higher fitness are more likely to be selected, their genes are more likely 

to be pass onto the next generation. 
 

The next step is crossover. In the crossover step, a position is randomly selected between the 

characters in the individual and each individual is split along this position. Switching the tails of 

the individuals creates two new individuals. These two new individuals become part of the next 

generation.  An example of crossover can be seen in Figure 1. 

 
Figure 1.  Crossover Example  

 

The final step is mutation. Mutation alters the value of a character based upon a parameter, 

mutation rate. When an individual has binary characters, the mutation operator just switches the 
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gene value between 0 and 1.  When an individual has genes with multiple values another random 

number is produced to determine the new gene value.   
 

GA theory argues that over many generations the individuals in the population will converge to 

the correct answer [17]. There are two opposing forces in a GA.  Selection and crossover are 

exploitive forces that work to narrow the generation into optima.  Mutation is an explorative force 

that introduces new areas of the domain for consideration.  Over many generations the individuals 

within the population converge to optima. 
 

2.2. Employing the GA as Structural Test Generator 
 

Because GAs are appropriate for searching, they are well suited for structural test case generation. 

A significant number of research papers have been published on using GAs for test case 

generation. We have identified more than a 100 works only on the subject of using GAs for 

software testing. This review only lists a few relevant ones. We survey only those of specific 

relevance. 
 

2.2.1. GADGET 
 

Genetic Algorithm Data Generation Tool, GADGET, [18] uses a coverage table to track the areas 

of the program that test cases have been created for. GADGET creates a specialized objective 

function for each entry on the coverage table. So if a target condition is if (c >= d), the fitness 

function would be: 

 

                ���� = �� − 	, ��	� ≥ 	
0, ��ℎ������  

                         (1) 

 

GADGET uses a fitness function which is a model of a minimization problem, so this function 

would encourage a solution that has c >= d. When test data is found the coverage table is updated 

with test case values. This opens the possibilities for coverage within the body of the if statement 

to be located.  
 

Michael, McGraw and Schatz [18] research shows results against a number of programs. Table 1 

shows the results for the Triangle Classification algorithm as reported in Sofokleous and Andreou 

[2]. It produced 9 test cases that have 79.6% coverage over the edges and conditions [2]. 
 

A limitation to GADGET is that the GA needs to be run multiple times each time finding a test 

case. Different fitness functions are derived for the conditions within the target program. Test 

cases for some areas of the target program cannot be obtained until test cases for previous areas 

are obtained. This occurs when targets are in the body of conditional statements [2]. 
 

Table 1.  GADGET results for TC Algorithm as reported in [2] 

 

 

Test 

# 

I j k Edges Conditions 

1 1680498885 1961702355 -1490056820 1, 2 A1=F; A2= F; A3=T 

2 1293470477 1898197634 465181194 1, 3, 4, 7, 10, 

13, 14, 15, 16  

A1=F; A2=F; A3=F; 

B1=F; C1=F; D1=F; 

E1=T; F1=F; F2=F; 

F3=T  

3 -120192928 1041962067 280365949 1, 2 A1=T 

4 841354299 -

1802686561 

-209782592 1, 2 A1=F; A2=T 

5 1056804119 660913846 1617709752 1, 3, 4, 7, 10, 

13, 14, 17, 18 

A1=F; A2= F; A3=F; 

B1=F; C1=F; D1=F; 
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E1=T; F1=F; F2=F; 

F3=F 

6 719320455 507534636 574028437 1, 3, 4, 7, 10, 

13, 14, 17, 18 

A1=F; A2=F; A3=F; 

B1=F; C1=F; D1=F; 

E1=T; F1=F; F2=F; 

F3=F  

7 743820356 743820356 1826109949 1. 3, 4, 5, 6, 10, 

13, 19, 22, 25, 

28, 31, 32 

A1=F; A2=F; A3=F; 

B1=T; C1=F; D1=F; 

E1=F; G1=F; H1=F; 

I1=T; I2=T 

8 999699718 584551117 999699718 1, 3, 4, 7, 8, 9, 

13, 19, 22, 25, 

26, 27 

A1=F; A2=F; A3=F; 

B1=F; C1=T; D1=F; 

E1=f; G1=F; H1=F; 

I1=T; I2=T 

9 799340978 1321708382 1321708382 1, 3, 4, 7, 10, 

11, 12, 19, 22, 

28, 29, 30 

A1=F; A2=F; A3=F; 

B1=F; C1=F; D1=T; 

E1=F; G1=F; H1=F; 

I1=F; J1=T; J2=T 

 

2.2.2. Automatic Test Cases Generation System 

 

The Sofokleous and Andreou [2] algorithm comprises of two sub-systems. The Basic Program 

Analyzer System (BPAS) analyzes the program, produces a Control Flow Graph and determines 

code coverage. The Automatic Test Case Generation System (ATCGS) searches the input space 

for an optimal set of test cases for structural coverage [2]. ATCGS comprises of two algorithms: 

Batch-Optimistic (BO) and Close-Up (CU).  

 

The BO employs a variant of McCabe’s Cyclomatic Complexity formula to determine the 

number of test cases needed for coverage. A complete set of test cases is then modeled as an 

individual for the GA. The BO employs the following fitness function: 
 

� = ���#������������ � + �"##$����%�� + #$���&'()�*
�� + �" 														�2� 

 

In this fitness function w1 and w2 are weights. #edgesexecuted is the number of edges executed 

by the test cases and #predtrue and #predfalse are the number of predicates evaluated to true and 

false respectively. BO stores these test cases in a repository. 

 

The CU algorithm attempts to find test cases for other conditions in the target program not 

located by BO. It creates a GA for each condition and where the GA cannot locate a suitable test 

case, it marks the target area as unreachable. Table 2 shows the results of the Sofokleous and 

Andreou algorithm [2] on the Triangle Classification algorithm. It produced 10 test cases and 

provided 100% coverage over the edges and conditions.  

 
Table 2.  Automatic Test Cases Generation System results for TC algorithm [2] 

 

Test 

# 

I J K Edges Conditions 

1 93 -1 0 1, 2 A1=F; A2= T 

2 -8 -1 -7 1, 2 A1=T 

3 5 784 -1 1, 2 A1=F; A2= F; A3=T 

4 786 732 1 1, 3, 4, 7, 10, A1=F; A2= F; A3=F; 
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13, 14, 15, 16 B1=F; C1=F; D1=F; 

E1=T; F1=F; F2=T  

5 476 645 537 1, 3, 4, 7, 10, 

13, 14, 17, 18,  

A1=F; A2= F; A3=F; 

B1=F; C1=F; D1=F; 

E1=F; F1=F; F2=T 

6 1 1 45 1, 3, 4, 5, 6, 

10, 13, 19, 22, 

25, 28, 31, 32 

A1=F; A2= F; A3=F; 

B1=T; C1=F1; D1=F; 

E1=F; G1=F; H1=T; 

H2=F; I1=F; J1=F 

7 1 1 1 1, 3, 4, 5, 6, 8, 

9, 11, 12, 19, 

20, 21 

A1=F; A2=F; A3=F; 

B1=T; C1=T; D1=T; 

E1=F; G1=T 

8 346 1 597 1, 3, 4, 7, 10, 

13, 14, 15, 16,  

A1=F; A2=F; A3=F; 

B1=F; C1=F; D1=T; 

E1=F; G1=F; H1=F; 

I1=F; J1=T; J2=T 

9 5 881 5 1, 3, 4, 5, 6, 

10, 13, 19, 22, 

25, 28, 31, 32 

A1=F; A2=F; A3=F; 

B1=F; C1=F; D1=T; 

E1=F; G1=F; H1=F; 

H2=F; I1=T; I2=F; J1=F 

10 1 6 6 1, 3, 4, 7, 10, 

11, 12, 19, 22, 

25, 28, 29, 30 

A1=F; A2=F; A3=F; 

B1=F; C1=F; D1=T; 

E1=F; G1=F; H1=F; 

I1=F; J1=T; J2=T 

11 31 4 31 1, 3, 4, 7, 8, 9, 

13, 19, 22, 25, 

26, 27 

A1=F; A2=F; A3=F; 

B1=F; C1=T; D1=F; 

E1=F; G1=F; H1=F; 

I1=T; I2=T  

12 15 15 2 1, 3, 4, 5, 6, 

10, 13, 19, 22, 

23, 24 

A1=F; A2=F; A3=F; 

B1=T; C1=F; D1=F; 

E1=F; G1=F; H1=T; 

H2=T  

13 4 1 1 1, 3, 4, 7, 10, 

11, 12, 19, 22, 

25, 28, 31, 32 

A1=F; A2=F; A3=F; 

B1=F; C1=F; D1=T; 

E1=F; G1=F; H1=F; 

I1=F; J1=T; J2=F 

14 36 42 5 1, 3, 4, 7, 10, 

13, 14, 15, 16 

A1=F; A2=F; A3=F; 

B1=F; C1=F; D1=F; 

E1=T; F1=F; F2=F; F3=T 

 

 

2.3. Triangle Classification Algorithm 
 

The Triangle Classification algorithm is a short algorithm that determines if three lengths would 

form a triangle and, if so, would the triangle be equilateral, isosceles or scalene. The algorithm 

accepts three parameters, i, j and k, which are the length of the three sides. The algorithm returns 

an integer: 1 for a scalene, 2 for an isosceles, 3 for an equilateral and 4 for not a triangle. The 

algorithm is often used in structural testing because it is short, but it has many paths and 

conditions. Figure 2 shows a control flow graph of the algorithm. Conditional statements are 

indicated with a letter. If it is a compound condition, each part of the condition is given a number. 

These are shown in the control flow graph in brackets [ ]. For example [A1] indicates the 
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conditional statement A and the first Boolean expression within the conditional statement. These 

annotations are used in the results section. 

 

The Triangle Classification algorithm is novel for structural testing for another reason. Assuming 

that the input parameters can be negative, a vast majority of the possible test case inputs lead to a 

single path in the control flow. No triangle can have a side of negative or 0 length. Condition A of 

the control flow checks to see if i, j or k is less than or equal to 0. If so, the three sides cannot 

make a triangle and it follows path 2 and terminates. If i, j and k have a sign bit, then a vast 

majority of input data follow this, not so interesting, path through the program. Algorithms that 

attempt to generate structural test cases need to explore these other areas of the search space. 

The Triangle Classification algorithm is a benchmark algorithm for structural testing.  In addition 

to GADGET [18] and Automatic Test Cases Generation System [2] it has been used in other 

software testing research.  Ammann and Offutt argue in [20] that it is a good algorithm for 

software testing research because it is easy to understand, relatively small yet very complex in 

terms of paths.  In 2012 it was used in [21] for research in mutation testing.  It has been used in 

Master’s Thesis [22] and Doctoral Dissertations [23].  It has been used in ant colony optimization 

algorithms [24] and other research [25].  For these reasons the Triangle Classification algorithm 

was used in this research.   

 

3. METHODOLOGY 
 

GAs are not always effective at finding optima in multi-optima problems. They can often 

converge to local optima, and fail to identify global optima [26-27]. One area of GA research is 

called Niche Genetic Algorithms (NGA). NGAs are specialized GAs that find optima in multi-

optima domains [26-27]. These algorithms concentrate on conserving areas of the domain from 

the exploitative forces of selection and crossover.  This allows the GA to explore these weak 

areas of the domain and possibly find local optima. 

 

This research uses the proto-type research methodology and generates a structurally complete set 

of test cases for the Triangle Classification algorithm. The results of the program are compared to 

existing literature on generating test cases for the Triangle Classification algorithm. The DSGA-

ST algorithm is used with individuals modeling the input parameters for the Triangle 

Classification algorithm.  Each individual represents a single set of input values. 

 

Our DSGA-ST algorithm produces a list called the tabu list, which contains locally optimal 

values. In DSGA-ST the tabu list often contains duplicate or redundant values. So, the tabu list is 

filtered through a short algorithm that removes redundant values. These redundant values could 

be identical individuals having the same i, j and k values. Or, they could be different individuals, 

but that follow the same paths through the program. Figure 3 shows a system level diagram of 

how the test cases are generated. When the redundant test cases are removed, the final list of test 

cases is the test suite. 
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Figure 2.  Control Flow Graph of Triangle Classification Algorithm  

 

Notably, the DSGA [10] is a clustering algorithm framework that uses a tabu list and a radius.  

The tabu list stores possible local and global optima and is used to encourage exploration in other 

areas of the domain.  The radius is used to identify sub-areas of the domain so the algorithm can 
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conserve individuals in these areas. The selection process uses a shared fitness function and tabu 

list to encourage exploration in other areas of the domain. DSGA changes its radius as the 

algorithm runs. Varying the radius in combination with the tabu list compensates for poor choices 

in radius values, which hinder other NGAs.  

 
Figure 3.  System Level Diagram of Algorithm  

 

3.1. Algorithm Overview 
 

As with any GA, individuals need to model potential domain values of the problem. To generate a 

set of test cases the algorithm models the three input parameters to the Triangle Classification 

algorithm, where each represents the length of a side of the triangle. However, the Triangle 

Classification algorithm does handle input parameters that cannot form a valid triangle. So, these 

other values are possible inputs to the algorithm. 
 

In this research the three sides to the triangle are represented as 8-bit integers with a 9th-bit used 

for the sign. Since there are three parameters the total length of an individual is 27 bits. Bytes 

were transferred using the little endian representation. 
 

In DSGA [10] a distance measurement needs to be defined between two individuals. In a GA 

there are many ways to represent distance. There is Euclidian distance, chromosomal distance and 

possibly more ways. In the Triangle Classification algorithm there are a total of 48 edges and 

conditions. In this algorithm distance is computed by summing the total number of edges and 

conditions that two individuals have in common. The distance is 48 divided by this sum. So two 

individuals are considered close together if they share many of the same edges and conditions. 

They are considered far apart if they have many different edges and conditions. This distance 

measurement will encourage exploration by finding other test cases that explore other parts of the 

code.  
 

Table 3 shows the edges and conditions executed in the Triangle Classification algorithm for 

examples of (0, 1, 1) and (1, 1, 1).  These two individuals have only one edge in common, Edge 

1. They have three conditions in common, A1, A2 and A3.  That is a total of 4 edges and 

conditions.  The distance between (0, 1, 1) and (1, 1, 1) is 48 / 4 = 12.  However, if we look at (2, 

2, 2) it would follow the same path through the graph as (1, 1, 1).  So, (1, 1, 1) and (2, 2, 2) would 

have all 20 edges and conditions the same and thus would have a distance of 48 / 20 = 2.4.  Even 

though (0, 1, 1) and (1, 1, 1) share two of the three values, they are far apart in terms of coverage 

of the control flow graph. However, (1, 1, 1) and (2, 2, 2) share no values in common but are 

identical in the control flow graph.   
 
 

Table 3.  Edges (E) and Conditions for examples (0, 1, 1) and (1, 1, 1) 
 

i = 0 

j = 1 

k = 1 

Edge 1, A1, A2, A3, Edge 2 

i = 1 

j = 1 

k = 1 

Edge 1, A1, A2, A3, Edge 3, Edge 4, B1, Edge 5, Edge 6, C1, 

Edge 8, Edge 9, D1, Edge 11, Edge 12, E1, Edge 19, G1, Edge 

20, Edge 21 
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3.2. Fitness Function 
 

With any GA the fitness function is a function that the GA will find optimal values for. So, the 

fitness function should model the problem trying to be solved. In many Multi-optima GAs, like 

DSGA, there are two fitness functions. The Natural Fitness is the fitness function that describes 

the problem to be solved. The Shared Fitness function [26] will adjust an individual’s Natural 

Fitness to encourage exploration in other areas of the domain. DSGA [10] accomplishes this by 

decreasing the fitness of individuals the closer that they are to individuals on the tabu list. This is 

due to the tabu list already containing possible optimal values.  Further exploration around tabu 

list values is not helpful.  The Shared Fitness encourages exploration in other areas of the domain.   

In this research the Natural Fitness is defined as the sum of the number of edges and conditions 

covered by the individual. This is done because a goal of structural testing is to find a smallest set 

of test cases that cover the structure of the program. The Shared Fitness is defined as the Natural 

Fitness divided by mi where mi is defined as the following: 

 

,� = - ./�0���/1	� −	0���/1	���, 2/345�������./�0���/1	� ∗ 0.1

9':�
;<)�	;�=>�?

�@�
 

 

(3) 

 

In equation 3 Tabu List Length is the number of individuals on the tabu list. MaxDistance is the 

maximum distance between two individuals. In the Triangle Classification algorithm this value is 

48. TabuList(x) is the xth individual on the tabu list.  Defining mi in this way ensures that as an 

individual i gets closer to individuals on the tabu list mi will increase and the Shared Fitness will 

decrease. 

 

When DSGA-ST is initialized the tabu list is empty.  This makes it difficult to compute Shared 

Fitness. So, Shared Fitness is simply the Natural Fitness until individuals are added to the tabu 

list.   

 

3.3. DSGA Algorithm – Low Level 
 

DSGA enhances a traditional GA with Seed Selection and Seed Conservation as defined in the 

SCGA algorithm [28]. A Seed is defined as a locally strong individual. For each generation of the 

GA the individuals are evaluated in order of fitness. An individual is marked as a seed if no other 

seed with a radius parameter, r, is a seed. Since the individuals are evaluated in order of fitness 

this ensures that the locally strong individuals are seeds.  In the example shown in Figure 4 the 

seed selection step would evaluate the individuals in the following order:  3, 2, 4, 1, 5, 6.  This is 

the order of their fitness.  It is obvious that individual 3 is a seed.  Since individuals 1, 2, 4 and 5 

are within the radius of individual 3, they are not designated as seeds.  Even though individual 6 

is relatively weak, it is outside of the radius of individual 3.  When it is evaluated there are no 

individuals within the radius that are seeds, so it is designated a seed.  In this example individuals 

3 and 6 are seeds.   
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Figure 4.  Seed Selection Example  

 

Once seeds are determined DSGA goes through the traditional GA steps of Selection, Crossover 

and Mutation. The final step in the GA loop is Seed Conservation. Each seed will replace an 

individual in the next generation, thus ensuring their genetic traits are passed on. The Seed 

Conservation [28] step takes each seed and replaces the weakest individual within the radius, r, of 

the seed in the next generation. If no individuals are within the radius, r, of the seed in the next 

generation, then the seed replaces the globally weakest seed in the next generation. Once in the 

next generation a seed loses its seed designation and needs to go through the Seed Selection 

process again to determine if it is a seed. Reference the DSGA pseudo-code for DSGA in Table 4.  

Periodically DSGA executes a new step called Reevaluation, which looks for strong areas of the 

domain. These areas are placed on the Tabu List. A parameter called Reevaluation Loop Count, 

RLC, indicates the number of generations between each Reevaluation step. Individuals can be 

placed on the Tabu List in two different ways. The current seeds are placed on the Tabu List. The 

Reevaluation step also looks for areas in the population that show convergence. A parameter 

called Convergence Limit, CL, is used as a threshold. If in the current generation during 

Reevaluation there are CL or more identical individuals then one of the individuals is placed on 

the Tabu list. All individuals in the current generation that were placed on the Tabu List are 

replaced with randomly generated individuals.  

 

Table 4 shows the DSGA pseudocode.  DSGA has shown promise in a number of areas of search 

and optimization. In [10] DSGA was used to solve a series of functional optimization problems. 

Later in Brown, Pelosi and Dirska [11] DSGA was used to predict stock prices. While selecting 

stocks from the Dow Jones Industrial Index the stocks selected outperformed the underlying 

index by nearly 400%. Recently it has been used in de novo protein folding problem [12].  

Research shows that DSGA is a very good optimization algorithm. 

 
Table 4.  DSGA pseudocode [10] 

 

Line # Pseudocode 

1 Initialization 

2 While not termination condition 

3      For (int r = 1; r < RLC; r++) 

4          Seed Selection 

5           Selection 
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6          Crossover 

7          Mutation 

8          Seed Conservation 

9     End for loop 

10      If there exists an individual d with CL or more identical individuals then 

11           Add d to tabu_list 

12           Replace all individuals identical to d with randomly generated individuals 

13      End if 

14      Add the seeds of the current generation to the tabu_list 

15      Replace all individuals that are seeds with randomly generated individuals 

16      Alter radius by SD 

17 End while loop 

 

4. RESULTS 
 

We executed the DSGA-ST algorithm with removals of redundancy against the Triangle 

Classification algorithm using the parameters shown in Table 5. The individuals, which represent 

the three input values for the test cases, were 27-characters long with each character being a 0 or 

a 1. There are 1.34 x 108 unique combinations of values that an individual can have. With these 

parameters only 200,000 values are actually evaluated. This is less than 0.2% of the total unique 

combination of values.  

 

With the parameter settings shown in Table 5, DSGA-ST can produce a suite of tests cases that 

cover each statement and all values, TRUE or FALSE, for each condition. The set of test cases is 

shown in Table 6 along with the statements covered and values for each of the conditions. This 

suite of tests cases executes each statement and produces at least one TRUE and FALSE for each 

condition. 
Table 5.  Parameter values for DSGA-ST 

 

Parameter Description Value 

Population Size The number of individuals per generation 200 

Number of Generations The number of generations before termination 1,000 

Mutation Rate The probability that a gene will mutate 0.03 

Initial radius The initial value of the radius 1.0 

Radius delta The amount that the radius is changed 0.1 

Reevaluation loop count The number of generations needed to evaluate 

individuals for the Tabu list 

25 

Convergence limit The number of identical individuals to conclude that 

convergence has taken place 

2 

 
Table 6.  DSGA Triangle Classification Test Suite 

Test # i j k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 -117 200 96 X X             

2 32 224 64 X  X X   X   X   X X 

3 40 40 62 X  X X X X    X   X  

4 64 218 64 X  X X   X X X    X  
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5 72 -229 -23 X X             

6 75 16 16 X  X X   X   X X X   

7 90 90 184 X  X X X X    X   X  

8 96 32 224 X  X X   X   X   X X 

9 161 142 140 X  X X   X   X   X X 

10 196 120 60 X  X X   X   X   X X 

11 223 174 174 X  X X   X   X X X   

12 224 224 224 X  X X X X  X X  X X   

13 226 88 -89 X X             

14 252 162 252 X  X X   X X X    X  

 
Table 6 (Continuation).  DSGA Triangle Classification Test Suite 

 

Test # 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

1                 

2 X X               

3     X   X X X       

4     X   X   X   X   

5                 

6     X   X   X   X   

7     X   X   X   X   

8 X X               

9   X X             

10 X X               

11     X   X   X   X X X 

12     X X X          

13                 

14     X   X   X X X    

 
Table 6 (Continuation).  DSGA Triangle Classification Test Suite 

Test # 31 32 A1 A2 A3 B1 C1 D1 E1 F1 F2 F3 G1 H1 H2 I1 I2 

1   T F F             

2   F F F F F F T F F T      

3   F F F T F F F    F T T F T 

4 X X F F F F T F F    F F T T F 

5   F T T             

6 X X F F F F F T F    F F T F T 

7 X X F F F T F F F    F T F F T 

8   F F F F F F T T F F      

9   F F F F F F T F F F      

10   F F F F F F T F T F      

11   F F F F F T F    F F T F T 

12   F F F T T T F    T F T F T 

13   F F T             

14   F F F F T F F    F F T T T 
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Table 6 (Continuation).  DSGA Triangle Classification Test Suite 

 

Test # J1 J2 

1   

2   

3 F T 

4 F T 

5   

6 T F 

7 F T 

8   

9   

10   

11 T T 

12 F T 

13   

14 F T 

 

4.1. Discussion of Results  
 

The results show that DSGA is very effective at generating structurally complete test cases. In 

only 14 test cases it produced a structurally complete test suite. This is equally as good as the 

ATCGS algorithm and better than the GADGET algorithm. A set of 14 test cases is still relatively 

small considering the complexity of the algorithm.   

 

Both ATCGS and DSGA-ST produced the same number of test cases at 14. However, in ATCGS 

the entire set of test cases is modeled with each individual. For larger programs this could be an 

issue. DSGA-ST models each test case as an individual in the GA and the set of test cases comes 

from the tabu list with can have an unlimited size. This makes DSGA-ST more flexible.    

 

4. CONCLUSION 
 

This research introduces a new algorithm for automated generation of structural test cases. The 

algorithm uses a specialized GA to locate some optimal values and stores them in a short-term 

memory structure. As these optimal areas of the domain are discovered, the algorithm encourages 

exploration in other areas of the domain. When the GA finishes a step is performed to remove 

redundant values, see Figure 3. The remaining test cases make up a complete test suite. 

 

DSGA-ST does not perform any analysis on the target program. It does not make specialized 

fitness functions for specific areas of the program. Other than determining which areas of the 

target program are covered by a test case, it is completely free of target specific constraints. This 

can allow DSGA-ST to generate test cases on much larger programs than the Triangle 

Classification algorithm.  

 

Through the use of DSGA-ST and the fitness function, this algorithm generates test cases the way 

that many humans would do it by hand.  The Natural Fitness function is defined as the sum of the 

number of edges and conditions that the test case covers. This encourages the algorithm to find 

test cases that cover large areas of the Triangle Classification algorithm. Once some good test 

cases are found, the algorithm looks in other areas to find more good test cases.   
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Another benefit that DSGA-ST has over other algorithms is that the number of test cases needed 

does not have to be known prior to using the algorithm. In many algorithms the number of test 

cases produced cannot exceed the population size of the GA. In DSGA-ST the test cases are 

derived from the tabu list which can be larger than the population size. 

 

A future area of this research is to apply DSGA-ST to larger programs and conduct an empirical 

study in a software testing organization. This future research should compare defect rates between 

software tested through DSGA-ST and other testing methods within the same organization. 

  

When generating structurally complete test cases there are two objectives. The primary objective 

is to cover the structure of the program. But a secondary objective is to minimize the number of 

test cases. In most GAs all objectives are modeled within the fitness function. But in DSGA-ST 

the fitness function only models the number of parts of the program that are covered by a test 

case, which is the secondary objective. The primary objective is handled through the tabu list, 

distance measurement and the shared fitness. This shows the effectiveness of these components of 

the algorithm. 

 

DSGA-ST is a new approach to generating structural test cases. Enhancing a GA with a tabu list, 

shared fitness and seeds makes DSGA-ST suitable for finding test cases of large complex 

programs. DSGA-ST has a number of advantages over existing algorithms.  Future research may 

show that it is advantageous in other ways. 
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