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ABSTRACT 

 

The field of Software Engineering has suffered considerable transformation in the last decades due to the 

influence of the philosophy of Lean Thinking. The purpose of this systematic review is to identify practices 

and approaches proposed by researchers in this area in the last 5 years, who have worked under the 

influence of this thinking. The search strategy brought together 549 studies, 80 of which were classified as 

relevant for synthesis in this review. Seventeen tools of Lean Thinking adapted to Software Engineering 

were catalogued, as well as 35 practices created for the development of software that has been influenced 

by this philosophy. The study provides a roadmap of results with the current state of the art and the 

identification of gaps pointing to opportunities for further research. 

 

KEYWORDS 

 

Lean Thinking, Lean IT, Agile, Software Engineering, Software Development, Systematic Review 

 

1. INTRODUCTION 
 
Lean has been studied by researchers for almost half a century [1]. Publications in this field have 
increased considerably with an increasing number of industries trying to adopt this philosophy of 
work in its productive processes[2]. 
 
The term Lean emerged in the early 1980s when a quality gap was observed between Western 
and Japanese products, being most clearly noticed in the car manufacturing industry. The most 
comprehensive research on the differential features of Japanese productive methods was 
conducted by the International Motor Vehicle Program (IMVP) at the Massachusetts Institute of 
Technology (MIT) [3]. IMVP studies in the car manufacturing industry highlighted that Japanese 
companies were offering higher quality products at lower costs, compared to Western companies. 
This was laid down to a fundamentally different operating paradigm used at Toyota. This 
approach carried out by the Japanese automobile manufacturing was classified by the authors as 
Lean Production. 
 
Later, Womak and Jones [4] generalized the Lean beyond production, grouping their concepts 
into five principles: determining what value is for the customer, mapping the value stream, 
establishing a continuous flow, deploying the pulled system, and aiming for perfection. This 
generalization was called Lean Thinking (LT) and is related to a set of applications success cases 
in sectors such as: hospital management, production, food distribution, building sector and 
services in general [1]. 
 
The process of expanding the LT to several segments also branched out into the area of 
information technology (IT), being called Lean IT. Within the LT application in the IT field, the 
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field of Software Engineering (SE) has been considerably transformed in the last two decades as a 
result of this influence of thought [5]. Poppendick and Cusumano[6]describe that similarities 
between Japanese management and software development began to become apparent around the 
1990s, following the example of Microsoft's philosophy of making daily corrections. This 
procedure can be seen as something similar to just-in-time, one of Lean’s bases. Bell and 
Orzen[7] present LT applied to SE through agile methodologies (AM). They claim that AMs are 
a set of tools and methods for managing the production life cycles of software focusing on just-
in-time systems development. LT acts in a broader context, within the environment that the 
software operates the company's value flows. Poppendick and Cusumano[6] recommend that 
organizations should start with some AM like Extreme Programming (XP) or Scrum to 
experiment with LT results. Such approaches could be considered as a starting point, and would 
be adapted and improved over time by the people and teams performing the work. 
 
AM can be considered to be a first milestone concerning the influence of LT in SE, that has 
increasingly influenced the software industry and researchers. Nowadays it is widely used [8]. 
However, two decades after the introduction of the AM, LT still influences important trends in 
the SE field, being present in new approaches and paradigms, such as DevOps, Enterprise Agile, 
Lean Startup, Continuous Integration, Continuous Software Engineering, among others [5][9]. 
The purpose of this work is to carry out a systematic review with the objective of identifying the 
practices and approaches proposed by SE researchers in the last years that have an explicit LT 
influence. This work is part of a broader research that investigates the adoption of LT in software 
development companies, and aims to contribute to future research, showing the extent to which 
the efforts of the academic community are focused on this line of research and the opportunities 
of new works. 
 
This article is structured in the following way: Section 2 describes the revision planning, the 
parameters adopted to use the search engines and the selection criteria of the researched papers. 
The leading of systematic reviews and the preliminary selection of these studies are presented in 
Section 3. Section 4 shows the final selection and the analysis of the studies that entered the 
Systematic Review. In Section 5 a critical analysis is presented on the practices and approaches 
of SE that show explicit LT influence. Finally, Section 6 presents the conclusions related to this 
work. 
 

2. PLANNING 
 
The planning activities of this Systematic Review (SR) were carried out in accordance with the 
recommendations of the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-
Analyses), described in Galvão, Pansani and Harrad[10], and with the protocol for researches 
concerning revisions in the area of software engineering presented by Biolchini et. al. [11]. 
Planning is the stage at which the research objective should be defined, how SR will be 
performed and what criteria will be taken into account for inclusion or exclusion of work. This 
section presents the details of this review step. 
 

2.1. Research Objectives 
 
The purpose of this work is to gather practices and approaches developed by SE researchers in 
recent years who have worked explicitly under LT influence. 
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2.2. Formulation of Research Questions: Focus and Specificities 
 
The main focus of research questions is to identify papers that relate SE to LT. The questions 
were elaborated so that the selected papers have as its central topic the practices and approaches 
of the SE that are influenced by LT and that report information of its applications in the field. 
 

• Research Question 1 (RQ1): what LT principles and tools are being adapted to the SE 
domain in current research? 

• Research Question 2 (RQ2): what are the SE practices and approaches used by software 
development teams explicitly influenced by LT principles? 

• Research Question 3 (RQ3): in what areas of knowledge of SE are the identified studies 
commonly applied? 

 
The specificities as to the quality and breadth of the research questions are described below: 
 

• Intervention: SE practices and approaches influenced by LT principles; 

• Control: this review began with the papers of [1][2][5][12][13] 

• Population: SE practices and approaches applied to software development; 

• Results: to identify which SE practices and approaches in recent years have been 
influenced by LT principles and their respective areas of knowledge; 

• Application: This work will provide SE researchers and understanding of the breadth of 
LT application in the software industry today and future work opportunities. 

 

2.3. Search Strategy for Selections of Studies 

 
Initially, the criteria for selection of the sources were defined and the search methods which 
would be considered. Thus, an initial set of research sources was identified. After that, the 
language was defined that would be considered and, thus, the initial set of search sources was 
reduced. Finally, the keywords and the search string were defined. Keywords were defined 
according to the purpose and the research questions presented in this review. This process and all 
its features are described below: 
 

• Source Selection Criteria: Only indexed databases and Internet search engines were 
selected. In the selected mechanisms, filters were used for the year and the search string; 

• Source search methods: a search string was used in databases and search engines. This 
string was used to filter titles and abstracts of articles; 

• Keywords: software engineering, software development and lean; 

• Listing of sources: second [14] it is recommended to search in specific search bases and 
to use at least one general search engine. The general basis consulted was Science Direct 
and the Scopus journal base aggregator. The specific basis was the electronic search 
engine IEEE Xplore; 

• Types of studies: studies were carried out in articles, papers presented at conferences, 
patents and reviews; 

• Language of studies: the language used was English because of its wide international 
scientific acceptance. 

 

2.4. Criteria and Procedures for Selection of Studies 
 
The most suitable papers for this SR were selected using inclusion, exclusion and search string 
constraints, restricting articles published to the years 2012 to 2016. Initially, an evaluation of the 
title and abstract of each identified work was carried out. Subsequently, the documents that best 
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fit the inclusion criteria proposed in this article were pre-selected. The inclusion and exclusion 
criteria were specified according to the search strategies and the questions proposed in this work. 
The following are the evaluation criteria for the inclusion and exclusion of studies. 
 

2.4.1. Inclusion Criteria 
 
The objective of the inclusion criteria is to qualify the relevance of the work evaluated according 
to the proposal of this SR. These criteria are described below: 
 

• Inclusion Criteria 1 (I1): the papers must be in digital format and available free of charge 
on the internet or by means of an agreement with the educational institution where this 
research was carried out; 

• Inclusion Criteria 2 (I2): complete papers written in English; 

• Inclusion Criteria 3 (I3): studies related to software engineering or software development; 

• Inclusion Criterion 4 (I4): the principles of LT are reported or related in the studies. 
 

2.4.2. Exclusion Criteria 
 
For this systematic review, the purpose of the exclusion criteria is to disregard irrelevant work. 
These criteria are described below: 
 

• Exclusion Criteria 1 (E1): consider software development as a secondary or auxiliary 
theme in the selected work; 

• Exclusion Criteria 2 (E2): explicitly state the influence of LT principles on some practice 
or approach proposed and reported in the studies; 

• Exclusion Criteria 3 (E3): consider the term "lean" and its variations in a different 
context from the focus of this paper. 
 

2.4.3. Search String 
 
The purpose of the search string was to find studies relating software engineering or software 
development to LT. Due to variations and combinations related to the "lean" concept, such as 
"lean thinking", "lean production", "lean six sigma", "lean enterprise" and "lean software 

development", among others, it was decided to use in the search string a more generic and 
common word to these variations. The goal was to broaden the research domain. Thus, the search 
string was defined as: ("software engineering" OR "software development") AND "lean". 
 

2.5. Study Selection Process 
 
During the initial selection process, the search string was used as a search parameter in the 
indexed sources. After the selection procedure of these articles, a filing procedure was carried out 
to ensure that each document was considered only once. Subsequently, the studies were shared so 
that the two reviewers could read the summary and conclusion. 
 
Each reviewer reviewed the work according to the inclusion and exclusion criteria presented in 
Section 2.4. At the end of the reading it was defined whether or not the work was suitable for this 
SR. In situations where there were divergences between the analyses of the researchers, 
discussions took place between them until a consensus was obtained. At the end of the evaluation 
of each document, each of these reviewers recorded the reason for inclusion or exclusion of the 
respective article. In the final selection, the selected papers, because they were relevant to SR, 
were read completely. 
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Researches were carried out using search engines in digital libra
portal. First, the search of the IEEE Xplore database was performed. The search string was then 
applied to the Science Direct journals portal. Finally, this string was searched in the Scopus portal 
reference aggregator. 
 
Of the 549 papers recovered, 33 belonged to IEEE Xplore, 342 were from Science Direct and 174 
were found in Scopus. To organize these studies and to assist in the collaborative work of the 
reviewers, an online spreadsheet was used. Among all the recovered 
duplicate articles. After removing this redundancy, 507 studies remained. After the work 
selection process, described in Section 2.5, 80 articles were left to be read out for synthesis in this 
SR. Figure 1 presents a summary of this se
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After the complete reading of the papers, the two reviewers prepared a categorization worksheet 
to classify them according to the relevant aspects proposed in the research questions of this stu
 

3.1. Rating the studies 
 
In order to respond to RQ1, the studies were ranked based on adaptations of LT principles to the 
SE domain. Three references identified in the papers selected for SR were selected. Subsequently, 
they were summarized in Table 
and essence of LT. 
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Researches were carried out using search engines in digital libraries available in the CAPES 
portal. First, the search of the IEEE Xplore database was performed. The search string was then 
applied to the Science Direct journals portal. Finally, this string was searched in the Scopus portal 

s recovered, 33 belonged to IEEE Xplore, 342 were from Science Direct and 174 
were found in Scopus. To organize these studies and to assist in the collaborative work of the 
reviewers, an online spreadsheet was used. Among all the recovered works, there were 42 
duplicate articles. After removing this redundancy, 507 studies remained. After the work 
selection process, described in Section 2.5, 80 articles were left to be read out for synthesis in this 
SR. Figure 1 presents a summary of this selection process. 
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Finally, the articles were evaluated according to the research questions presented in Section 2.2 
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After the complete reading of the papers, the two reviewers prepared a categorization worksheet 
to classify them according to the relevant aspects proposed in the research questions of this study. 
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Table 1. Principles of LT relevant to SE 

 
Principles of Lean 

Software Development 

(LSD) [15] 

Principles for the 

Development of Products 

(DP) [16] 

Kanban’s Principles 

(KB) [17] 

• Eliminate waste 

• Integrate quality 

• Create knowledge 

• Dismiss decisions 

• Deliver quickly 

• Respect people 

• Optimize the whole 

• Use an economic vision 

• Manage rows 

• Explore variability 

• Reduce the batch size 

• Apply WIP restrictions 

• Use quick feedback 

• Decentralize control 

• View the workflow 

• Limit WIP 

• Manage the flow 

• Make explicit process 
policies 

• Collaborative 
improvement 

• Decentralize control 

 
The ratings of the RQ1 and RQ2 data were performed as the work was thoroughly read by the 
reviewers. As response elements were identified, they were also classified and summarized 
according to the frequencies of the references. In this SR, 27 LT tools adapted to the SE domain 
were identified and are currently applied by this industry. We also classified 17 approaches and 
35 SE practices applied by software development teams explicitly under the influence of LT 
principles. The RQ3 sought to obtain the distribution of the studies identified in the knowledge 
areas of SE [18]. Some papers were classified in more than one area of knowledge due to their 
greater comprehensiveness.  
 
The mappings and syntheses of relevant literature papers for the research questions have been 
elaborated and are presented in detail in Section 4 of this article. 
 

3.2. Threats to Research Validity and Limitations 
 
The main limitations of the review are biases in the selection of publications and inaccuracy in 
data extraction. To help ensure that the selection process was unbiased, a research protocol was 
used that defined the research questions in advance. These questions used keywords and search 
terms that allowed the identification of relevant literature. However, it is important to recognize 
that SE keywords are not standardized and may be in a specific language. Therefore, because of 
the choice of keywords, there is a risk that relevant studies have been omitted. 
 
Another factor that threatens the validity of the research may be present in the subjective 
decisions that occurred during the selection process and extraction of some studies that did not 
present a clear description, consequently hindering the objective application of the criteria and 
analysis, especially in relation to RQ2 question. To minimize this threat, the selection and 
extraction was done in an iterative and collaborative way by the authors, and possible conflicts in 
individual interpretations were discussed. 
 

4. RESULTS 
 
The objective of this section is to summarize the information collected in the selected papers for 
this SR and thus contribute with the answers to the three research questions described in Section 
2.2. 
 
In order to respond to RQ1, we sought to establish which LT principles and tools are being 
adapted to the domain of SE today. The ratings for data on this question were carried out as the 
work was read and respected the arguments of the authors of the studies. Non-exclusive citations 
of these adaptations of LT principles were found in Table 2. Most of the 80 papers selected, 
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51.2% (41 studies), use adaptations of LT principles suggested by LSD [15]. The principles 
adapted for DP [16] and KB [17] summarized 14.1% and 17.3%, respectively. Some studies had 
no direct mention of these adaptations. 
 

Table 2. Adaptations of the LT Principles in SE 

 

Origin 

# of 

studies % References 

Principles of Lean 
Software Development 
(LSD) 
 

41 51.2% 

[19][20][21][22][23][24][25][26][27][28][2
9][30][31][32][33][34][35][36][37][38][39]
[6][40][41][42][43][44][45][46][47][48][49
][50][51][52][53][54][55][56][57] [58] 

Principles for the 
Development of 
Products (DP) 

8 10.0% [19][59][22][30][34][60][36][48] 

 
Kanban’s Principles 
(KB) 

13 16.2% 
[19][61][62][27][29][63][41][64][65][66][4
8][49][52] 

 
When analyzing in detail only the works that have quotations based on LSD (41 references), the 
three most frequent principles were: eliminate waste (33 references, 80.5%), fast delivery (25 
references, 61.0%) and optimize the whole (23 references, 56.1%). In most cases, the articles 
cited more than one LSD principle. 
 
The conceptual definitions and respective original purposes of the various LT tools are found in 
detail in publications of this domain [3][67]. In this SR a relatively extensive list of these tools 
that are being applied to the SE domain has been identified. Table 3 presents a summary of the 
collection of adaptations collected in the studies. Most frequently, Kanban citations (27 
references), Value Stream Mapping (10 references) and Limit Work in Progress (9 references), 
the latter related to a certain extent to Kanban, are mentioned. However, other LT tools have 
obtained a single citation, such as: GenchiGenbutsu, SMED, Standardish Work, Obeya and 
Hanedashi, in [30] and Evidence-Based Decision in [34]. Moreover, some, were never found, as 
is the case of Total Productive Maintenance, used in production maintenance to eliminate losses 
and reduce stops of continual processes. 
 

Table 3. Adaptations of LT Tools in SE 

 

LT tool 

# of 

studies References 

Andon 3 [19][68][30] 
Management Performance 4 [22][69][65][70] 
Kaikaku 2 [30][71] 
PokaYoke 3 [27][30][35] 
Visual Management 2 [23][40] 
Toyota Production System 7 [71][36][39][72][52][53][54] 
Kaizen 8 [19][62][29][30][6][44][73][51] 
Just-In-time 4 [47][74][52][75] 
Takttime 3 [76][47][77] 
Kanban 27 [19][61][20][62][23][78][79][31][33][6

3][6][80][41][69][64][65][44][70][66][
74][49][73][51][52][54][55][56] 

Value Stream Mapping 9 [19][59][62][68][31][33][81][82][51] 
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Bottleneck Analysis 
Jidoka 
Root-Cause Analysis 
Cumulative Flow Diagram 
PDCA 
Limit Work In Progress  
Flow unit 
Minimum Viable Product  
Toyota Product Development

 
The next set of data collected in this SR is related to SE practices and approaches used by 
software development teams explicitly influenced by LT principles. These are essential 
RQ2's response. The information was grouped
4, the SE tools identified in the paper
 
The SE approaches that most appear in the studies are related to AM. There are citations for 
Scrum (32.1%), Extreme Programming (23.5%) and Kanban (32.1%), some even making generic 
references to AM (24.7%). Lean Development, or simply Lean, is also treated in a gen
some researches. Despite the relatively high frequency, 24.7%, the authors mention this te
without too many specific details or references. In most cases, the quotation is made along with 
AM. The highlight of these data is that almost half of the studies are related to the LSD approach 
(43.2%). 
 
 
 

Figure 2. SE Approaches Under LT Influence

Several other SE approaches have been identified. They only add up to 9.9% and have an almost 
unitarian representation. Quotes were found for: Scaled Agile Framework, Adaptive 
Development, Rapid Application Development, Large
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Several other SE approaches have been identified. They only add up to 9.9% and have an almost 
unitarian representation. Quotes were found for: Scaled Agile Framework, Adaptive 
Development, Rapid Application Development, Large-scale Agile, Feature Driven Development, 
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[74][57] 

The next set of data collected in this SR is related to SE practices and approaches used by 
software development teams explicitly influenced by LT principles. These are essential parts of 
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Enterprise Agile, Leagile, Scrumban, Incremental Commitment Spiral Model, Dynamic System 
Development Agile and Crystal Methods. 
 
Likewise, we sought to bring SE practices together under the explicit influence of Lean thinking. 
35 practices were identified. The main practices are presented in Table 4. The practices of 
Continuous Integration (10%), Continuous Deployment (5.0%) and Continuous Delivery (5.0%), 
defined by Fitzgerald and Stol[5] as subtopics of Continuous Software Engineering (CSE). CSE 
is presented as a trend for the next few years in the SE area. The authors cite LT as an explicit 
influence of these three practices. The practice of Test Driven Development is also relevant 
(6.2%). 
 
Some of the SE practice citations are unique to the respective papers or split with one more study. 
In addition to the practices presented in Table 4, Agile Modeling, Assessment Lean for Software, 
Automated tests, Automatic Code Metrics, Behavior-Driven Development, Beyond Budgeting, 
Coding Dojo, Collective ownership, Continuous Software Engineering, Communities of Practice, 
Coding Standards, Design Thinking, Discount Usability Engineering, Frequent reviews, Lean 
Configuration Management, Lean Data Science, Lean UX, Maintenance Metrics, Microservices, 
Minimum Marketable Feature, Organizational Patterns, Pair Programming, Rapid Contextual 
Design, Real-Time Value Delivery, Refactoring, Scrum-of-Scrum, Simple Design, Dojo Testing, 
Test-Driven Design and Unit Test. It should be highlighted that 69.1% of the papers do not 
explicitly mention any SE practice, having a greater focus on the software development approach. 
 

Table 4. Main SE practices under LT influence 

 

The pratices ofSE # of studies % References 

Test Driven Development 5 6.2% [25][27][47][48][51] 
DevOps 4 5.0% [30][87][84][44] 
Continuous Integration 8 10.0% [23][25][27][30][31]

[87][84][39] 
Continuous Deployment 4 5.0% [30][31][84][44] 
Continuous Delivery 4 5.0% [30][31][87][6] 

 
The distribution of the papers in this SR concerning the knowledge areas of SE [18] was 
summarized in Table 5 below. It is worth noting the concentration of studies in the area of 
Software Engineering Models and Methods (62.5%). There is an intermediate group of 
approximately 10% of the studies: Software Engineering Process, Software Engineering 
Management and Software Quality. The two areas with the lowest number of referenced articles 
are Software Testing (5.0%) and Software Maintenance (6.2%). 
 

Table 5. Distribution by SE Knowledge Area 

 

Knowledge Area 

# of 

studies % References 

Software Construction 5 6.2% [23][79][30][31][88] 
Software Configuration 
Management 

8 10.0% [23][28][30][31][87][42][89][88] 

Software Engineering 
Management  

14 17.5% [61][59][22][62][23][78][28][79][30]
[34][90][85][51][58] 

Software Maintenance 5 6.2% [21][79][30][31][32] 
Software Engineering Models 
and Methods 

50 62.5% [19][22][91][25][26][92][93][27][78]
[28][79][30][31][94][33][81][84][60]
[63][71][36][95][37][38][39][72][6][
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40][69][43][64][65][44][45][70] 
[66][47][77][96][48][49][73][52][53]
[54][83][55][97][56][57] 

Software Engineering 
Professional Practice 

6 7.5% [25][78][30][98][74][53] 

Software engineering Process 16 20.0% [59][23][24][25][68][78][28][79][29]
[30][31][94][87][76][50] 

Software Design 7 8.7% [20][23][30][32][35][80][41] 
Software Quality 10 12.5% [23][25][28][79][30][82][86][56] 
Software Requirements 6 7.5% [59][23][78][30][80][46] 
Software Testing 4 5.0% [23][30][31][42] 

 

5. DISCUSSION 
 
In this section, we will analyze the research questions of this work, starting by discussing what 
was found in this SR about the practices and approaches of the SE explicitly described under the 
influence of the LT and later the limitations and threats will be presented to this systematic 
review. 
 

5.1. Which LT principles and tools are being adapted to the ES domain in current 

research (QP1)? 
 
This SR identified that LT principles adapted to the SE domain by LSD [15] are present more 
frequently in papers partaining to the area, totaling more than half of the selected total. This is 
also reflected in a relevant presence of articles (43.2%) that use the SE approach suggested by the 
same authors. 
 
When considering studies of LT tools used in SE, Kanban is most frequently used, with 1/3 of the 
citations (27 references) followed by Value Stream Mapping (9 references). Some of the tools 
identified have only one or two citations of works. For the Total Productive Maintenance tool, no 
related papers were found. The low frequency of citations in papers may indicate that there is still 
room for researchers and practitioners to experiment with new applications of these tools in the 
field of software development. 
 

5.2. What are the SE practices and approaches used by software development teams 

explicitly influenced by the principles of LT (QP2)? 
 
The approaches of SE influenced by LT principles with higher incidence in this SR are related to 
AM. Although there are some generic quotes to AM (24.7%), there are specific citations for 
Scrum (32.1%), Extreme Programming (23.5%) and Kanban (32.1%). Lean Software 
Development (43.2%) also appears in a significant way. 
 
Although some authors point to a certain conceptual confusion and scope between AM and LSD 
[19] [68], there are many points in common between them, and both are heavily influenced by LT 
from its origins. Wang et. al. [19] even point out a proposal for this conflict through Leagile 
Development, trying to combine the benefits of both approaches. Other authors [99] have 
observed that there is a shift going from AM to LSD in recent times. LSD, although originally 
seen as just another AM, is having an increasing focus, currently being viewed as a separate 
category, rather than as an instance of agile methods. In this SR the quotes that relate to AM and 
LSD come to sum up an expressive volume of works, with 30 citations (37.5%). 
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When compared to specific AM references, such as Scrum, Extreme Programming and Kanban, 
and LSD, the values collected are very similar. As each article could consider one or more 
approaches, it is difficult to ponder which approach is the most influential one in SE today. A 
relatively similar distribution of approaches among researchers is noted, with none of them taking 
prominence in community preference. 
 
The SE practices collected in the papers were summarized in Table 4. Continuous Integration 
emerged more frequently (10.0%). In a total of 35 rated practices, two relevant points are 
observed. The first is that there is not a strong concentration on a specific practice. The second 
point is that 69.1% of the papers do not explicitly mention any SE practice, only the approach 
used. We can consider several hypotheses for this phenomenon, however, it is not the main 
objective of this work to make this analysis, and may be the object of a future project. 
 

5.3. In what areas of SE knowledge are these identified studies commonly applied? 
 
The data indicate that the areas of Software Engineering Models and Methods have 
approximately 2/3 of the studies and are accompanied by an intermediate group, which includes 
Software Engineering Processes, Software Engineering Management and Software Quality. The 
two areas with the lowest number of studies referenced are Software Testing and Software 
Maintenance, which may indicate an opportunity for research by the academic community 
because these are areas that are still under-explored. 
 

6. CONCLUSIONS 
 
This SR sought in literature, reports of practices and approaches of SE that suffer explicit 
influence from the principles of LT. For this review, papers published between the years of 2012 
and 2016 were selected. Of the 549 publications related to the proposed objective, 80 papers were 
analyzed in detail to answer the research questions. 
 
The adaptation of the LT principles to the domain of SE most used in the selected studies is Lean 
Software Development [15]. We classified 17 LT tools adapted for SE. Most of these papers 
address Kanban and Value Stream Mapping. There are still opportunities for research into new 
adaptations, since for some LT tools the references are very rare and, in some cases, absent. 
The papers also point out that AMs are the majority of the citations in SE approaches under the 
influence of LT. There is a relevant volume of citations for Scrum, Extreme Programming and 
Kanban and Lean Software Development methodologies, including, more than 1/3 of them 
associating AM to LSD. Among SE practices, researches on Continuous Integration, Continuous 
Deployment, Continuous Delivery, DevOps and Test Driven Development are more frequent. A 
total of 35 SE practices currently used by the software industry related to LT, were identified. 
Studies of this SR were classified according to their respective areas of knowledge of SE. 
Software Engineering Models and Methods get 2/3 of the studies. The areas of Software Testing 
and Software Maintenance presented less number of studies and were still little explored. 
This systematic review may assist researchers seeking to develop studies in the field of Software 
Engineering and Lean Thinking, pointing out the current state of academic worksand gaps of 
opportunity for further research. 
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