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ABSTRACT 
 
Object-Z is an object-oriented specification language which extends the Z language with classes, objects, 

inheritance and polymorphism that can be used to represent the specification of a complex system as 

collections of objects. There are a number of existing works that mapped Object-Z to C++ and Java 

programming languages. Since Python and Object-Z share many similarities, both are object-oriented 

paradigm, support set theory and predicate calculus moreover, Python is a functional programming 

language which is naturally closer to formal specifications, we propose a mapping from Object-Z 

specifications to Python code that covers some Object-Z constructs and express its specifications in 

Python to validate these specifications. The validations are used in the mapping covered preconditions, 

post-conditions, and invariants that are built using lambda function and Python's decorator. This 

work has found Python is an excellent language for developing libraries to map Object-Z specifications to 

Python. 
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1. INTRODUCTION 
 

The formal languages Object-Z, VDM++, and UML-B are based on object-oriented styles which 

often mentioned in the literature. According to the comparison has been given in [1], the Object-Z 

has an important feature over other languages, which are: 

 

−Powerful semantic and calculus (predicate calculus and set theory) 

−strong support of objects 

−its specification style corresponds directly to object oriented programming constructs 

 

while UML-B weakly supports the concepts “object” and VDM++ does not have exact formal 

calculus. 

 

However, performing proofs through formal languages is a difficult task and requires a lot of 

skills in mathematics and an alternative approach is to map Object-Z to programming language 

and validates the specifications during execution. There are many works that mapped Object-Z 

specifications to object  oriented programming like C++ and Java, some presents a mapping 

method to cover some Object-Z constructs like basic type definition, schema, class, 

state schema, operation operators, state schema predicates. Types of constants, 

methods and template class [2], [3], [4], [5] and other works tried to complete these 
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constructs such as all types of definitions, object aggregation, object containment 

and other operation operators [1]. 

 

Also, there are works that mapped Object-Z specifications to object-oriented 

specification language which incorporating specification concepts and such linkage 

would allow system requirements to be specified in a high-level formal language, 

but validated at program language level. Like Spec# specification language which 

is an extension to .Net C# language [6], Perfect Developer which is an OO language 

that supports verification and validation [7], and MathLang which is a system for 

computerizing mathematical texts to check the correctness. MathLang is used to test the 

computerization of formal specifications written in Object-Z [8]. 

 

unlike C++ or Java programming, which is used for Object-Z mapping, Python 

supports multiple paradigms, dynamic typing, high-level built-in data types, and 

many add-on packages available that extends its capabilities with numerical 

computations, and scientific graphics.(SciPy,nNumPy) [9, 10] and also it 

incorporates an predicate calculus, set theory, and theorem proven to validate the 

written specifications with it. This makes it suitable for scientific and formal 

specifications mapping and this work mapped a part of Object-Z specification into 

program level Python specifications. 

 

2. BACKGROUND 
 

In this section, we review main constructs of Object-Z, why we choose Python 

programming to map Object-Z specifications and then, considering Design by 

Contract methodology to validate contracts in mapping Object-Z to Python. 

 

2.1. OBJECT-Z 
 

Object-Z is an extension of Z language by the adding of an object-oriented paradigm constructs 

such as classes and other object-oriented notions such as polymorphism and single/multiple 

inheritance. While Z is based on mathematical notation such as set theory, lambda calculus, and 

first order predicate and Z’s expressions are typed which is used mathematical functions and 

predicates.  

 

In Object-Z, class definition comprises a named box with optional formal general 

parameters that introduce a basic type only used in an expression or predicate, and 

also may have a visibility list, inherited classes, local type and constant definitions, 

at most one state schema, associated initial state schema and operations[12], [13], 

[14] and the following its basic class structure: 

 

ClassName[general  parameters]  

   constant definitions  

   type definitions 

   state schema 

   initial state  

   schema operations 

 

The following figure is an example of Object-Z specification for simple credit card bank account 

system described in [13], Each account has two numbers (current balance and credit limit) and  

three operations (withdrawn, deposited, and withdrawavil). This Object-Z specification example 

will be transformed step by step to Python code in next sections. 



International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.4, July 2017 

3 

 
 

Figure 1. Object-Z credit card specification example 

 

2.2. PYTHON 
 

Python is a powerful programming language that supports multiple paradigms, dynamic typing, 

automatic memory management, high-level built-in data types, full modularity, hierarchical 

packages and many add-on packages available that extends its capabilities with 

numerical computations, scientific graphics, and graphical user interface 

programming. This makes it very useful for scientific programming [9, 10]. 

 

Python has an extraordinarily simple syntax and reading Python program is like reading English, 

and program written in Python is only half as long as written in C, C++, or Java [15]. Python 

allows concentrating on the solution of the problem rather than the language itself [15], and due 

to its open-source nature, Python code can be ported to many platforms without requiring any 

changes at all if you avoid any system-dependent features. 

 

Python and Object-Z language have many similarities. Both of them are based on object-oriented 

paradigms, incorporates predicate calculus, and set theory moreover, Python is a functional 

programming language which is naturally closer to formal specifications.  

 

2.3. DESIGN BY CONTRACT 
 

The Design by contract is a software correctness methodology used to control the interaction 

between modules by precise specifications based on the principle of preconditions and post-

conditions to ensure consistence between the program and the specification [11].  

Design by Contract plays positive effects on design, and testing [16]. For that, 

many efforts spent to incorporate this methodology into different object oriented 

programming languages. For Python programming, there are many designs by contact 

packages like PyContract, PyContracts which allows annotating functions with contract 

expressions, but these packages used a syntax which does not allow richer contract expressions, 

does not express invariants to class attributes, and there are only contracts deal with 

local scope variables of the function. 
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In this paper, we use run time validation contracts in mapping Object-Z to Python that will cover 

preconditions, post-conditions, and consistency constraints (invariants) to check complex 

conditions using lambda functions. Python provides decorators which can be used 

to implement similar functionality of these contracts, and these decorators are 

wrappers around a given class or method.Which describes a formal language that 

can be used to define model constraints in terms of predicate logic. 

 

Contracts on functions consist of preconditions and post-conditions, In this work, A precondition 

decorator “pre” is implemented to specify what must be true upon entrance to the function, while 

post-condition decorator ”pos” is implemented to specify what must be true after the function has 

successfully returned, and these  “pre” and “pos” decorators can be used on class methods too. 

Moreover, the invariant decorator “inv” is implemented to specify a condition always true for 

class instances before any method call and after its return. “pre”, “pos” and “inv” decorators 

take a lambda function as argument to validate constraints upon class or method. 

 

3. MAPPING OBJECT-Z TO PYTHON 
 

This section provides mapping rules to transform basic Object-Z contracts to 

Python contracts and shows how to implement these transformations through 

Object-Z credit card specification example given in Figure 1. 

 

3.1. CLASS DEFINITION 
 

Class schema in Object-Z can be refereed to notion of a class by encapsulating 

local type and constant declarations, initial state schema, and zero or more 

operation schemas for the given state[12], [13].  

 

Rule1: Every Object-Z class schema is equivalent to a Python class declaration 

with same name and no consideration to any formal general parameter types if 

exits, since Python is a dynamic type checking language that verifies information type safety 

at run time, and the following shows the mapping for class definition found in figure 

1:  

 

class CreditCard: 

     … 
 

3.2. VISIBILITY LIST 
 

All members found in Object-Z visibility list class are visible to the environment of 

the object of all classes, and members which is not found in visibility list are 

visible only to the object of class and all its derived classes[12]. In Python, all class 

members will be public by default and otherwise will be private if it's name prefixed with two 

underscores which is not accessed from outside the class.   

 

Rule2: All members of a class not found in the visibility list will be mapped to 

private by prefixing its name with two underscores which can be accessed in same class 

through it's name or in derived classes through class parent name, otherwise it is public by 

default. 
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3.3. CONSTANT DECLARATIONS 
 

In Object-Z, constant declarations are related to a class and have fix values not 

changed by any operations of the class, but it may be differ in objects of the class 

[12], [13]. Since writing function is easier than writing class and Python objects 

can act as an object of function, we map these type declarations to functions which 

are decorated by type condition validation. 

 
Rule3: Each constant declaration will be mapped to a function decorated with “pre” 

predicate to check the constant type and its initialization.  

 

Example: Suppose the following constant declaration found in figure 1: 

 

limit: N 

 

The type of natural numbers will be mapped to a function with precondition   

checks if the constant of type integer and greater than or equal zero, as follows: 

 

@pre(lambda:isinstance(n, int) and n >= 0) 

def N(n): return n 

 

The above limit declaration will be mapped to 

 

limit=N 

 

which means that constant “limit” and function “N” will have same reference. 
 

3.4. CONSTANT SCHEMA PREDICATE 
 

The constant schema predicate is a predicate  that gives a correct value for  

constant in  schema [14]. 

 
Rule4 : The constant schema predicate will be mapped to “inv” decorator which 

uses lambda function to check  constant correct value. 

 

Example: Suppose that we want to map the following constant schema predicate found in 

the CreditCard class in figure 1: 

 

limit ε {1000, 2000,3000} 

 

This will be mapped as follows: 

 

@inv(lambda:limit in set(1000, 2000,3000)): 

class  CreditCard: 

 … 

 

3.5. STATE SCHEMA 
 

The state schema is a construct that declares attributes correspond to the class 

variables, and determines correct relationship between their values through 

predicate [13], [14].  
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Rule5: Each variable found in the state schema will be mapped to class attribute 

and its state predicate will be considered as an invariant class decoration “inv” . 

 

Primary variables are either visible or invisible, invisible variables (attributes) 

require to start with two underscores symbol so cannot modified from outside the 

class. If a variable is associated with invariant to ensure its correctness, the schema 

must have invariant to check the value of the attribute. 

  
Example: Suppose that we want to map the state schema found for the class in 

figure 1 which has an integer balance and the invariant that specifies balance + 

limit must be greater than or equal to zero. This state schema will mapped to: 

 

@inv(lambda:balance +limit>=0) 

class  CreditCard: 

         balance=Z 

… 

 

where Z a function with a precondition to ensure if the constant is of type integer 

and greater than or equal zero as follows: 

 

@pre(lambda:isinstance(n, int) and n >= 0) 

def Z(n): return ntion.  

 

3.6. INITIAL STATE SCHEMA 
 

The initial state schema has no declaration part and its predicates restrict the 

possible values of the state variables and constants of the class [12]. The initial 

schema determines the initial state of all created objects and always named INIT.  

 

Rule6: The initial state schema will be mapped to __init__ constructor that 

specifies the initial attributes values  for all created objects.  

 

Example: The initial state schema for Credit Card in figure 1 that sets the balance 

attribute to zero will be mapped to: 

 

def __init__(self): 

     self. balance=0 

 

3.7. OPERATION SCHEMA 
 

Operation schema changes the object state from one to another and its declaration 

starts with a delta list followed by communication inputs/outputs passed between 

the object and its environment, followed by predicates specifying the constraints on 

state variables [12].  

 
Rule7: Each operation schema will be mapped to a Python method with its 

associated inputs declaration, and its predicate list will be mapped to set of lambda 

preconditions and lambda post-conditions. 

 
Example: The withdraw operation schema for CreditCard in figure 1 will be 

mapped to: 
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@pre(lambda: amount<=self.balance+self.limit) 

def withdraw(self, amount: N): 

     self.balance= self.balance-amount 
 

3.8. OBJECT INTERACTIONS 
 

Class construct may have individual objects. Figure 2 shows the specification of the 

class Two Cards that contains two instances of the CreditCard class, deposit, 

withdraw money from the different cards, and  transfer money between them[13].  

 

 
 

Figure2.  Object-Z Two credit cards specification example 

 

3.8.1. Secondary variables 
 

Secondary variables may changed  in terms of their primary variables found in the class, so that 

any change in the primary variables will affect the secondary variables and the operation that 

changed primary variables must update the secondary variables[13]. 

 
Rule8: Write a function to update the secondary variable in case of any change happened in the 

value of primary variables and decorate the class with this function. This updated function will be 

called after calling any method in the class to change the secondary variable according to 

invariant state that relates these variables. 

 

Example: Suppose we want to map the state scheme of Two Cards class in figure2 

that has two instances of type CreditCard and the secondary variable total balance 

defined in term of primary variable balance found the instances of  CredirCard. 

 

This state schema will be mapped to: 

 

def findtotal(self): 

      if elf.c1!=self. c2: 

          totalbalance=self.c1.balance+self. c2.balance 
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@decorate_all(findtotal) 

class  TwoCards: 

         totalbalance=Z 

… 

 

The decorate all function implementation is found in our library which is used to 

call the function found between braces after calling any method in the class that 

changes the secondary variables. 

 

3.8.3. Initial schema referencing 
 

object.__init__(self) is a call to the initial schema  for of the "object",  the init 

schema for an object  of  Two Card class shown in figure 2 will be mapped using 

rule 6 as follows: 

 

def __init__(self): 

      c1.__init__(self) 

      c2.__init__(self) 

 

3.8.4. Non-deterministic choice 
 

The non-deterministic choice operator is used to model the occurrence of at most 

one of a pair of operations and when both operations are enabled, the operation will 

be chosen non-deterministically [13]. 

 

OperationExpression ::= OperationExpression [] OperationExpression 

 

Rule9: Non-deterministic choice operator in the above form will be mapped to  

 

def op1(**kwargs): 

 #body 

def op2(**kwargs): 

 #body 

 

op3 = choice(op1, op2) 

 

  where 

  

def choice(sh1, sh2, **kwargs): 

     r=random.randint(0,1) 

     r1=lambda **kwargs:sh1(**kwargs) 

     r2=lambda **kwargs:sh2(**kwargs) 

     L=[r1,r2] if x==0 else L=[r2,r1] 

     return L[0] if L[0] else return L[1] 

 

The **kwargs  is  a dictionary for the inputs  of the two  schemes. 

 

each input can be accessed through the dictionary, for example to access the value of  x, we write  

kwargs[x]. 

 

Example:The Operation Expression withdrawEither?c1.withdraw [] c2. withdraw 

found in scheme of TwoCards class in figure2 will be mapped to:  
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withdrawEither = choice(c1.withdraw, c2.withdraw) 

 

3.8.5. Sequential composition 
 

The sequential composition operator is equivalent to performing the first operation 

followed by the second and the first operation output variables are identified and 

equated with the input variables of the second operation having the same base 

names, which means that sequential composition is equivalent to the parallel 

composition mapping [13]. 

OpExp3 ::= OpExp1 ; OpExp2 

 

Rule10: Sequential composition operator in the above form will be mapped to  

 

def op1(**kwargs): 

 #body 

def op2(**kwargs): 

 #body 

 

op3 = sequential(op1, op2) 

 

  Where 

 

def  sequential(sh1, sh2, **kwargs): 

     return lambda **kwargs: sh1(**kwargs) or sh2(**kwargs) 

 

The **kwargs  is  a dictionary which combines the inputs  of the two  schemes, each input can be 

accessed through the dictionary, for example to access the value of  x, we write  kwargs[x]. 

 

Example: The Operation Expression transferConfirm?transferAvail; 

c2.printBal.Would be equivalent to transferring all funds from c1 to c2 and then 

printing the new balance of c2. 

 

This will be mapped to using rule:  

 

transferConfirm =  sequential (ransferAvail , c2.printBal)  

 

3.8.6. Parallel composition 
 

The parallel composition operators || is used as a schema piping operator which 

conjoin the operation expressions by identifying and equating input variables in one 

operation with output variables in other operation having the same names[13]. The 

Parallel composition operator can be noted by  

 

OpExp3 ::= OpExp1 || OpExp2 

 

Rule11 : Parallel operator in the above form will be mapped to  

 

op3 = parallel(op1, op2) 

  where 

  

def  parallel(sh1, sh2, *kwargs): 

     return lambda *kwargs: sh2(sh1(*kwargs)) 
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Which is valid for all parallel operator, if there are variables with the same name and type exist in 

both first scheme output and second scheme input, first scheme call is passed to second scheme 

through argument which is considered a call by reference. 

 

Example:The Operation Expression transferAvil?c1.withdrawAvil || c2.deposit 

found in scheme of TwoCards class in figure2 will be mapped to:  

 

transferAvail =c1.withdrawAvail  ||  c2.deposit 

 

transferAvail = parallel(c1.withdrawAvail, c2.deposit) 

 

4. CASE STUDY 
 

According to the rules in section 3, the following figure shows the translation from an Object-Z 

specification to Python classes in figure 1 and figure 2. 

 

@inv(lambda:limit in set(1000, 2000,3000)): 

@inv(lambda: __instance__.balance+__instance__.limit> 0) 

class CreditCard: 

 

    limit=N 

    balance=Z 

 

    def __init__(self, b, l): 

        self.balance=0 

              

    @pre(lambda : amount <= self.balance+self.limit) 

    def withdraw(self,amount): 

        self.balance =  self.balance – amount 

 

    def deposit(self,amount: N): 

        self.balance =  self.balance + amount 

 

 

@inv(lambda:limit in set(1000, 2000,3000)): 

@inv(lambda: __instance__.balance+__instance__.limit> 0) 

class TwoCreditCards: 

 

    c1=CreditCard() 

    c2=CreditCard() 

 

   @pre(lambda :  totalbal=Z) 

   def totalbal(self): 

      if self.c1!=self. c2: 

          totalbal=self.c1.balance+self. c2.balance 

 

    def __init__(self): 

      c1.__init__(self) 

      c2.__init__(self) 

     

   withdraw1=c1.withdraw    

    transfer = conjunction(c1.withdraw, c2.deposit) 
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   withdrawEither = choice(c1.withdraw, c2.withdraw) 

   transferAvail = parallel(c1.withdrawAvail, c2.deposit) 

 

   def replaceCard1(self, card :CreditCard): 

      self.c1=card 
 

Figure3. Translating Object-Z into Python Example 

 

5. CONCLUSIONS AND FUTURE WORKS 
 

Programming languages have different styles and paradigms with different advantages and 

disadvantages. Many efforts have been put into mapping C++ and java programming to Object-Z, 

but unfortunately the popularity and object-oriented programming paradigm takes most attention 

on this mapping. Python is a multi paradigms programming language, dynamic typing, high-

level built-in data types, and many add-on packages, it incorporates predicate 

calculus, mathematical proving, set theory and a lot of libraries. In addition to that, it can be 

extended to contain new notations and features.  

 

Python and Object-Z language share many similarities. Both of them are based on object-oriented 

paradigm, set theory and predicate calculus moreover, Python is a functional programming 

language which is naturally closer to formal specifications. 

 

This work has found Python is an excellent language for developing libraries to map Object-Z 

specifications which is used Python's decorate capabilities to extend the language with 

precondition post-condition and invariant notations to check functionality constraints,  In 

addition, writing these notations makes it possible to transform the specification into 

implementation with a few simple steps. In fact, these notations will to be validated through 

executing them instead of performing proofs. The future work could complete all other Object-Z 

constructs which not covered here, and could automate Object-Z formal specification 

transformation into implementation.  
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